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1. Introduction

1.1. In [3], [4] Linnik gave the following characterization of the nor-
mal law; if X;#0 and X, are independent identically distributed random
variables such that a,X;+a.X, has the same distribution as X, where q,
and a, are fixed non-zero real numbers satisfying a:+ai=1, then X, is
normal with mean zero.

This result was extended by Shimizu [9] who gave a complete de-
scription of the characteristic functions of random variables with the
following property :

(1) X, has the same distribution as
_ﬁ a,X;— é a.X;
i=1 i=p+1

where Xj,---, X, are independent identically distributed
random variables and a,,---, a, are fixed real numbers
satisfying 0<a;<1, 1=1,---, n.

If we denote the characteristic function of X; by ¢ then (1) is equiva-
lent to the functional equation

(2) so(t)=;li[ olait) ijlso(—-att), —o<t<o.

The more general functional equation

P n
(3) et)=11¢at) I ¢'(-at),  —oo<t<eo,
where 7,>0, i=1,---,n was considered by Ramachandran and Rao [7],

[8] who gave a complete description of the characteristic functions which
satisfy (8). In [8] they also considered the case of an infinite product
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(4) o(t)= Jj @"2i(Ayt) :L—ll- o= —ay_ot) , —ooLt< o,

where 7,20 and 0<a;<1. Their results in this case were not complete
as they imposed the following further conditions on ¢, (,)? and (a,)";

(5) ¢(t) does not vanish,
(6) lgg a,=0

and

(7) 1< pdafi<oo

for some 2>0.

1.2. The method of proof used in [3], [4], [8] and [9] consists of first
proving that a characteristic function which satisfies (8) is infinitely
divisible. The Lévy-Khintchine representation for infinitely divisible
characteristic functions

(8) loggo(t)=i;zt—%oztz+g (e“"—l—- it >dM(u)

1+4+%°

w1 'l:tu’
+Sco,w) <e 1 14+u? >dN(u)

(—c0,0)

(see [5]) is then invoked which together with (3) implies that

(9) M(u)=33 rdM@uja)— 3 7 N(~wja),  u<0,
and
(10) N@w)=3 rN@w/a)— > rM(—ufa),  u>0.

On writing v(u)=M(—e*) and w(u)=— N(e*) we obtain from (9) and (10)

1) ww=Hre+Aa)+ 3 ruurd), —eo<u<o,
and
12)  ww=3rawetA)+ S rowtd),  —eo<u<o,

where A,=—loga,.

From the properties of M and N (see [5]) one may deduce that v and
w are non-negative, non-increasing right continuous functions with v(co)
=w(c0)=0. The corresponding equations for the infinite case may be
written as
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(13) ’U(u)zé r2iv(u+A2i)+§: Ta WU+ Azy) , —oco<Uu< oo,
and
(14) w(u)=:§ Tu’w(u‘i'Azi)'l‘:gl T V(U +Ay_1) , —co UL,

The problem is therefore reduced to solving (11) and (12) under the
stated conditions. In [8], [9] this is done by adopting the method of
Linnik [3], [4] to the more general problem. This involves locating the
zeros of the Laplace transforms of v and w, applying some results in
the theory of entire functions and then using the inversion formula for
Laplace transforms (see [2], [8] and [9] for the details).

1.8. In this paper we give a complete and elementary solution for the
finite case. The method of proof can be extended to the infinite case
which is then solved under the additional assumptions (7) and
(15) sup |a;{<1.
1S5i<o

This yields an extension of the results of Ramachandran and Rao [8]
as we are thus able to dispense with (5). The greater generality of
(15) in comparison to (6) is only apparent as a closer exmination of the
proof given in [8] shows that use of (6) is only made to the extent that
it implies (15).

Our solution consists of first solving the functional equation

(16) 9@)=3 Pug(@+A2) — 2 Pu-sg@+Au) @2y

where A;=20, p,=0 and §‘_, p,=1 (plus other conditions when an infinite
i=1

number of the p; are non-zero). This is done in Section 2 where we
also indicate how the general solutions of (13) and (14) may quickly be
obtained from the general solution of (16). In Section 3 we apply the
results of Section 2 to the functional equation (4). We first obtain the
general form of |p(t)| and use this to obtain the general form of ¢(t).
The only property of characteristic functions we use here is that if
1—|e)2=0(t]), 0<p<2, then 1—iut—e(t)=0(t|’) for some p. In
this way we are able to dispense with the necessity of proving directly
that ¢(t) is infinitely divisible and it is this which enables us to drop
the condition (5).

Our solution of the functional equations (13) and (14) does not in-
volve Laplace transforms or function theory. Furthermore our solution
is not only elementary but also, in the finite case, simple. It is only
Lemma 2, which is required for the infinite case, which presents any
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difficulty although even here the basic idea is very simple. In this
sense our solution may be regarded as an extension of the methods
used by Baxter [1] (a paper which seems to have been overlooked)

and by Laha and Lukacs [5] in the normal case i rai=1.
i=1

2. Solution of the functional equation (16)
2.1. Regarding (16), we shall assume without loss of generality that
17 if A;=0 then p,=0.
We require the following notation:
A={A=(4;, 4;,---): A;=0, sup 4,>0, i&f; A>0},
A0)={A: AecJ and there does not exist a p>0 such
that A,/p is a non-negative integer for all 1},

A(p)={A: Ae A and A,/p is a non-negative integer for
all 7 and the A,/p have highest common factor 1},

B(p)={A: A e A(p) and either (i) A;_,=0 for all 7 or (ii)
for at least one %, A;,_,/p is positive and even or
(iii) for at least one 7, A,/p is positive and odd} ,

Clo)={A: A J(p) and either (i) A,,=0 for all 7 or (i)
Ay /p is even for all 1 with A4,,>0 and A,_,/p is odd
for all ¢ with A4,,_,>0}.

Note that we have A(p)=B(p) UC(p) for any p>0 and A= U Alp). We
p20
can now state our fundamental theorem.

THEOREM 1. Let g(x) be a real valued function which satisfies the
Junctional equation

(18) 02)= 3] Pug(a+ A — 3 i@+ Aur) s 2200,

where Aec A, p,=0, g p.=1 and (17) holds. Suppose further that g is
such that

(19) sup l9(x+y)—g(x)|<oco  for all y=0.
x Io

Then the following holds ;
Case 1: If Aec A0) and g(x) is continuous them g(x)=c, (constant).
Further, if for some 1, p,;_ >0, then ¢,=0.
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Case 2: If Ac B(p) then g(x)=A(x) where Ax+p)=4d(x) for all xz=x,.
Further, if for some ©, p,;_;>0 then 4(x)=0.

Case 8: If AecC(o) then g(x)=II(x) where II(x+p)=—1I(x) for all x
=%,

PROOF. Write h(x, y)=g(x+y)—g(x). Then h(zx,y) for fixed y satis-
fies (18) and is bounded because of (19). Suppose p,#0, set hyu(x, y)=
M+ Ay, ¥)—h(z, y) and define

(20) az,c=li1£1_'§°up hy(2, ¥) , bz,c:lir:}‘ inf hol(z, ) .

Then h,(x, y) satisfies (18) and hence

(21) az,,gg Du liIle_iup ho(+ Agi, 'y)—g1 Daii lirilqimnf ho(x+Azi_y, ¥)
=y, g Dai— by g‘,: Dyt -

Similarly

(22) b = byx E Dai— Qg E Dsi-1

so that (21) and (22) become equalities (p,;=0, i p;=1). This together
i=1

with the assumption that p,, >0 implies that for any sequence (z,); for
which

lim hy (2., ¥)=aq and lim2,=oc0

n—oo n—oo

hold, lim Ay (x,+ Ay, ¥)=ay. On iteration we obtain for every positive
integer L
lim (h(2,+ LAy, ¥)— (., ¥))

n—00

L-1
—lim (F hog(@ -+ 5 Ase, y)) =Lay,

n—oo

and as h(x,y) is bounded we conclude that a,=0. Similarly we can
show that b,,=0.
Now

| (. 9)1S 3 Pl haslw+ 4, 9)|

and as p;=0 and é p;=1 there exists an 1 with A,>0 such that |Ay(zx+

A;, ¥)|=hu(z, y). As the positive A; are bounded away from zero (A4 ¢
A) this implies
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| o, y)lélirfl Sup | ho(2, y)|=max (|@s|, [be|)=0 .

Thus for all x=x, and y=0 we have

(23) M2+ Ay, y)=hz, y) .

Similarly by considering hy,_ (%, ¥)=h(x+ As_,, ¥)+ (%, y) We can obtain
U Aoy i(@0+ 5 Ane-t, Y)=(—1) s

and on using
L-1
(=) '"W@.+ LAy, y)+h(z,, ?/)-_—jg (=1Yhy_(ut+J A1, Y)

we obtain

IEII ((—1)L_lh(xn+LA2k—1! y)+h(xn1 y)):Laﬂc—l .

The boundedness of h(x, y) yields ay_;=0 and from this we may deduce
as before

(24) h(x+A2k-1r y)= _h'(x’ y)

for all k¥ with A,._,>0.
We are now in a position to consider the three different cases.

Case 1: Suppose first that i‘, Pu_1=0. On iterating (23) we obtain for
i=1
any integers [,,---,l, (positive or negative) for which z+3>11,4;=>%,,
i=1

h<x+ii LAz, y):h(x, ¥), provided x=z,. But as A € 4(0) the set
=1

{éli 5t U, -+, 1, integers, n=1,2,---}
i=1

is dense in (—oo, o) and as h(zx, y) is continuous we can conclude that
Mz, y)=h(z, y) for all x>z, and 2=x,. We have therefore

h(z, y+y')—h(z, y)—h(z, ¥')
={9(x+y+¥)—9®)} —{g(x+y)—9(x)} — {g(x+y)—g(x)}
={9(x+¥' +y)—g9(x+¥)} — {g(x+vy)—g(x)}
=h(z+y, y)—h(z, y)=0 for x=x, and ¥, ¥’ =0.

Since h(x, y) is as a function of y (=0) continuous we may write A(z, ¥)
=h(w,, ¥)=g(2y+y)—g(x)=cy for x>z, and y=0, where ¢ is a constant,
or g(x)=c,+cx, r=x,, where c¢,=g(x,)—cx, is a constant. Substituting

this into (18) we obtain ¢=0. Suppose now that ipgi_l>0 so that
i=1
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Ay >0 for some k. On iterating (23) and (24) we obtain for all inte-
gers Iy, -, I, with z+2 311,A,=7,
i=1

B+ Aua 2 S LA, Y) =R+ Aus, 1) =—h(z, 1) -

The set {ZiliAi: ly,»--, 1, integers n=1, 2,---} is dense in (—oo, o0)
i=1

and this together with the continuity of h(x, y) yields h(x, y)=—h(x, ¥)
so that g(x+y)=g(x) for all x=x,, y=0. Thus g(x)=c; for z=x, and

direct substitution into (18) coupled with the fact that i Do >0 gives
i=1
immediately ¢;=0.
Case 2: Suppose firstly that f] Pu_=0. On iterating (23) we have as
i=1

before
h<x+§n1 LA, y) =h(x, )]

for any integers l,,---,l, for which x+i}1‘_. LA, =2x,. As A€ B(p) there
=1
exist I;,---,l, such that éliA&:p and hence h(zx+p, y)=h(z, y) for ali

x=%,. On rearranging this yields g(x+y+p)—g(x+y)=g(x+p)—g(x) so
that g(x+p)—g(x)=c,. Iterating we obtain g(x+rp)=g(x)+rc, for every
positive integer r. Substituting this into (18) yields

g(x)= 12:1 Dug(x+ As)= ju—: D2:(g(x) +ciAzlp)

=.q(:v)+c4<§]1 pz,-A%/p> .

As gipz,-Az,;&O we conclude that ¢,=0 and this completes the first part
of Case 2.

Suppose now that f‘_, Pyu-1>0 so that A,,_,>0 for some k. We con-
sider first the case thattj 1A2k_1/p is even. There then exist integers [,
«++, 1, such that Z:V‘_,liAizAz,,_l. The usual iteration of (23) and (24)
yields -

bz, y)=h(z+2 S LA, ¥)=ha+ Au i, 9)=—1(, V)
so that h(x, ¥)=0. We conclude that g(x)=¢; for all =2, and on sub-

stituting into (18) we obtain ¢;=0.
Suppose now that A,/p is odd for some k. We may assume that
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Ay ifp is odd for all ¢ with A,_,>0 as otherwise we are back to the
case just treated. It is therefore possible to choose integers j and I
such that (2741)An/o—Ay_i/p is a positive even integer. As the A,
have highest common factor 1 there exist integers I,,---,1, such that

(2 +1)Ap—Ay_=3 Al,. We obtain
i=1

W(w, 1) =hia-+ @i+ 1A, ) =h(2+ Ay +2 £ 1A, 9)
=h(x+Au_1, ¥)=—Mzx, y)

so that h(», y)=0 and as before we conclude that g(x)=0 for all x=z,.
Case 3: Suppose that A,/p is positive and even and A, _,/p is positive
and odd. We can choose integers j and m so that (25+1)A;_,—mA,
=p. This implies
Mz+p, y)=h(x+(25 +1)Azs_1— m Ay, ¥)
=hx+25+1)Azn_s, ¥)
=—h(z, )

from which it follows that g(x+p)+g(x)=c;. On iterating we obtain
as Ae€Clo)g(x+As)=g(x) and g(x+ Ay ))=cs—g(x) if Ayu_,>0. Substi-
tuting this into (18) yields

g(x)= % Dug()— é Pai-1(Cs—9(2)) =9() — ¢ é D1 -
As ii‘. P2-1#0 we have ¢,;=0 and this concludes the proof of the theorem.
=1

2.2. In this section we prove two lemmas which enable us to conclude
that certain functions which do not oscillate rapidly and which satisfy

(18) with i P:-1=0 must be bounded and hence Theorem 1 may be
i=1

applied to such functions. The proof in the finite case is much simpler

than that in the infinite case and we therefore give it separately.

LEMMA 1. Let g(x) be a non-negative real valued fumction which
satisfies the functional equation

(25) gv(ac)=i_ﬁ1 Pug(x+A), =1,

where Ay >0, ;>0 and }E,pnzl. Then if e *g(x) is mon-increasing
i=1
Sfor some 2>0* it follows that g(x) is bounded.

* The condition can be removed. In fact, it follows from (25) that G(zx)=e-ig(x)=
G(z+ Awx) whenever paxexp (2A:x)=1. Then for a sufficiently large 2, G(x) is non-increas-
ing if p=0 and G(x)=G(x+p) if p>0. This is sufficient for the proof of Lemma 1,
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PROOF. From (25) it follows that there exists an ¢ such that
g(xy+ Az)<g(x,). Similarly there exists a j such that g(x,+ A+ A4;)=
g(x+A5)<g(x,). In this manner we obtain a sequence (Aq,,); with A,

=0 such that 0§g<xo+i A(m) =g(x,) for all m=0 and where Au,=A4;;
for some 4,, 1=7,<n. As min A,>0 we can find for each x=x, an m

such that -
0§w—wo—é‘,) A(z,)gzls'l?é}i Ay .
As e **g(x) is non-increasing we have
0=<e*g(x)=exp (— 1<xo+ 5;; A(z»)>> g<xo+v}§ A(m)
<exp <—— 1(%0-!"% Am)> > g(2,)
and hence
0<g(x)=exp <2<x—wo—§ Am))g(xo)éexp (2 max A,)g(xo)
which proves the lemma.

The corresponding lemma for the infinite case is the following.

LEMMA 2. Let g(x) be a mon-negative real valued function which
satisfies the functional equation

(26) 1@ =N pge+A),  aZan,

where A€ A, p,=0, }f‘_,pﬁzl, and

(27) S Py €XD (0Ay)=c,<co  for some 6>0.
i=1

Then if e **g(x) is mom-increasing for some 2>0 it follows that g(x) is
bounded for x=x,.

PrROOF. As A € ] we may set inf A,,=1 without loss of generality.
For all positive integers n and m v?iigﬁ n<m we define
Dn)={i: 14,<n}
D, m)={i: n<Auy<m}

D(n, o)={t: n<Ay<o0}.
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As

M

pi=1 we may choose n sufficiently large so that

i=1

(28) S pu=P(n)zexp (—o/2)
i€ D(n)

I

where 6 is as in (27). We write
ro=inf {y: y=1, g(x+y)=g(x,)}
(it follows from (26) that z, is well defined) and we choose g, to satisfy
n=m<n+l and gz +m)<g(x,) .
With n given by (28) we define

y=min{2:: 1€ D(n), g(x,+A4n)= irg( )g(wo+Az,-)+exp(—5ro)}
jE€Dn

and with v, --, v, defined we define

ver=min {26 1€ D(n), g(ay+S,+As)
= inf g(x,+S, 4 Ay;)+exp (—dr)}
JjeDn)

where S,czi} A, . TFinally we define the integer s, by
=1

0 if 7, <A, +n+1
8=

max {r: S,+n+1=7} if n,=A, +n+1.

The main part of the proof is concerned with obtaining the inequality
k
@) glat-S)Sg@)+exp (—om)| 2 P(n)/(P(n)
+6exp (S +1)o(w)) ,  1skSs,,

where ¢, is as in (27). We obtain (29) by induction.

Suppose first that s;=1 and k=1 and set m,=[r,] (the largest inte-
ger m=r). As =1 it follows that n,>n+2 and on using (26) we
obtain

0= > pug@t+A)—g(@))+ > Dul(9(x0+ As)—g(20))
i€ D(n) i€

(n’ ”1)

+ X D2:(9(®s+ Az) —9(,))
i € P(ny, )

where > is to be interpreted as zero if 9 is empty. From the defini-
ied
tions of 7, and », we have g(x,+ A,)>g(x,) for i € D(n, n,) and hence



IDENTICALLY DISTRIBUTED LINEAR STATISTICS 479

; E%(n) D2u(9(20+ Az) — g(100)) = 2] D2:(9(20) — 9(20+ As,))

1€ Ny, 0©

sg(x) X Do
i € D(ny, )

as g(x) is non-negative. This yields

Jinf (g(+A)—g(@))=P(n)( 23 p)g(o)
i€ D(n) 1€

D(n1, )
so that
(30) 9(2o+ A, ) < g(a0)+exp (—dro)+ P(n)'g(,) y Q(Z ) Dai
1 Ny, 0O

Now

o D= 2] Dy €XP (345 —35A,)

i € 9Y(ny, o) 1 € D(n, )

sexp(—om;) 33 puexp (6A4y)
1€ DP(ny, o

=c¢; exp (—om,) <c¢; exp (—d(z,—1))
and on substituting this into (30) we obtain

9(@o+ A, ) Sg(20) +exp (—d70) (L +c,P(n) ™ exp (9)g(,))

which is (29) with k=1.

Suppose now that s,=2, 1=k=<k+1<s, and that (25) holds for k.
On writing n,=[r,—S,] it follows as s,=k+1 that n+1=7+S  Sr—
S.—1 and hence n,=n+2. We may therefore write

g(@y+Se) —g(0) = ) G%‘.(n) Do(g(®o+ Se+ Asze) — g(20))
+ 3 pu(g(@e+Se+ An)—g(x0)

i € D(n, nx)

+ 3 pulg(m+Si+Aw)—g(w)) -
i € D(nx, )

Now n,+8S,<7—S;+S;=7, so that g(x,+S,+4:)>g(x,)) if i€ D(n, n).
Using this we obtain

9(@+Si) —gl(a) = e%}(n) D29+ S, + Ar) —g(,))

+ > pzi(g($o+sk+A2t)—g(%))

i € D(ng, )
and arguing as in the case k=1 we finally obtain
9(2o+ Sk11) =g(20) +exp (—d7y)

+ P(n)~"(g(a,+ Si) — g(x0))
+cP(n)™" exp (—d(ro— S, —1))g(,) .
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On using (29) we obtain after elementary manipulations
0(z0+ Sus) Sg(a)+exp (—0z)( S P(m)y/(P(n)
+¢r€xp (0(Se11-s+1)9(0)

which is (29) with k41 in place of k. Thus (29) holds for k, 1<k<s,,
and we now use this inequality to construct a sequence which corre-
sponds to the sequence (Ag.,)? of Lemma 1.
From the definition of s, and 7, it follows that S,,+n+1=7, which
implies
S0

To_Sk-jz ; PN " A,i+n+1_2_so—(k—j+1)+n+lgj

=k—j

as k<s,. Using this in (29) we obtain as k<s,
9(2y+ Se) = g(20) +€xp (— 7o) P(m)~*o/(P(n) ™' —1)
30
+ar( 3] exp (—7+0)P(n))

As <7, and P(n) satisfies (29) this yields

9(@o+S:) S g(wo) +exp (—s,/2)/(P(n) ™' —1)
+c¢:1exp (9/2)/(1—exp (—d/2))<¢s -
Here we have assumed that P(n)<1 but it is easily checked that this
also holds if P(n)=1. In fact in this case the simpler proof of Lemma
1 works. The sequence (g(x,+S:))i, is thus bounded by the constant c;.

We are now in a position to construct the sequence (Ag,);:. We
set Ay,=0. If 5,=0 we set Apy=p. If 1<k<s, we set A@k,:A,k and

k
Agsrn=t—3S,,. In all cases we have 1<A,,=2(n+1), 0§g<w0+2 A(z,)>
r=0
. 5+1 .
=<¢, k=1,---,s5+1 and g<x0+ 3 A(zr,) <g(x;). We may now repeat this
r=0
8o+1
procedure this time starting with x,=x,+ >} Aq,, to obtain a sequence
7=0

(Acayreren)? which satisfies 1< A i000mS2(n+1),
k
y(x1+§=_‘; A(zso+2+2r>>§cs for k=1,---,8+1
and

8+1
g(w1+ = A<zs,,+2+2r>> =g(x)=g(x,) -

This procedure is once again repeated this time starting with z,=x,+
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8141
TZ_‘,I Aguyioeo and in this manner we finally obtain a sequence (Ag,,)?

Which Satisﬁes 1§A(27)§2(n+1), 7'=1, 2,' A and g<x°+% A(zg)éﬁg, m=
r=1

1,2,--.. The remainder of the proof now follows the lines of the proof
of Lemma 1 and this completes the proof of Lemma 2.

2.3. We now indicate how the functional equations (13) and (14) may
be solved using Theorem 1 and Lemma 2. Adding (13) and (14) yields

o)+ ()= 3 riolu+ 4)+w(utA))

If i 7:=1 it is relatively simple to show (using the facts that wv(u)+
i=1

w(u) is non-increasing and that v(co)+w(co)=0) that v(u)+w(u)=0. We
may therefore suppose that

(31) 1<%

and following Ramachandran and Rao we assume in this case that
(32 1<31 7, exp (—74)< oo

for some »>0. This implies that for some a, 0<a<7,

(33) ?;: r.exp (—ad)=1.

We now set p,=r,exp(—ad;) and if y,=0 we set A,=0. Finally we

set g(u)=ev(u) and h(u)=e™w(u). Then g and h satisfy the functional
equations

g(u)= g Daug(u+ Ay)+ i“gl Do MU+ Ay 1)

and

h(u)= g Dah(u+ Ay)+ ié Doi—19(u+ Ay )

where p,=0 and i p;=1. Again following Ramachandran and Rao we
i=1

now assume that A4 e A.
Adding the two equations above we see that g+ satisfies the func-
tional equation (26) (after renumbering). From (32) and (33) we con-

clude that i} piexp (04;)<co for some >0 and as e **(g(u)+h(u)) is

non-increasing (this follows from the fact that w(w)+w(u) is non-increas-
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ing) we may apply Lemma 2 and obtain that g+ is bounded. Theorem
1 may now be applied as g+#% satisfies (18) (again after renumbering)

with, in the notation of (18), i} Pu_1=0. We can therefore obtain the
i=1

general form of g+A (in Theorem 1, Case 1 we assume continuity but
this can be easily replaced by the assumption that e~*“g(x) is non-increas-
ing as then g is continuous apart from jumps). In all cases g+h is
bounded and hence, as g and % are non-negative, g—# is also bounded.
The function g—# satisfies (18) (after renumbering) and as it is bounded
we may obtain the general form of g—k. From the general forms of
g+h and g—h we may obtain the general forms of g and % and thus
the general solutions of (13) and (14) under the stated conditions.

3. Determination of the characteristic function

3.1. ¢ satisfies the functional equation (4) and in order to replace the
product by a sum we take logarithms. To this end we define ¢, by

inf {t: o(t)=0}
(34) ty=
oo if (t)#0 for all ¢.
As ¢(t) is continuous and ¢(0)=1 it is clear that {,>0. On writing ¢(¢)

=|¢(t)|* and remembering that ¢(—t)=¢(t) we deduce that

(35) ¢(t)=jj1 dilat), —oo<t<oo,
and hence
(36) log ¢(t)=3 r.log glad) . |t|<t.

The proofs of the following assertions may be found in [8]. The
proofs are elementary and do not rely on any of our previous results.

Firstly, if f} 7:=1 then ¢(t)=1 and the characteristic function ¢ is de-
i=1
generate. We may therefore assume that (31) holds. Secondly, the
convergence of (4) implies that i} rai=1l. If i 7:.ai=1 then ¢ is the
i=1 i=1

characteristic function of a normal random variable. We therefore
assume that

37) Srai<l.

Following Ramachandran and Rao we shall make the further assump-
tion that
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(38) 1<3 rai<oo

for some 2>0. It follows from (87) and (38) that for some a, 0<a<2,
(39) Srai=1.

Finally, we shall assume that

(40) 0< sup a,<1.
15iso
We note that if all but a finite number of the y;, are zero then (38) is
no restriction at all and the existence of an a which satisfies (89) fol-
lows immediately from (381) and (37).
We first obtain the general form of ¢(t) under the conditions (38)
and (40). We require the following notation

—loga, if 1,>0

(41) A=
and
(42) Pi=7:€Xp (—ad,)

where a satisfies (39). Note that A € ] because of (40). We can now
prove

LEMMA 3. Suppose that ¢ satisfies the functional equation
(43) o®)=TT oriat) [ or—amit), —oo<t<oo,

where 7,20, 0<a,;<1 and (38) and (40) hold. Then ¢(t)=|e(t)|* is of
the form

(44) P(t)=exp (—2|t|"I'(log|t])), —oo<i<oo,

where a 18 as in (39) and where I'(x)=constant if A€ A0) whilst
I'(x+p)=I(x) if A€ A(p). Here the A; are as defined by (41).

Proor. With a given by (89) we write

(45) g(x)= —et=td= Sexp(_z) log ¢(t)dt

for x>x,=—logt,. Then g is non-negative and satisfies the functional
equation

g(w)=§} pg(x+A), w=ax,.
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From (38) and (89) we deduce that i p; exp (04;)< oo for some 5>0.
i=1

An immediate consequence of (45) is that e “*“*g(x) is non-increasing
and hence we conclude from Lemma 2 that g(x) is bounded. We may
therefore apply Theorem 1, Cases 1 and 2 to obtain g(x)=4(x) where
d(x+p)=4d(x) if Ae Ap) and 4(x)=constant if A e 4(0). The corre-
sponding form for ¢(t) is (as ¢(¢t)=¢(—1))

(46) pt)y=exp (=2|t|"I'og [t)),  [t|<b,

where 2I'(x) = (a+1)4(x)+4'(x). Thus I' has the stated properties.
Suppose now that 4 € J(0). Then from the continuity of ¢(t) we have

0=¢(t)=exp (—¢c|t[%)

and we conclude that ¢,2=oc0. If A€ J(p) and ¢, is not infinite we must
have I'(log |t,|])=oc0. This implies I"(log |a.t,|)=oo for all a;>0 and hence
dlat)=0. As |at,|<t, we obtain a contradiction and thus also in this
case we can conclude that ¢,=oo. Therefore (44) holds for all ¢ and
this proves the lemma.

3.2. In order to obtain the general form of ¢(t) we require the follow-
ing lemma concerning characteristic functions.

LEMMA 4. Let x(t) be a characteristic function such that at the
origin
47 1—-[x@®) *=0(t}|*) , 0<p<L2.
Then there exists a p such that for all ¢, 0<e<1,

(48) sup 14+dpt—x(t) _ 14+ipet—yx(et) <oo
SR ep etP

and

(49) |1+t —x(@)[=0(¢])

Sfor any y, 0<y<B. Further, if p+1 we may set y=4.

PrOOF. It is clear that for any 6>0 there exists a p such that

14dpt—x(t)  1+dpet—y(et) |<°o

su
S T let]?

8<t<oo

because if 0<B8<1 we may set x=0. It is therefore sufficient to show
that

sup

0<t<d

1+3pt—x(t) _ 14-dpet—yx(et) ‘<oo
[¢1? |et|?
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for some g where p=0 if 0<B8<1. Let x(t) be the characteristic func-
tion of the random variable X so that |x(¢)|* is the characteristic func-
tion of the random variable X—Y where X and Y are independent and
identically distributed. Let F be the distribution function of X and F,
the distribution function of X—Y.

It follows from (47) (see for example [10]) that

F(—2)+1-F(x)=0(z"*), x—oo.
Let m be a median of F. Then

Fs(_x)+1—Fs(x—0)gP(IX_Yng)
2P(Xzz+m, YSm)+P(X=Z—2+m, Y=m)

21 P(X—m|za)
and hence we have
(50) F(—2)+1—F(z)=0(z"*), 2x—o.

Let G(z)=F(x)—F(—=x) so that 1—G(x)=0(z*), x—oco. Consider first
the case 0<B<1. Then

11— = || @ —e=iF )|

IA

11— | dF () +2 S dF ()

Slzlsllltl |z >1/1¢]

it 1eldF@)+20-G(t)

IA

1/1

" G @) +201-G(t 1)

=1t | (1 Gla)de+20-G (1t

This implies |1—x(¢)|/|t|’ is bounded as ¢—0 and (48) and (49) follow
immediately. A similar proof works in the case 1<8<2 on setting p=

r xdF(x) which exists because of (47) (see [10]). If =1 we cannot
conclude that [1—x(t)|=0(|t|) but only that |1—x(¢)|=0(|tlog |t|]|). We
therefore have to treat this case separately. We have

1—x() _ 1—x(et)
[t et
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=

I 1 _teizt _ 1_eizez dF(x)

Slxm/lm et

S 2(1+¢)/|t|dF (x)

lz|21/]et}

le‘ 1+iwt—eim _ 1+i€xt—et'ﬂt dF(x)
tx etx

SI$I<1/I=¢I
+2(14+¢) (1 —G(1/|et])/| et |

1
éS i 31 213t 2t NAF (@) +01)

—0 <|t| S:""' a;sz(x)> +0(1)

1/]et|
=O<|t|§o w(l—G(x))dx>+0(1)
=0([t]|et]™)+0(1)=0(l¢[™)

which completes the proof of (48). To prove (49) we note that in the
case =1, 1—[x(?)]’=0(|t|") for all y, 0<y<1, and the desired result
follows from the case 0<p<1.

3.3. We can now prove our main theorem.

THEOREM 2. Suppose the characteristic function ¢ satisfies the func-
tional equation (43) where the (a.)7 and (7.)7 satisfy (38) and (40). Then

(51) p(t)=exp (tut—|t|"I'(log t)+1i|t|" sign (¢)d(log |¢]))

where a, 0<a<2, 18 the unique solution of (39), =0 if 0<a=zl and

where I’ and 4 are as follows with A=(A,, A,,---) and the A, as de-

fined by (41).

Case 1: A€ J0). In this case I' and 4 are both comstant and 4=0
of Gy iy >0 for some 1.

Case 2: Ae PBp). In this case I' and 4 are both periodic functions
with period o (I'(x+p)=1I(x), Ax+p)=Adx)) and 4=0 if
Qyi_i72:-1>0 for some 1.

Case 3: A€C(p). In this case I' is a periodic function with period p
and 4 satisfies d(x+p)=—Ad(x) for all x.

Proor. It follows from Lemma 3 that 1—|¢(t)]?)=0(|t|) and we
can apply Lemma 4 to obtain

(52) sup 1+ipt—o(t)  14dpet—oplet) <oo
b T et

for some p (¢=0 if 0<a=<1). Again using Lemma 3 we may write

p(t)=exp (tpt—|t|"I'(log |t])+1[¢|"I(2))
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where p is as in (52) and I(t) is an odd function of ¢. We note that
because of (49) |1+ipt—e(t)|=0(t]") for all y, 0<y<a, (y=a if a#1)
and hence

|1t — e+ e#(1—e~*)p(t) |=O(| £ 1) ,
which implies
|1—exp (—[t]"[(log [t])+2|t|I()) |- OF)=0(t]") ,
As 0<7y<2 we have
[ti*I"(log |t])+[¢|"I(#)=0O(|¢]")
and thus f(t)=0(|t|""“”) for all 7, 0<y<a. This yields
(53) [It)|=0(|t]™°)  for all 6>0
and if a#1 we may set y=a to obtain
(54) [ I(t)|=0(Q1) , a#l.
This implies
L+ipt—o(t)=|t|"I'(log [t[)—1|¢|"I()+O(E+ [t [~°)
which on substituting into (52) gives
sup | I'(log |t])—I"(log |et])—iI(t)+3I(et)+O(| et |+ |et|* %) | < o0
and hence
(55) sup. | I(t)—1I(et) | < oo

for all e>0. Suppose first that 0<a=<1. Then as ¢(t) satisfies (43) we
have (I(t) is an odd function of ¢)

LR OESSPMENTD CRESSPRNEMIRTS CHAIP
If we set g(x)=I(¢™") and p,=7.a; we obtain
g(x)= g pzig(x+Azi)—§3 Dai—1g(@+ Ay _y)

where p,=0, i‘, p,=1 and the A, are as given by (41).
i=1

It follows from (55) that g satisfies (19) and hence we may apply
Theorem 1 to obtain the following :
(i) if A e J(0), g(x)=constant and g(x)=0 if A,_,>0 for some 1.
(il) if A€ B(p), g(x+p)=g(x) for all x and g(x)=0 if A,_,>0 for some 1.
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(iii) if Ae€C(o), glw+p)=—g(x) for all .
Cases 1, 2 and 3 follow immediately from this and the properties of
the function I'(x) which are given in Lemma 3.

We now suppose that a>1. Then again using (43) we obtain

pt+|t°I(t)= <i§ Teila t— E th%t-x#) t+ i=21 72| Qe I (@sit)
— ig Tei-11@2i it " L(@gi_it) .

As a>1 (54) implies that I(t) is bounded and hence on dividing by ¢
and letting ¢ tend to zero we obtain

ﬂ=i_21 Tziazt#—iz_l 7211 [t
so that either =0 or i‘, 72— > 72-1@51=1. In either case we have
i=1 i=1

I(t)= g} 72051 (ayt) —lé 7201051 L (@i _1t)

and the remainder of the proof is as in the case 0<a=1. This com-
pletes the proof of the theorem.

3.4. It follows from Theorem 2 that ¢y (t)=¢(t) exp (—iut) satisfies the
functional equation ¢\(t)=¢i(at) where a=exp (—mp), p=exp (amp) and
m is an even integer. Thus ¢, is semi-stable in the sense of Lévy (see
[2], p. 9) and is therefore infinitely divisible. This implies ¢, has the
representation (8) and the general form of the Poisson spectral func-
tions M and N may then be obtained from (51). They can easily be
shown to have the forms given by Shimizu in Theorems 2-4 in [9], with
Ap) ete. being replaced by A(p) ete. (see also [8]).

Finally we remark that the proof of Theorem 2 is particularly sim-
ple if a#1 and the product in (43) is finite (all but a finite number of
the y,’s are zero). Firstly, the proof of Theorem 1 is simpler as we
may assume g(x) itself is bounded and it is then no longer necessary
to consider the function i(z, ). In fact the assumption (19) was intro-
duced explicitly to cover the case a=1. Secondly we only require the
simple Lemma 1, the more difficult Lemma 2 being only required for
the infinite case. Finally the proof of Lemma 4 is also simpler as we
can prove directly that |[144ut—¢(t)|=0(|t|*), the annoying logarithm
term being present only in the case a=1. This in turn leads to a sim-
plification of the proof of Theorem 2 itself.
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