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Summary

The bias of ratio estimators based on a simple random sample of
n units drawn from a finite universe of N units, and reconstructed ac-
cording to, or in ways similar to Quenouille’s method, is of order 1/n
only if N=u? and of order 1/n°, where 1<Q<2, if N<n!. Further
it is shown that the device of splitting samples, either for bias reduc-
tion and/or convenience of variance estimation, except for the special
case noted in the paper, yields estimators that are inefficient and can
be improved.

1. Background

A method of reducing bias of estimators from order 1/n to order
1/n?, based on splitting a sample into parts, and subsequently termed
“jackknife” by Tukey (see Miller [1]), was proposed by Quenouille [2]
in the context of infinite populations. Durbin [3] and Rao [4] applied
this method for reducing the bias of ratio estimators, frequently used
in sample surveys, and considered the problems of efficiency of such
estimators with distributional assumptions (relative to infinite popula-
tions) stated in their respective papers.

This paper in concerned less with the problem of bias reduction,
and more with the problem of efficiency of ratio estimators that are
constructed by Quenouille’s method, or in ways similar to his method,
for the purpose of estimating a ratio pertaining to a finite universe.
Needless to elaborate, the problem as to whether reconstructed ratio
estimators can or cannot be improved in efficiency has so far received
very little attention for the case of sampling a finite universe.

Let s be a simple random sample of n=2 units drawn without re-
placement from a universe of N units with variate values {x;, ¥;: 1=
1,2,---, N}. To avoid trivialities it will be assumed that there are at
least two different pairs of variate values, (x,,¥.) and (z;,¥,), in the
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universe such that y,/x,#y,/x,. This is certainly a realistic assumption
for sample surveys. It is desired to estimate the ratio

(1) R=§ y,-/é. e =NYINX=V/X.

The sample s with variate values {x,,v,: 7 €s} is split up at random

into g subsamples each having m units. Ratio estimators I?,:gj}/a?:; (U=
1,2,---,g) are computed by omitting the jth subsample where 7,=(ny
—my,)/(n—m) and ;=(nZ—mZz,)/(n—m), in which z and ¥ are the usu-
al sample means, and Z, and ¥, are the means of the jth subsample.
The usual estimator of R is

(2) R=y/z .

For an infinite population Rao proposed the estimator
A A g A

(3) i=gR—@-1)( 31 Big) .

Durbin’s estimator is of the same form as Rl, but specialized to the
case g=2.

We note that (3) is not of the form proposed by Quenouille; in
the context of ratio estimation such an estimator is

(4) R,= {(nR—(n—7R,_}/r,

where R,,_, is the arithmetic mean of the < n'f’_ 'r> possible ratio esti-

mates ¥,_,/%,_, computed from s, with each random subsample having
nm—7r units.
Motivated by Quenouille’s method, Tin [5] proposed

(5) E=gRig—1)~{ 3 @5} [oe-1)} ,

for estimating R.

2. Bias reduction

We shall first determine the bias of R, using exact expressions for
the expected value of ratios given by Koop [6], but reproduced with
very brief explanations in the appendix for ready reference. We find

(6) E(R)=gE(B)—((9-1)jg) 3E(E &9} .

Because the jth subsample is a sample from s, it is necessary first to
determine the conditional expectation of R, before proceeding to the
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determination of its unconditional expectation.
With the use of formula (A2) of the appendix we find

(1) E@=F/X)[1+{(SYX?)—(S./XT)H(N—n)/(nN)}
+(p/ X*Y ) {(N—n) (N—2nm)[n(N—1) (N—2)}]
—~E{RE-X)}/X°,

where S; and S,, are the finite universe variance and covariance values
with divisor N—1, and

N — —
#21=; (w;—X)(y;—Y)/N .
Hence on the basis of (7), we have after simplification

8) E(&|s)=h+_ ™ (¥5:_ 3
(8) (E,19) +'n('n—m)<:?3 :T;2>

— m(n—2m) My \ Y L,
(n—l)(n_z)(n_,m)2< = > E{R,=)—7z)'|s}/x

where
2=3@-B/n-1),  8,=3@-D@-D/n-1)
and mn=$ (@ — ) (y:—Y)In .

In the light of (7) and (8), and also remembering that n—m=
m(g—1), we find

(9) E(E1)=R_£<ﬁ_ Sy >+%{Y31_E <178:>—S’;’+E <%>}

N\X* XY x \z/ X
1 py (N—n)(N—2n) (n—2m) Moy
+n2 X* (N—1)(N—2) +(n—1)(n—2)(n—m) E< z* )

—~E{R@—X)}/X*+(g—1) E[E (R,&—%)'|s}/7] .

With the results of the appendix it can be shown that E {my/(n—1)-
(n—2)z*} and the last expression in (9) are at most of order 1/n*; also

the leading term of E{Rz—X )} is at most of order 1/n’. Applying
the results of (A6) and (A7) it will be found that the expression with
the multiplier 1/n is of order 1/n’. Hence

(10) E (R)=R—(R/N){(S}/X*)—(S,,/XY)} +0(n"?) .
Now if N<n® we should say that
(11) E(R)=R+0(n"?),
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where 1<Q<2. It is only when N=>n? that
(12) E(R)=R+0(n™) .

If we proceed to determine the expected values of R, and R,, then
the first three terms on the right-hand side of equation (10), plus slight-
ly different terms, but all of order 1/n?, will be obtained. These deri-
vations are omitted to save space. Hence on the question of bias the
same conclusions as in the foregoing account apply to these estimators.

Finally, in this connection it must be mentioned that Jones [7] was
already aware that for finite populations terms in 1/N in the expres-
sion for bias were not eliminated by Quenouille’s device. However, he
arrived at this conclusion not with an approach leading to the results
at (10) and (11), but in the context of what he termed “replicated
sampling.”

3. Improvement of efficiency

The reconstructed ratio estimators IABI and R, considered in Section
2 can be improved by determining their respective conditional expecta-
tions given the sample s.

By the theorem formalized by Madow [8] we find

(13) V(B)=V{E (R} +E(V (Ri|9)} .

Let us denote E (R,|s) by R,. By definition E (B,)=E (R)) so that {E (R)
—Ry={E (R))— R}, and hence with (13)

(14) M.S.E.(R)=M.S.E. (R)+E {V (R,|s)} .

Because of the assumption that there are at least two units with dif-
ferent pairs of variate values, E{V (R1IS)}>O for all n or mg=2, ex-
cept when g=n, in which case E(Rds):Rl and E{V (I§1|s)}=0 so that
M.S.E. (Rl)=M.S.E. {E (Rlls)}; in this connection it is interesting to note
that Rao [4] arrived at an optimum choice of g=n through the twin

assumptions of normality for the z-variate and a linear relationship
between v and x. Hence except for this case

(15) M.S.E.(R)>M.S.E.(R) .

The determination of the exact expression for the improved esti-
mator R using the result at (8) leads to some interesting results. We
find

E(R|s)=gR—(g—1) E(R,|s) ,

or
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r— Pl 1 rrezmn —— (n—2m) My
1) Ri=R[1- (/) ~ Galalnt i) ()]

+{(g—1)/&} E {B(®,—%)|s} ,

in which for computational purposes

17 E{(R,@®—%)|s} =5 31(55—5)”/ (n * m)

where the summation X is over all the < nf m) possible subsamples.
We note that the

(18) {last term in (16)} <(9—1)| B, lmex{l (Z) —B)/Z |uus}* -

Hence if its upper bound is very small compared to the sum of the
terms of order 1/n and 1/n’ in (16), and this is likely to be so if |(Z}
—Z)/% |mex<1, then this term may be neglected in the computation of

the improved estimator Rj, which is just as easy to compute as Rl.
Further under these conditions it is quite likely that (15) may still hold.

The expression for E(Rlls) given by (16) is not unique. If we use
the identity for E (Y/X) given by (Al) in the appendix we find

A9 E(R]9)=R{l— M (on/Z0)| +(/E) E (R/E/— 7)o}

so that, say
(20) Ry=E (Rlls)=1%{1+%(sn/a'@)} — {(g—1)/@) E {R,=;— )5} .

Certainly RY is simpler than R/, but not better because M.S.E.(R/)=
M.S.E. (R}). Actually the basic expression for E(Rlls) is gR—(g—l)-
> Rj / <'r?z>’ useful for computational purposes when (::’L) is not exces-
sively large, but uninteresting as compared to the analytic insight pro-
vided by R] and RY.

The analogues of R, and R/ corresponding to R, have been derived,
but are omitted to save space.

The estimator 1%2 cannot be improved because E(Rzls)=1%z leading
to the result E {V (R,]|s)}=0, and V (R,)=V {E(R:|s)}. Incidentally, this
result confirms Quenouille’s conjecture (contained in the third paragraph

of Section 3 of his paper) that with the averaging of estimates from
all possible subsamples “it appears likely that little, if any, loss of effi-

ciency will result.” However, if instead of R,_,, an estimate based on
a smaller number of subsamples is used (e.g., see Sukhatme and Suk-
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hatme [9], p. 162), then the resulting R, can be improved.

In general if any kind of complex probability sample s, drawn from
a finite universe, is split up at random into g parts s, s;,---, s, and an
estimator e is constructed as a function of estimates based on the vari-
ate values of s, s;,---,s,, for the purpose of estimating some universe
value, then, arguing as in the foregoing account,

(1) M.S.E. (¢)=M.S.E. {E (¢|s)} ,

equality holding if and only if conditions (to be determined in the con-
text of the specific problem) are such that E {V (e|s)}=0.

One implication of the foregoing generalization is that e may be an
estimator of variance. Thus, the device of splitting a sample either
for bias reduction and/or convenience of variance estimation, except for
special cases, yields estimators that are inefficient. But, as demonstrat-
ed in the paper, the efficiencies of such estimators can be improved by
determining their conditional expectations.

Appendix

Let X and Y be pairs of random variables with X taking nonzero
values. We assume that E(X)+#0, E(Y)+#0 and that all moments exist.
Expressions for E(Y/X) are desired in terms of the central moments.
Koop [6] has derived the following identities :

(Al)  E(Y/X)={E(Y)/E(X)}[1-{Cov(X, Y)/E(X)E(Y)}]
+E{(Y/X)(X-EX))}{E (X)},
(A2) E(Y/X)={E(Y)/EX)}1+{V(X)/E*(X)}
—{Cov (X, Y)/E(X) E(Y)}
+{E(X-EX))(Y—-E(Y))/EX(X) E(Y)}]
—E{(Y/X)(X-EX)Y{E(X)} .
These identities are useful in a variety of problems and are members
of a class of identities.
With the use of (Al) we find
(A3) B (ys3/")= (E (§s1)/E @)} — {Cov (a2, 3')/E* @)
+E (@s1/7) @ ~E @)/ (B @) -

It can be shown that the second and third terms of (A3) are at most
of order 1/n. Using results that are already known we find

(A4) E (7)) = {zuN(N—n)}/ {n(N—1)(N—2)} + ¥S: ,

and
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(A5) E (@)= {p(N—n)(N—2n)}/ {n(N—1)(N—2)}
+3X{SYN—n)/(nN)} +X?,

where gy is the third central moment of X. Hence from (A3), (A4)
and (A5)

(AS) E (gs3/z")=(YS)/(X)+0(n™") .
Similarly it can be shown that
(A7) E (84,/8)=(So,/X%)+0(n™) .
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