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Abstract

Certain estimation problems associated with the multivariate hyper-
geometric models: the property of completeness, maximum likelihood
estimates of the parameters of multivariate negative hypergeometric,
multivariate negative inverse hypergeometric, Bayesian estimation of
the parameters of multivariate hypergeometric and multivariate inverse
hypergeometrics are discussed in this paper.

A two stage approach for generating the prior distribution, first
by setting up a parametric super population and then choosing a prior
distribution is followed. Posterior expectations and variances of certain
functions of the parameters of the finite population are provided in
cases of direct and inverse sampling procedures. It is shown that un-
der extreme diffuseness of prior knowledge the posterior distribution
of the finite population mean has an approximate mean z and variance
(N—n)S?/Nn, providing a Bayesian interpretation for the classical un-
biased estimates in traditional sample survey theory.

1. Introduction

The subject of estimation including Bayes’s estimation of the param-
eters of a finite population (viz. the parameters of multivariate hyper-
geometric (MH)) has received the attention of several authors including
Wilks [13], Sarndal [11], Hartley and Rao [4] and Hoadley [5] among
others. Janardan [6], and Hartley and Rao [4] have discussed the max-
imum likelihood (ML) estimates of the parameters of MH. Wilks [13]
has given the unbiased estimates of mean and variance, in sampling
without replacement from a finite population using a two-stage sampl-
ing procedure. Sarndal [11], [12] has discussed the Bayesian estimation
of the parameters of MH with Bose-Einstein uniform and multivariate
negative hypergeometric (MNH) type distributions as priors.

A number of people working on sampling inspection plans have also
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been interested in Bayes’s estimation for the hypergeometric distribu-
tion, most notably Hald [3] who gives a number of interesting results
including the use of Polya distribution as the prior distribution. His
results are for the case s<2. Following Hald’s approach in the uni-
variate case, Hoadley [5] obtains the Bayesian estimates of the param-
eters of hypergeometric in the multivariate case. Sarndal [11] and
Hoadley [5] have used in their derivations of prior distributions the
concept of super population which has been widely used earlier in sam-
ple survey work. Hartley and Rao [4] are mainly concerned with find-
ing unbiased minimum variance and ML estimates of certain functions
of the population parameters but they do also have a section on Bayes’
approach with MNH as a prior distribution.

Janardan and Patil [8] have shown that multivariate hypergeomet-
ric (MH), multivariate inverse hypergeometric (MIH), multivariate neg-
ative hypergeometric (MNIH), multivariate Polya (MP) and multivariate
inverse Polya (MIP) distributions belong to a class of multivariate dis-
tributions called unified multivariate hypergeometric (UMH) class. The
probability functions of these models are given in Table 1.

Mosimann [9], [10] has discussed the moment estimates of the param-
eters of MNH and MNIH. Other distributions viz. MIH, MP and MIP
do not seem to have been considered in literature for the purposes of
parametric estimation. In this paper we discuss certain estimation
problems associated with MH models. We discuss briefly, the com-
pleteness of MIH family in Section 2, the ML estimates of the param-
eters of MNH and MNIH in Section 8, Bayesian estimates of the param-
eters of MIH with MNIH as a prior distribution and of the parameters
of MH with UMH as a prior distribution in Section 4.

2. Completeness of MIH family

Hartley and Rao [4] have shown that MH family is complete. They
give an elegant proof due to B. K. Kale to show that x is completely
sufficient for N for MH. Here we ask an interesting question, that is,
do the models which come under the UMH class enjoy this property of
completeness? We answer this question partly by showing that MIH
is complete. Yet, it remains to prove or disprove the completeness of
the other families of distributions which come under UMH.

The probability mass function of the s-variable inverse hypergeo-
metric distribution, given in Table 1, will be denoted by

ps(xh"" xs;kylvoy"'! M)’

or, on occasion, more simply by
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ps(xl,' sy s k) .

Write z,=7, 7=0,---, N,. One can show the following relation between
the (s—1)-variable and s-variable probabilities:

(2'1) p:(xb"'v x:—lyj;ky M,"',M)
=Cj(M)ps-1(a71,' <oy Xygs K+, N+ N,y Ny, Noy) .

Here the constant C,(N,)>0 does not depend on x,---, 2,;,

No\( N,
2.2) C/(N)= k_’ﬁj i’;},}é; >> ,
J

§=0,---, N,. This relation will be used in proving the following
theorem.

THEOREM 2.1. The family of multivariate inverse hypergeometric
distributions is complete.

PrOOF. Suppose for purposes of induction that the (s—1)-variable
family is complete. Now consider the s-variable family and let g be a
real-valued function of s arguments such that

(23) Zg(xl,"'y ws)p:(xlv”" xs;k)'—‘o ’

for all N,=(N,,---, N,) with $ N,=N. The equation can be written

Ny
2 E g(xh'"y xs)ps(wlr' c oy Xgs k)=0 ’

25=0 Xs-1

and using (2.1) becomes

Nl . .
20 2 CJ(M)g(xlv sty Loty .7)pa-1(wl" sy Ls_1y k+J)=0
7=0 xs-1

(2.4) or
N, .
.20 CJ(M) E gj(xly %y xs—l)ps—l(wly' cey Xsoys k+.7)=0 .
j=

Xs-1

Here g, is the real-valued function of (s—1) arguments defined in the
obvious manner so that

gj(wl" ) x:-l):g(mu' c oy Lsi, j)

for all relevant x,_,. The summation in (2.4) can be written

(2.5) ﬁ: C(N) E (g,(x.-)=0.
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Now let N,=0. Then
(2.6) Cy(0) El (go(x._1))=0 or El (go(x,-1))=0 .

Xs- Xs-

This, and the completeness of the (s—1)-variable family, imply that

2.7 go(x,_1)=0

for all relevant x,_, (,<N,, 1=0,---,8—1) and N,_, such that §M=

N. Next let N,=1. Then _ 0
G(1) E (go(x.-1))+Ci(1) x}fl (9:(x,-1))=0

Xs-1

and using (2.6), we have then

E (gi(x,-1)=0.

Again, the completeness of the (s—1)-variable family implies
9i(x.-1)=0
for all relevant x,_,, NNV,_;. Continuing inductively on N, one then has
9/Xe-)=9(@1,++ +5 Ty, J)=0
for all 7, and hence
9(x,)=0

for all relevant x, and N,. The completeness of the (s—1)-variable
family is seen to imply the completeness of the s-variable family.

To complete the proof of Theorem 2.1, we must show that the
completeness of the family with s=1. One has

(=)
(~%)

and we have to prove E(g(x))§0=>g(x)=0.

)
—k—2xz )\ =
gz ( =0.
>3 g(x) (—No—,1>
—x |
Let N;=0 then g¢(0)-14g(1)-0+---+0=0. Therefore g(0)=0. Let N,

=1 then g(0)p,(0)+g(1)p,(1)=0. Therefore g(1)=0. Continuing this way,
we get g(x)=0 for all x=0,1,2,---, N,.

Dy (2)=
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3. ML estimates of the parameters of MNH and MNIH

Since the ML estimates of the parameters are usually asymptotically
more efficient than their moment estimates, we will discuss in this seec-
tion the problem of obtaining ML estimates of the parameters of MNH
and MNIH. Special cases of the results below are the results of Dubey
[2] for beta-binomial and beta-Pascal distributions when s=1.

The logarithmic likelihood function for MNIH as defined in Table 1 is

(3'1) IOg L(M’ M" * %y M)
=log I'(k+x)+1log '(N)—log I'(k+x+ N)
+log I'(k+ Ny)—log I'(k)—log I'(Ny)

+33 log I'(Ni+2)— 3] log I'(N)— 3} log 2! .

This yields the (s+1) likelihood equations as

@32 9 16015 L —w, (N) =Wy (ot 4 N+ By (e + No)— Uy (No) =0

0

and

33 2 g}\g,L =¥y (N)— Uy (k+ 5+ N)+ Ty (N ) — Ty (N) =0
1

for +=1,2,.--,s
where ¥, (u+v)=(d/dv)log I'(w+v) which is called the psi-function (Davis
[1]). Also from Davis ([1], p. 282) we have

3.4 U(uw)=—0.57722. .. — <_____)
#4 ) E, u+j J+1

for positive real u. Using (3.4) we can write the (s+1) likelihood equa-
tions (3.2) and (3.3) as

1 xq

k+x—1
3.5 - =0
(3.5) = Nt ANt
and
3.6 L S L o for i=1,2
. — = T 1=1,4,*+*,8.
) = N+j i Netg o

We can solve the (s+1) equations (3.5) and (3.6) iteratively by any
suitable numerical methods. In this connection we may use the moment
estimates of N, (¢=0,1,2,...,s) obtained by Mosimann [10] as initial
estimates or trial values,
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The second order derivatives of the logarithmic likelihood function
are:

@1 LBL g O~ U+ o+ N)+ TR h+ N~ TR

aN?
d* log L_ RSy ey ey RSy
(38) TEZ=TR(N)- TP (k+a+ N)+ TP (N +x.)— UP(N,)
i
i=1,2,--,8
d*log L L L L.
(3.9) magNj_wwj(N) VP y(k+z+N)  i#j=1,2,--+,8
where
TP )=-2 0, ()=-2_logI'(-) for i=0,1,2,-+-,8
aM aN?
b (N 0 L
w‘l(\’,?l\(,(')_a_lvi'wlvj(') BMBN IOgF( ) for 'L"'#J_ly 2""rs

Using the formula for the polygamma (Davis [1], Vol. II, p. 111)
functions

1
o (utg)mH

valid for m>0 and positive real u, we can rewrite (3.7) to (8.9) as

Z)”logL=["‘l 1 _"“i:‘ 1 ]
oNg LS (Netgy = (N+ay

d*log L [”‘”‘ 1 kresl ] .
3.11 = —_—— —— f :1’ 2’...’
e R P Ay g o B s

dlog L *ert 1
3.12 = —_ .
(8.12) aN;aN, i (N1J)

Expressions (3.10) to (3.12) could be used to obtain an estimate of the
asymptotic variance-covariance matrix of ML estimates of N; (:=0, 1,
2,---,8). Exactly identical approach will enable one to obtain the ML
estimates of the parameters of MNH and also an estimate of their
variance-covariance matrix. The ML estimates of the parameters of
multivariate Polya (MP) and Inverse Polya (MIP) distributions can be
obtained on the same lines as above. The moment estimates of the
parameter of MP and MIP have been obtained in Janardan [6].

W""’(u)“—-——qf(u) (=1)™*'m! 2

(3.10)
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4. Bayesian estimation of the parameters of MH and MIH

In this section, we will consider the Bayesian estimation of the
parameters of MH using UMH as a prior distribution and then we will
consider the Bayesian estimation of the parameters of MIH using MNIH
as a prior distribution. We follow the two-stage approach (Sarndal [11],
Hoadley [5]) for generating the prior distribution as MNIH, first by
setting up a parametric superpopulation and then choosing a prior dis-
tribution for the parameters of the superpopulation.

Following an approach in sample survey theory let a finite popu-
lation ¢ of N distinguishable elements be identified by the tags 1, 2,

., N and let z=(z,, 2, +, 2,) where z; is the unknown value of some
characteristic possessed by the ith individual of the population. Let

N
(4.1) ,,:% Sz,
A 1 y '
4.2) = 314
and
N
(4.3) =2 )

be the population mean, the rth crude moment and the population var-
iance. Here we obtain the Bayes’s estimation of these functions of z.

Suppose that each z; can only assume one of the finite set of nu-
merical values {y,, ¥, -+, ¥} where %<y <---<y, and s is assumed to
be independent of the population size N. Now let N; be the unknown
numbers of the N population elements for which z,=y,, 7=0,1,2,--,s
Then the finite population & can be completely described (Hartley and
Rao [4]) by (s+1) nonnegative integer parameters N, (:=0,1,---, s) and
(4.1) to (4.3) can be written as

4.4 =1
(4.4) =3
(4.5) H=L SN
N j= I
i 1 g p
(4.6) rpall; .

If A is any subset of n elements taken from & of the N distinct
population elements and if x; denotes the number of z’s (i € A) equal
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to y; then the joint distribution of x=(x,, «,,---, ;) is clearly given by
MH distribution as defined in Table 1.

If B denotes a subset of elements drawn without replacement from
finite population & until we get k elements 2,’s equal to y,. If =z, de-
notes the number of those z’s (i€ B) equal to y, then the joint dis-
tribution of x is clearly given by MIH distribution as defined in Table 1.

4.1. Bayesian estimates of the parameters of MH

Let the prior distribution be p(XN), then the posterior distribution
of N given x is given by the Bayes’s theorem

—_DPN)p(x|N)
47 P o W p eIy

THEOREM 4.1. If p(N) 1is taken to be the UMH distribution given by

(4.8) p(N)=;lj;<f\/i>

where Ny+Ny+---+N,=N>0, and ay+a;+---+a,=a and p(x|N) s
MH distribution, then the posterior distribution of N given x is

E(ﬁ:fzﬁ) N—n\ I'(-a+4+n) & I'(—a,+N)
4.9 p(N|x)= (o) =(N_x) floan) facedi
—n

ProoF. Straightforward on using (4.7).

We may note here that in (4.9) N—x given x is a UMH with
parameters N—n and a—n, a—x, ay—2,.

Properties of the prior on N. Before proceeding with the analysis of
the aspects of the posterior distributions, it is useful for future use to
list some properties of some characteristics (4.4) to (4.6) of the finite
population. The prior expectation of the population moments are:

(4.10) E()=3}v,,/a
(4.11) E(u)=3450,a .

The prior variance of the population mean and the »th crude moment
are
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_ G/—N s 2 _ 3 2
(4.12) v (#)—m[% yia,la <1§o yja‘.f/a') ]
7y — a_N : r _ : r 2
(4.13) V= FaoD [;z—]oy; ala <§oy’“’/“> ]
and the prior expectation of the population variance is,
' n_ (N=1)a[ <, 20 10 (< 2
(4.14) B (@)= Huale—(Huaie) |

Properties of the posterior of N given x. Writing M;=N,—z;, and M=
N—n we can write down the posterior moments of UMH as

(4.15) E (M, | x)= M %=%)
(a—m)

2] ) — _1y(ai—z)(a—x.+1) (a:—z)

(4.16) B (M7]0)= MM~ 1) G ENA ) 4 py ke

_ _ 1y (ai—x)(a;,—x))
(4.17) E (MM, |x)=M(M 1)(a_n)(a_’n+i)

: _rla;—ax))(@—n—a+x)(@a—N)
(4.18) V(M,|x)=M FR T r—

— _ aylas—x)(a;—x,)(@a—N)
(4.19) Cov(M;, M;|x)=—M (a—-n);(a——jn+1) .

Posterior expectations and variances of the functions of the parameters
of the finite population. Since

I R _ 1 1
P=5 g%Nj— N jz:_:;yt(Mj+xj)——ﬁj§y1Mj+ N g‘})yﬂ?z .
Let ﬁ:%gy,x, be the sample mean, then
12 n -

and using (4.15) and (4.10) we get the posterior expectation of u given
X as

_ Ma—N)z+(N—n)a E ()
(4.21) E (p|x)= Na—n)
(4.22) =wZE+(1—w) E(p)

where w=mn(a— N)/(N(a—n)).
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(4.22) shows that the posterior expectation is weighted average of
the sample mean and the prior expectation. If a is small, which we
could interpret as “diffuse” or “noninformative” prior, then

(4.23) E(plx)== .

Similarly we have the posterior expectation of the rth crude moment as

E (4| x)=N=ma E () + nla—n)m;

N(@a—mn)
where m/,= - Z%)y, x,; is the rth sample moment. If a is small, then
j=
(4.24) E(gl|x)=m; .

Since pﬁ:—l—lv—j% YiN;= é‘, M,-{-%mﬁ and

1
N
V(prlx)———Zy V(M; Ix)+— Zyi y; Cov (M;, M;|x) .

Substituting from (4.18) and (4.19), we have

/1w M(@a—N) . (a;—x))(a—n—a,4x;)
@) V(=TGR Sy et et

— T oy (a'i_xi)(a '—_x)
c% Ve ¥s (a—'n)z(a—jn—i-jl) ]

and

' _(N—nm)(@—N) [ ,» (@—x)(@a—n—a;+)
(426 Viln)= N L}“_,oy’ (a—n)a—n+1)
(@;—2;)(a;,—x)) ] .
(a—n)(a—n+1)

=22 Y:Y;
£
Let the sample variance be

i Yjx;—nx’
=J4=
(n—1)

2

Then we can express the posterior variance of g given x in terms of
S?, =, the posterior expectation and prior variance as

_[(N=n)(@a—N)(n—1)S*  a(a—1)(N—n)V (r)
(4.27) V("'x)'[ Nia—m)@a—ntl) | Na—mn)@a—n+tl)

+

nafa—N)(N—n)(@— E(#))z}
Ni(a—n)(a—n+1)
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If a is chosen to be very small, that is, when we have no informative
prior, then

~(N—m) (n—-1) 8 N—n §*
(4.28) V=" n >~ N n

Thus under extreme diffuseness of prior knowledge the posterior dis-
tribution of the finite population mean p has an approximate mean z
and variance ((N—n)/N)-(S*n). This provides a Bayesian interpretation
for the classical unbiased estimates in traditional sample survey theory.

Since azz—lﬁ iﬂy?Nj— ¢ we get the posterior expectation of o* as
i=

B (0= £ 0o, AEQLI0-NV (ul0)-NE ) |

and substituting from (4.15), (4.26) and (4.21) for E(M;|x), V (z|x)
and E (gz|x) respectively we get

21on_ 1 [(@a—N)(N(@a—n)—n)(n—1)S*
(4.29) E( Ix)_—N—[ N@—n)(a—n+1)

M(a—1)(N(a—n)—a) E (6%
(N—-1)(a—n)(a—n+1)
nMa(a—n)(?c—E(ﬂ))z] )
N(@—n)(a—n+1)
If ‘a’ very small, E (¢*|x)=~((N+1)/N)-((n—1)/(n+1))S?, where S* is the
observed sample variance.

+

+

Inference about population and second sample. The posterior distribu-
tion of N given x obtained in (4.9) can also be written as

¢ (N,—a;,—1
(4.30) p(le)z;l;L(in__;g:Il> .
(n—a—l)

If we take M,=N,—z, in (4.30), then we get the distribution of
the second sample M given the first sample x (where N—n is inter-
preted as a second sample after taking a sample of n from a finite
population of N elements).

: <M¢+xr-a;—1>

31 — i=0 z,—a;—1
(4.31) p(M|x) <M+n_a_1)
n—a—1

Now the total proportion of the population that possesses the char-
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acteristics v, ¥, -+, ¥; is

Hence, the joint probability of H,’s is obtained from (4.30) as
ﬁ' (E_E—l—a¢_1>

4.32 Hy=in\ &0l
(4.32) v (H) (N__a_1>
n—a—1

i i
where "Z n=H=N-n+> =z, it=1,2,---,8 and H_,=0, H,=N.
=1 k=1

The total proportion of the second sample that possesses the char-
acteristic y,, ¥, -+, ¥ is

© M,
Eu-u

Hence, the joint probability of ks is obtained from (4.31) as
! (ht_hc—l"‘l'xi_at—l)

— i=0 r—a,—1
(4.3) ph)= <M+n—a—1>
n—a—1

Asymptotic form of the posterior distribution of N given x. Let N,—
o (¢=0,1,2,--.,8) and N— oo such that

p;=lim ——% and (x;—a;)

N—oco

remain fixed and positive, then clearly 0<p,<1 and é p:<1, we there-
i=1

fore obtain

(4.34) lim N*p (N|x)=—®=2=D!__ 17 pei-ein
i 1T @—a—1)!

i=0
— s['(n—a) ﬁ pgzt_ai_l)
H)F(wi—ai) =

which is Dirichlet distribution with parameters (z,—a,) and (x—a).
See Wilks [14].

Asymptotic form of p(H). Let N;—oo (1=0,1,2,--+, ), N—oo such
that d;,=lim H,/N and (#;—a;) remain fixed and positive, then clearly
N—oo
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0=d,=d,<---=d,=1

and

@3)  lim NpE)=""0"D T @—d)eee
- 1L @—a—1!

= T®=9) 7r@g,—d,_yro
1 r@—a) ™

where d_,=0, which is ordered Dirichlet distribution with parameters
(xs—ay) and (x—a). See Wilks [14].

Asymptotic form of the posterior distribution of second sample given the
first sample. Let n— oo and let lim (z;—a;—1)/(n—a—1)=6;, in (4.31),

then
M! i];l‘; (x;—a,—1)*?

3 : (n——a—l)“”
z];l; M}

. M! il_lo (x:—a,—1)*

~ lim —

oo 8 — __1\¥
,-Uo M, (n—a—1)

lim p (M| x)=1im

1 s
__ ML g
T[Mi! i=0

i=0

4.2. Bayesian estimates of the parameters of MIH

Assume that the finite population of interest is a random sample
obtained in inverse sampling from an infinite superpopulation for which
p, is the probability of category j. Then, conditional on p,’s, N has
the NM distribution with parameters N,+1 and p. Now if the param-
eter vector p is assumed to follow Dirichlet distribution with param-
eters «, and @, then Mosimann [10] has shown that N follows MNIH
with parameters N,+1 and a. We show in Theorem 6.3 that N—x
given x is distributed as MNIH with parameters N,—k+1 and a+x.

THEOREM 4.2. Let the conditional distribution of x given N be MIH
with parameters k and N. Let the prior distribution on N be MNIH
with parameters Ny,+1 and a then (i) the unconditional distribution of
x is MNIH with parameters k and a and (ii) the posterior distribution
of N—x given x is MNIH with the pf



442 K. G. JANARDAN

B(ayt+k, N\—k+1) =t Iog+2)(Ni—z)!

PrOOF. See Theorem 5.3 in Janardan [7].

The posterior moments of M

4.36) E(M,|x)=(N,—k+1)-%T%_
(4.36) B x)=(No—k+1) St o

where M,=N,—z,, 1=1,2,---,8

(4.37) V(Mlx)=(1\/'o—k+1)<a:"jr"'lﬁ‘l><1+a:’:_"';’_”fl)(a:‘f:;cli"'z)

ao+lvo

(4.38) Cov(M,Mjlx)=(M—k+1)< s )( o )(

at+k—1/\ay+k—1/\ay+k—2

).

In this case also, one can write down expressions similar to (4.21)
through (4.28) for the posterior expectations and variances of the funec-
tions of the parameters of the finite population utilizing expressions

(4.36) to (4.38) for the posterior moments of M, obtained in
sampling.
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