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1. Introduction

Estimators of the variances and covariances of disturbances in a
complete system of simultaneous linear stochastic equations are con-
structed with the help of residuals obtained from the estimated struc-
tural equations. Employing the k-class method of estimation, Nagar [6]
considered a consistent estimator of variance and evaluated the bias to
order O,T™'), T being the number of observations”. Later, Srivastava
[12] obtained the expression for the mean squared error to the same
order of approximation. A similar estimator for the covariances of
disturbances is presented in this paper and the bias and mean squared
error, both to order O,(T!), are analyzed for two-stage and three-stage
least squares methods. For comparing the relative sizes of covariances,
estimator for the correlation coefficient between disturbances of two
equations is also proposed and its properties are investigated. Section
2 describes the system of equations and the assumptions underlying.
The estimators are also presented. Section 38 introduces some notations
and presents the results which are derived in Section 4.

2. Description of the system and the estimators

Consider a complete system of M linear structural equations in M
jointly dependent and A exogenous variables:

2.1) Y +XB=U

where Y is a TXM matrix of observations on M jointly dependent

1 If the sampling error of the estimator can be expressed as the sum of two com-
ponents such that the first component is atmost of order Oy(7T!) and the other is of order
Oy(T-=) with a>1, then the bias to order Oy(T!) refers to the expected value of the first
component, neglecting terms of higher order of smallness than O(T"Y); see, e.g., Srivastava
[14].
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variables, X is a TX A matrix, assumed to be of full column rank, of
observations on 4 exogenous variables, I" and 8 are matrices of coeffi-
cients associated with them and U is a TXM matrix of unobserved
structural disturbances assumed to be temporally independent and nor-
mally distributed with mean zero and dispersion matrix

Oy * ° Oy
(2.2) %E(U’U):Z:[f : }

Ou1* ° ° Ouy

The system of equation (2.1) is assumed not to contain identities,
and its reduced-form is given by

(2.3) Y=XII+V
where
2.4) [I=—-Br-* and V=UI".

Further, it is assumed that all the equations are identifiable through
apriori information consisting of zero-one type restrictions on the ele-
ments of I" and B. These restrictions when incorporated in (2.1) yields
the following set of equations:

y¢=Y¢Tt+Xilgt+ut

or
u=¥X)(§)+u
or
(2.5) Yi=Ad+u, (*=1,2,--+, M)

where y; is a column vector of T observations on the jointly dependent
variable to be explained in the ith equation, Y; and X, are Txm, and
T'xl, matrices of observations on m, (<M) explanatory jointly depend-
ent and I/, (<4) explanatory exogenous variables and %, is the 4th col-
umn of U. The coefficient vectors y, and B, are obtained from the ith
column of I' and B respectively.

If for any matrix D of full column rank we write

(2.6) P,=D(D'D)'D
then the two-stage least squares estimator of 4, can be expressed as
2.7 Ssiscy=(AIP,A) ' AlPy, .

The disturbance vector u, is then estimated by
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(2.8) Wasiscy =Y — AtngLs(i) .

A consistent estimator of o,;, based on two-stage least squares
method, is

A’ A
2.9) 8= Uasisco Uasis(i) |
! T

In order to compare the relative sizes of covariances, one may use
the following estimator for p;,, the coefficient of correlation between
the disturbances of ith and jth equation,

2.10 ry=—i
( ) N (8i 31;)1/2

If we write all the equations (2.5) compactly

yl Al 0"' 0 51 ul

T R L | I R

ved L0 0 Aytlan) Luy
or
(2.11) y=Ad+u,
the three-stage least squares estimator of 4 is given by
(2.12) dusrs=[A(SRI) IR P Al A((S™ @ IR Pr)y
where

Sy Sy
(2.13) s:{ ; : }

and ® denotes the Kronecker product (Zellner and Theil [15]).
The disturbance vector « is estimated by
(2.14) Ussrs =Y — Abygs

and a consistent estimator of ¢,;, based on three-stage least squares
method, is given by

(2.15) oy = s Bassp
T

where sy and fssiss, are the ith and jth subvectors of 7iss respec-
tively.
The three-stage least squares estimator of p,; is
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(2.16) b=
b (ﬂ'u 01/)1/2

3. Results

From (2.3) the reduced-form corresponding to the explanatory joint-
ly dependent variables in (2.5) can be written as

3.1) Y.=XI,+7,

where /7, and V, are submatrices of I7 and V respectively.
Further, using (2.4) we can express

(3.2) (V. 0)=UG,

where G, is a Txn, (=l;4+m,) matrix of constants.
Thus, we can write

(3.3) A:=Z,+ UG,
where
(3.4) Z,=(XIll, X,).
If we denote
Z 0...0
(3.5) 7= %0
0 0--:2Z
and
G 0- 0
(3.6) G=| 9 G0 0
0 0---Gy
then
3.7 A=Z+(IRU)G .

Now let us define
Q=[Z'2'QNZ]

(3.8) B=07'(Z'QI)
H=2"'QN—-(2'QNZZ'Z'RI).

Further, we introduce
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Qiz(Zi’Zi)-l
(3.9) o»=Col (6; 63 "0
diszgdq) ,5=1,2,---, M) .

THEOREM 1. The bias and mean squared error, to order O (T™),
of the two-stage least squares estimator s,; defined by (2.9) are given by”

(310)  E(sy—0,)=plrQZZQZ/Z)~n—nlo,
—(A—n;— l)dgiQidij —(4— n;— 1)d§JQfdji
+(trGi2G,Q,Z] ZQi)o;;

(3-11) E (Sij _Uij)z = % (O'u'o'jj +0'%j) + giidéjQidij +0'jjd9indji
+2aijd9inZ;ZiQidij .

THEOREM 2. The bias and mean squared error, to order O T™),
of the three-stage least squares estimator a;; defined by (2.15) are

(3.12) E (6'” —O'ij) = — % (tr Zj,ZiQ'Lj) _‘d;indjj —dijQidii

%
- % (inWm + déjmkl)dkl + (trGi2G.2 ji)

(8.13) E(o;;—a:,;) = —;1- (0u0;;+0%)+di;2.d;;+d5:02,,d,;:+2d,02,.d,

where
(3-14) W,,”=(t1‘ HklPx)ka—2BpkB;cl+Bpl(Zka— I,:k) (‘u=’1:, .7) .

Here 2, is the (g, k)th submatrix, of order m,Xmn,, of 2 being
partitioned as:

-Qu ¢t Qu(
(3.15) Q= . Do
Oy + - - Qm{

The matrices H,, and B,, are similarly defined with reference to
H and B respectively.
From (3.11) and (3.18), the change in mean squared error is

(3.16) E(Sij—o'tj)z—E (&ij-—o'ij)z

=d/(0:Qi—2u:)di;+d}(0;,Q;,—2,,)d4
+2d9i(aiijZj,ZiQi _jS)dij .

2) See footnote 1.
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Now let us consider the estimation of variance ¢,;. From Theorem
1 and Theorem 2 we find, to the order of our approximation®,

@B.17) E(sy—ow)=— % 6u—2(A—n,—1)d; Qi+ (tr Gi2G.Q;)os;
(3.18) E(sy—0u)= % ohi+40,d1.Qd,,

(3.19) E (&it —0y)=— —;—, (tr Qi—lgii) —2d}.Q.d;;
o
—2 g diWaid +(tr GI2G2,,)
(3.20) E (&“—‘0'“)2——-%0‘%&+4d$igtidii .

The gain in efficiency is
(8.21) E(s;—0.)'—E (6:;—0.,)'=4d}(0.:Q,— 2.:,)d
which is non-negative, for the matrix
(3.22) 0 Qi— 9y

is non-negative definite (see result (V) of Appendix).
We now present the expressions for the bias and mean squared
error of the estimators r,; and p,;, defined by (2.10) and (2.16), of p;;.

THEOREM 3. The bias and mean squared error, both to order O, (T ™),
of two-stage least squares estimator r;; and three-stage least squares esti-

3.23)  E(r,—py)= ——Pf—f%%?f)-m,[czsm(i, )+ Casisl 9)]

— 2 - . . .
(3.24) E (p:;; — pij)= —%Tpu)‘l'{’u[casm(% J)+Cisis(d, )]
— 2 2 . . 3 .
(3.25) E (r,-,—p,-,)2=(i7;£)——+p§,[c;;m<z, )+ Cheed, )]

22 .. ..
3.26) E(p,— pijy:%mj[c;mu, )+ Clas(G, 9)]

where

(3.27) Cunsli, j)=%[(tr GI3G,Q,Z] ZQ) — (tr GiZG.Q))

8 Cf. Srivastava ([12], results (2.7) and (2.8), p. 439).
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+—= {(tr QZ!ZQ,Z] Z;)—n,}

+l{(A—m+%)dae,du—d;iQ,z;ziQid“}

Oy

_ 2(4—mny) d}Q, di! +_—W ijij’ZiQidti]

i (
(3.28) Cusli, )=-L| L (tr & 1 trey
. asLs(?s .7)—? a_(tr GiZGiji)—_(tr Gi2G:2:)
47

—% {——(tr Z]Z, Q{j)———(tr Q;lgu)}

(7]

wes (__ d:,—_dsi) Wi

i\ gy (L

dij(” tiQi +0 u)du + d 1(20'izQi +30 u)du

"u 15

+;;d5t9u (a—” dy ——d1¢>]

O'U

(3.29) Cius(i, J )——d',Qt("“ 4y —2du+2/2,Q,d )
iz (47

+0_d$iQi(dii —2Z/7 fi jdji)+ tQiZ Zij 77
i

i ( 0 u)m
(8.30) Ciusli, § [Qa(idi,—-—dﬂ) +L 0,4,
T (F7]
+ d ( 'Qitdzi ljdji> + 1 détgijdjj .
Gi; Tii 011 G0

Here Cys(7, ©) is obtained from Ciy (7, ) by interchanging the suf-
fixes ‘¢’ and ‘7’ in the expression. The same is true for other func-
tions.

4. Proof of the theorems
From (2.5), (2.7), (2.8) and (3.3) we have
4.1) Blasscy =" — A Oasrscy—32) -
If we write

/.

(4.2) my= “;'_,'," —ay,

then from (A.L.a) (see Appendix) the sampling error, to order O, (T"),
of s, is
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(4.3) sij_aij=Aij=Atj(-1/2)+Aij(—l)

where

(4.4)  dijcuym=mniy;— 1 wiUG,Q,Z)u,+wZQG U u,)
T

(4.5) 4, (_1,=—1—[u£P,AP, w; —uP,w;—uw.P,u
7 T i) id 2t

- u;UGijG;U'(PX - sz)uj + u:UGijZj/ UGijZ;uj
—uj(Px—P, :i) UGQGUu 5+ wZQRGU' ZRQGU 7
+UZQGUUGQ,Z]w,] .

Here 4, and 4;_;, contain terms of order O,(T-*) and O/ (T)
respectively.

It may be noticed that 7;; is of order O,(7~"*) with mean zero and
variance (g0;;+0%,)/T.

Owing to the normality of disturbances, we have

(4.6) E [A“(_m)]=0 .

The expectations of the first three terms on the right-hand side
of (4.5) are

(4.7) = B[P, P =1 (tr QZIZQ,Z] Zo,
1

(4.8) 7 B[P =1°Tiau
1

(4.9) 7 BluPu]="70, .

Setting C=G,Q,G; and D=(Px—P,) in (A.Ill.a) (see Appendix), the
expectation of the fourth term is equal to

(4.10) (A—‘T"ﬁ-[(T+1>d;,-Q,dﬁ+<trQ,GazG»au]=(A—n,>d;,deﬁ

to the order of our approximation.
Similarly, the expectation of fifth term on the right-hand side of
(4.5) is, to the same order of approximation, equal to

(4.11) d},Q,d;

where we have used the result (A.IILb).
The expectation of the sixth and seventh terms on the right-hand
side of (4.5) can be derived from (4.10) and (4.11) by interchanging the
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suffixes ‘4’ and ‘j’:

(4.12) ‘;T E [u{(Px—P,)UGQ.GU"u,]=(4—n,)dQ.d.;

(4.13) %E W/ ZQGU ZQGU ) =dQd:, -

to the same order of approximation.
Finally, the expectation of the last term is, to the order of our
approximation,

(4.14) % E [(wZQGUUG,Q,Z}u,)=(tr G:3G,Q,Z! ZQ))s.,

where use has been made of (A.Ill.c).

Combining (4.7)-(4.14) we get E[4,;_»] to order O(T~') which on
using (4.3) and (4.6) leads to the expression (3.10) of Theorem 1.

For the mean squared error of s;, we notice that

(4.15) (8i;— 0 =L —y»

to order O (T™).
Now, we have, by virtue of normality of disturbances,

(4.16) E [rﬁf]=—;—,(aua,-j +at;)
(4.17) E [y - wiUG,Q;Zju,]=0
(4- 18) E [n” . u:Z;QiG:;UIuJ] = 0 .

Setting C=D=G,Q,Z/ in (A.IV) (see Appendix), it is easy to verify
that

(419) 7 E[uUGQ,Z/u,)'=1 EWiUG,QZ]u;- wilUG,Q,Z)w,)

=0 ndanfdﬂ

to order O(T™).
Similarly, to the same order of our approximation we find, using
(A.IV),

(4.20) % E [u;ziQmU'u,P:% E [w]UGQ.Z/u =0ud! Qs

and

(4.21) % E [wUG,Q,Z/u, w/ZQ.GU",]
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=1 E[WUGQ,Z /4, wjUGQZu]

= Uud;tQij, ZiQidij .

Utilizing (4.15)-(4.21) we obtain the result (3.11) stated in The-
orem 1.

For the estimated correlation coefficient r,, we have

4.22 ry=—2
( ) if (susjj)llz

o2 o))

= 1/2
(0'“0'1]) / T4 G Ojy

iy <1+ 4 > [1.;.&.]._4_&4_ Au"u]-m .

= 172
(o'tio'jj) / (47} Oy Oz 040y

Writing

(4.23) pig=—4

= ’
(Uiiﬂjj)m

expanding, using (4.3) and retaining terms to order O (T-!) we find

(4.24) Ti;— Py =€;c-1»t€c-n
Pis

where

(4.25) ey im= dycw —'l( dizw + A”"“”)
(7] 2 T [ F7]

(4.26) eij(—1)= Aij(—l) ___]:_( Aii(—l) + Ajj(-l)>+i( A%i(—l/z) + A;j(-l/l))

aij 2 Ty 0'1, 8 0’3,; a}f
_|_ Ait(—l/Z)Ajj(—l/D —_ Aij(—l/Z) ( Aii(-l/Z) + Ajj(—l/2)> .
40,04 20y, T Tj4
Now, from (4.6) we see that
(4.27) E [e,-j(_l/z)]=0 .

The expression for the expectation of the first three terms on the
right-hand side of (4.26) can be derived from (8.10) and the expecta-
tion of next two terms from (3.11). For the expectation of last three
terms it is easy to verify that

(4.28) E[ducspdypw] =E [pan,,] +% E[WUGQ.Zw w,UG,Q,Z}u;]

g 2 7 +4o. i jdéiQiz i,Z ijde

2
T
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to order O(T') where use has been made of (A.Il.a) and (A.IV).
Similarly, to the same order approximation,

(4- 29) E [41(-1/2)4’“(-1/2)] = -12—, 0035 + 2(0' i jdginZj,ZiQidii +0 ndijQidii)

(4.30)  E[dicmdiml= % 0;50:;+ 2(0¢jd51QtZt'Zfdeu +0,,dQ,d;;) -

Results (4.27)-(4.30) along with (8.10) and (3.11) yield (3.23) of
Theorem 3.
Further, we have, to order O (T,

— ..\
(4.31) <L”;ﬂ> =e€l_y»
if

2 2 2
— Aij(—l/Z) +_1__< Aii(—l/Z) + Ajj(—l/ﬁ))+Aii(—l/2)Ajj(-l/2)

ol 4 o aj; 20,04,
— Aij(—l/” < Aii(—-l/Z) + AJJ(—1/2)> .
Jij Oii (7]

The expectation of the first three terms can be obtained from (3.11).
Using it along with (4.28), (4.29) and (4.30) we get (3.25) of Theorem 3.

In order to derive results for three-stage least squares estimator,
let us write

(4.32) lﬁ/SSLS(i) = D,;'ﬁl(;s]_,s = Dgu - DiA(éasLs bl 6) = u,- - D{A(éasy_,s —_ 5)
where D, is a TXMT matrix of the form
(4.33) D,=[0 0.---0I0---0].

Here 0 and I are null and identity matrices of order T'X 7T and I
occurs at the ith place.
Using (4.32) and (A.Lb) we have, to order O,(T™),

(4.34) 05— 0=V i;=Vijeym+Vin

where

(4.35) Vi,<-1,2>=m,.—%[uw,a® U)GE_1+ &1, (IQU) D]

(4-36) 4 if-D= l [fix/zz 'D.D jZ St 5'—1/2G’(I ® U’)ij(I X® U )Gf-l/z
T

—uwiD,Z&_\p—EL1pZ 'Diu;—wD,(IQ U)G¢_,
— LG IQU")Duy) .«

Now, by virtue of normality of disturbances
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(4.37) E [Vij(_l/g)]—_—o .
The expectation of the first term in 7, is
(4.38) % E [wB'Z'D,D, ZBu] =% tr BZ'D,D,ZB E [uw']
=% tr Z2'DiD,Z0
~Ltrz12,0
—7( rZ{Z,2;)

where we have utilized
(4.39) BZEQI)B'=2.

Similarly, partitioning B and B’ as indicated in (3.15) for 2, the
expectation of the second term on the right-hand side of (4.36) is

(4.40) _;7 E [wB'G'(IQU)DD,IQU)GBu]

2 E [u;B;LGéU,UGijkuk]

k,
o‘u(tr B&G£ZGJBJI,;)
tr Gi2G,2;;

to order O(T~') where use has been made of (A.Ill.c) and (4.39).
Next, consider the expectation of third term:

~

1

T
M
by
k,l

(4.41) —lf E [u,D,ZBu]=1 3" E [w/Z,B,uu]

Il

wME a-Mg

1
T
L S outrZ,B,)
T

1

FUrZi2,9,).

The expectation of the fourth term can be obtained from (4.41) by
interchanging the suffixes ‘4’ and ‘j’ so that it is equal to

(4.42) -%-(tr Z/Z9,) .
Finally, the fifth term can be written as:
(4.43) % [wD,(IQU)GRAG'(IQU)H(IR Pr)u
—uD,(IQU)GBIQU)GBu—u.D,(IQU)GB(4® I)Hu)]
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where
(4.44) 4=8-3 .
Partitioning H and 2 as pointed out earlier, we can write the ex-

pectation, to order O(T"'), of the first term in (4.43) as:

(4.45) %%:1 E [uéUGijkG,’cU'Hk;qu; zit (tl‘ chlPx)d.’iinkdkl
k,

1
T

which follows from the result (A.Ill.a).
Similarly, using (A.IILb) the expectation of the second term in
(4.43) is equal to

M
(4.46) % >3 E [UUG,B,sUG: Byt = duBuB o
M
= % d.lfiBjkB;cldkl

to the same order of approximation.
For the expectation of third term in (4.43) we have

1
Tklm

M
='2—., “Em E [dcys 'uiUGijkHzmum]

(4.47) 3 E [4,-wiUG;B; Hyntn]

to the order of our approximation.
Substituting the value of 4y from (4.4), dropping the terms
with expectation zero and utilizing (A.IV), we find (4.47) equal to

M
(4-48) - HZm [0 Lmd;leZl’Hl,m ,,ikd ji+akm ;leka, I{l’mB;kd ji]

to the same order.
It is easy to see that

¥
(4.49) % 0@ Z!H/,=QZ{ — By,
s o
(4.50) lZm Oum@i@uZi Hip =i Zi —; 4B -

Utilizing (4.49) and (4.50), the expression (4.48) reduces to
M
(4.51) — >3 dul(QuZ{ — Bu) Bji— BuBjild ;i — d;,Q,d:

M
= % dg't[B/z(Zka - Bl’ck) - BjkB;cl]dkL - inQ,-d“ .
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From (4.45), (4.46) and (4.51) the expectation of fifth term on the
right-hand side of (4.36) is

M
(452) - % d_,iinkldkl - dg'indjj

where W,, is defined by (3.14).
The expectation of last term in F,,,, can be obtained from (4.52)
by interchanging the suffixes ‘¢’ and ‘7’

M
(4.59) =3} 4l W~ di Qs

Combining (4.37), (4.38), (4.40), (4.41), (4.42), (4.52) and (4.53) we
get the result (3.12) of Theorem 2.
For the mean squared error of ¢;;, we observe that

(4.54) E(6,;—a,))=E[F}i»]
=E [vﬁ,]+% E [w/D,(IQU)GE -]

+—:},T E [¢,,G'(IQ U D,
+% E [w/D,(IQU)Gt - &.1,G' IR U Diu,]

where terms with expectation zero have been dropped.
Now, using (A.IV) we have

(4.55) %[uw,a@ U)Ge_inl?

1 M , 2
=F E l:% uiUGijkuk]

M
=—11,2- 51 E [WUG, Byt w(UG,B ]
M
= kEl] akld_’ﬂBﬂ:B{ﬂd}t
=d}ld;,d;4

to the order of our approximation.
Similarly, to the same order, we find

(456) 7 ELnGUQUID=di2ud,

(457 L E[D,(I@U)GEp- .G IR VD1 =dyd -
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Substituting (4.16), (4.55), (4.56) and (4.57) in (4.54), the result
(3.13) of Theorem 2 is obtained.

For the correlation coefficient p,, we can proceed in the same man-
ner as in case of 7,; so that to order O,(T),

A

(4.58) M=€i/<—1/2)+€m—1)
O

where

(4.59) Eipym= th(-:/z) _l( Vii(-l/2) + ij(—l/2)>
2

Oij Oii Ojj

(4.60) Eijp= Vij(—l) _l( Vii(—l) + ij(—l))

0','1 2 (177} Gjq

3/ P r? 14 |4
+_< 11(~1/2) + Fi(=1/2) ) + 1i(=1/2)Y jj(=1/2)
8\ ok o3 40,045

— Vij(-l/Z) ( Vii(—l/z) + ij(—l/2)>
20'{1

47 L7

The expressions (3.24) and (3.26) for the bias and mean squared
error of p;, can be derived exactly in the same way as indicated for r;;.

Appendix
I. To order O, (T™") we have

(A.l.a) SnsLs(i) —0,=6_1pwt+E-1w
(A.L.b) 3as1.s—5=5-1/2+$-1
where

E_1par=QiZ{w,
£_10=QIGU"(Px— P, )u;— Z{UGQ.Z{u.]
&_1yp,=Bu
£, =0G(IRQU)H(IR Pyyu—BIRQU)GBu—B(4Q I)Hu .
Notice that

B=0Z'3'QI)
H=C"'QI)—-C'QNZZ'(Z*RI)
4=8-%.
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Proor. For (A.l.a), see, e.g., Srivastava ([12], equation (3.1.11)
with ¢=0, p. 440) and for (A.L.b), see Roy and Srivastava ([8], equa-
tion (4.10) with all ¢’s and #’s equal to zero and, of course, with slight
change in notations, p. 502).

II. If D is a TxT matrixz with nonstochastic elements we have
(A.IlLa) E [w;Du;-usu;l=0;0,:(tr D)I+6,0;,D+ 640, D'
(A.ILDb) E [wiu; - weu, - uun] =(ay+a, T+a, THI
where

1) =Ujh(0'iz¢fw +¢f¢k0zg) +¢7ig(0'jz¢7kh+0‘jk0m) +0'ja(¢7izﬂ'm+0tk0m)

+ aih(ajlakg +0'jkatv)
a, =0'kz(0'ig0'jn+ Uuﬁja) +0'¢j(0'zg0'm+0m°'yk) +0'on(¢sz0'ik +0jk0'u)

azzaijaklagn .

ProOF. For (A.Il.a), see Srivastava ([10], result (A.I), p. 49). The
result (A.IL.b) can be obtained from Srivastava ([10], Proof of (A.II),
pp. 492-493].

III. It is proved that
(AIlLa) E [wUCU'Du,1=[To!,Co+a.(tr ZC)+0!,,Coc] (tr D)
(AJILb) E [wUCUDu,)="To!,DC'se+0,,(tr C'ZD)+%,DC's¢,
(A.lll.c) E [w,CU'UDu,]=Ts,,(tr CED)+al,DCojy+/C' Do,y

where C and D are matrices, with nonstochastic elements, of appropriate
sizes in each case.

PrOOF. For the result (A.Ill.a), we write
(I11.1) E [w,UCU' Du,]=tr E [u x;UCU"1D .
Since U=(u,, 43, -+, uy), we have

(IIL2)  E[uuUCU']= i E [, 0/, Cstif] = é’L Ciw E [wate-,ul]

where C,, is the (k, [)th element of C.
Using (A.Il.a), the expression (III.2) is equal to

s
(I11.3) kZl} Ckl[Taikajl+aijakl+0'tlo'jk]I
= [Tﬂ‘éi)CU(j) +0’¢j(tr Z'C) +0€DC¢T(¢)]I .
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Multiplying this result by the matrix D and then taking trace,
we get (A.Ill.a) from (III.1).
Similarly, the results (A.IIL.b) and (A.IIl.c) can be derived.

IV. If C and D are matrices of order MxT with monstochastic
elements, we show that

(A.IV) E [wUCu,-uiUDw,) = T?¢;6(;,CD'o,
where only the leading term on the right-hand side has been retained.

PROOF. Let us write

Ct Dt
C= C;k and D= D’*
C Dy

where C* and D¥ (¢=1,2,---, M) are pth row vector of C and D re-

spectively.
Thus, we have

M
w,UCw; - utUDw, = 33 Witk Cru - i, D¥u,
m,n
X !
=2 Colwithn - ity - uwi] D
m,n

the expectation of which is equal to, using (A.ILb) and retaining the
leading term,

M
2 1 /
T E aima'knale:.D;r - T Uﬂﬂ{i)CD Oy »
m,n

V. The matriz (o,@Q—2y) is non-negative definite.
PROOF. Let us partition and write

" Z!Z, Fz]

Z’(Z"‘@I)Z:[ [

where F, and F, are appropriate matrices.
The submatrix 2,; of 2=[Z'(Z'®I)Z]™! is then

(V.].) Qu':(UHZ{Zl— 2, 3.-1F2)_1
_ 1 1 ppa - (7T
_FQI I——a—u_FZF3 FZQI [Ql—(ZlZl) ]

where use has been made of Rao ([7], result (2.7), p. 29).
Similarly, if
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_ (%) f
2—[f' F]

then (1, 1)th element o' of 3! is

(V.2) ot 1 1

T u—FFf) onQ—Ue) S F)
Utilizing (V.1) and (V.2) we find

(V.3) auQ,—.Qu=aqu[I—- (1—;111_ f'F:‘f) <I—%F,’F;‘F,Ql) '1] .

Since Q,, F; and F, are positive definite, the matrix (0@ —2y) is

non-negative definite.
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