MOMENTS OF THE TIME TO GENERATE RANDOM VARIABLES BY REJECTION

J. ARTHUR GREENWOOD

(Received Sept. 27, 1973; revised Mar. 5, 1974)

The rejection technique, as presented by Butcher [1], generates a random variable η with the density function

$$f(y) = ad(y)g(y) ,$$

where a>0, $0 \le g(y) \le 1$, and the algorithm T yields a random variable with density function d(y), by the following steps: Operate the algorithm T, yielding the number Y, and compute g(Y). Operate a uniform random number generator, yielding the number X, $0 \le X \le 1$. If $X \le g(Y)$, accept Y; otherwise reject Y and start again. If the X and Y obtained in successive attempts are independent, then the probability that the nth attempt is successful,

(2)
$$\Pr[N=n] = p(1-p)^{n-1}, \quad n>0,$$

where

$$p = \int d(y)g(y)dy = 1/a$$
.

The geometric distribution (2) has factorial moment generating function

$$\begin{split} \sum_{n=1}^{\infty} p(1-p)^{n-1} (1+u)^n &= p(1+u) \sum_{m=0}^{\infty} \left[(1-p)(1+u) \right]^m \\ &= (1+u)/(1+u-au) \\ &= 1+a \sum_{i=1}^{\infty} (a-1)^{j-1} u^j \;, \end{split}$$

so that

$$\mathbb{E}\binom{N}{j}=a(a-1)^{j-1};$$

in particular

$$\mathbf{E}\left(N\right)\!=\!a\;,\qquad \mathbf{Var}\left(N\right)\!=\!2\mathbf{E}\left(\!\!\begin{array}{c} N\\2 \end{array}\!\!\right)\!+\!\mathbf{E}\left(N\right)\!-\![\mathbf{E}\left(N\right)]^{2}\!=\!a(a\!-\!1)\;.$$

If the algorithm T requires time t_1 , computation of g requires t_2 , and generating X requires t_3 , then the mean and variance of time to generate η are $a(t_1+t_2+t_3)$ and $a(a-1)(t_1+t_2+t_3)^2$.

Sibuya [2] proposes to accelerate the process by generating X first, and using the same X in the inequality $X \le g(Y)$ until some Y is accepted. The moments of time to generate under this proposal seem not to have been published. Conditional on X, the distribution of X is again geometric:

(3)
$$\Pr[N=n|X=x]=\pi_x(1-\pi_x)^{n-1}, n>0,$$

where

$$\pi_x = \int H[d(y) - x]g(y)dy = 1/lpha_x$$
 ,

and

$$H(z)=1$$
, $z \ge 0$; $H(z)=0$, $z < 0$.

Integration over the uniform distribution of X yields the unconditional distribution of N,

$$\Pr[N=n] = \int_0^1 \pi_x (1-\pi_x)^{n-1} dx ,$$

(4)
$$\mathrm{E}\left(\frac{N}{j}\right) = \int \alpha_x (\alpha_x - 1)^{j-1} dx ,$$

$$\mathrm{E}\left(N\right) = \int_0^1 \alpha_x dx , \quad \mathrm{Var}\left(N\right) = \int_0^1 \alpha_x (2\alpha_x - 1) dx - [\mathrm{E}\left(N\right)]^2 .$$

The behaviour of (4) depends on the asymptotic form of α_x for x near 1: if, as with many useful rejection schemes,

$$d(y_0) = 1$$
, $d(y_0 + \Delta y) = 1 - c(\Delta y)^2 + O(\Delta y)^3$,

then, for x close to 1, π_x is approximately proportional to $2c^{-1/2}(1-x)^{1/2}$, and $\mathrm{Var}(N)$ fails to exist. The two examples below were chosen for easy explicit evaluation of π_x and do not necessarily represent desirable rejection techniques.

First example. To generate a random variable η with the density function

(5)
$$f(y) = 6y(1-y), \quad 0 < y < 1.$$

Take

$$g(y)=1$$
, $d(y)=4y(1-y)$, $a=3/2$.

Then

(6)
$$p=2/3$$
, $E(N)=3/2$, $Var(N)=3/4$.

For the accelerated technique, conditional on X,

$$\pi_x = (1-x)^{1/2}$$
, $\alpha_x = (1-x)^{-1/2}$,

and so

$$\Pr[N=n]=4/[n(n+1)(n+2)], \quad E(N)=2, \quad Var(N)=\infty.$$

The expected time to generate is $1.5(t_1+t_2+t_3)$ under the standard technique, and $2(t_1+t_2)+t_3$ under the accelerated technique. Here $t_1=t_3$, so that the expected times are respectively $3t_1+1.5t_2$ and $3t_1+2t_2$; the accelerated technique is not advantageous.

Second example. To generate a random variable η with the density function (5). Take

$$g(y) = 2(1-2|y-1/2|)$$
, $d(y) = (1+2|y-1/2|)/2$, $a = 3/2$;

so that the distribution of N under the standard technique is given by (6). For the accelerated technique, conditional on X,

$$\pi_x = 1$$
, $x \le 1/2$, $\pi_x = 2 - 2x$, $x \ge 1/2$, $\alpha_x = 1$, $x \le 1/2$, $\alpha_x = (1 - x)^{-1}/2$, $x \ge 1/2$;
$$\Pr[N = 1] = 3/4$$
,
$$\Pr[N = n] = 1/[2n(n+1)]$$
, $n > 1$, $E(N) = \infty$.

In practical computing, the effect of infinite variance (a fortiori of infinite mean) is that runs of satisfactory generation are interrupted by runs of very long time to generate; thus, it can happen that an established and apparently error-free computer routine will *intermittently* violate the time limit assigned to a job (whenever a value of X close to 1 happens to be generated).

INSTITUTE OF MARINE AND ATMOSPHERIC SCIENCES, CITY UNIVERSITY OF NEW YORK

REFERENCES

- [1] Butcher, J. C. (1961). Random sampling from the normal distribution, *Computer J.*, 3, 251-253.
- [2] Sibuya, M. (1962). Further consideration on normal random variable generator, Ann. Inst. Statist. Math., 14, 159-165.