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Abstract

This paper considers empirical Bayes estimation of the mean 6 of
the univariate normal density f, with known variance where the sample
sizes m(n) may vary with the component problems but remain bounded
by m<o. Let {(0,, X,=(X,., -+, X, nw))} be a sequence of independ-
ent random vectors where the 6, are unobservable and iid G and, given
0,=0, X, has density fi™. The first part of the paper exhibits esti-

m(n)
mators for the density of > X, , and its derivative whose mean-squared
j=t

errors go to zero with rates O(n~""logn) and O(n~"™ (log n)?) respec-
tively. Let R™™*Y(G) denote the Bayes risk in the squared-error loss
estimation of @,,, using X,.,. For given 0<a<1, we exhibit ¢,(X;,---,
X.; X..1) such that D(t., G)=E [(t,—0..1)']— B™"*P(G)<c\(a, m)(log n)*-
n~* @™ for 1, >1 under the assumption that the support of G is in
[0,1]. Under the weaker condition that E [|#|**']<co for some >0,
we exhibit t*(Xi,---, X,; X,.1) such that D(t}, G)<c,(m, r)(log n) 7+
for n>1.

1. Introduction

In this paper a variant of the standard empirical Bayes decision
problem is considered where the sequence of component problems are
not identical in that the sample sizes may vary with the component
problems. For a general discussion on such problems and their moti-
vation, see O’Bryan [3]. O’Bryan and Susarla [4] considered the above
problem for squared-error loss estimation in certain continuous exponen-
tial families including normal distributions with known variance. The
drawbacks associated with the results of the above papers are (1) the
empirical Bayes procedures exhibited there are difficult to calculate ex-
plicitly since they involve inversions of null sequences with divergent
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sequences and (2), a priori, it seems difficult to obtain any rate of risk
convergence results for the procedures. The purpose of this paper is
to exhibit empirical Bayes procedures having some rate of risk conver-
gence properties when the component problem is the squared-error loss
estimation of #, where #, a random variable, has an unknown distribu-
tion G on some subset 6 of the real line, based on (given ) condition-
ally independent observations x,,---, x,, from f,, the univariate normal
density with mean 6 and variance unity, where m may vary with the
component problems. In so doing, estimates for a density and its de-
rivative are obtained having better rates of mean square error conver-
gence than have been obtained by using either the kernel estimates of
Parzen [5] or of Johns and Van Ryzin [1].

In the component problem with sample size m, let R™(t, G) denote
the Bayes risk of the estimator ¢ against G and R’."(G)=ir;1f R™(t, G).

In the modified empirical Bayes estimation problem, there is a sequence
{0,, X;=(X,,1, -+, X;ny))} of independent random vectors where the
unobservable ¢, are iid G and, for 6,=6, X,,, -+, X; ., are iid with
density f,. With t.(X,.,)=t.(Xi,- -, X,; X,,1) an estimator for use in
the (n+1)st problem, its risk conditional on Xj,---, X, is given by

(1.1) Rt G)ES S S (O—a)t.(x, da) f*+>(x)dxdG(0)

where, for each x, t,(x, -) is a probability measure on a o-field of sub-
sets of & containing all singleton sets of 6. With R,(t,, G) denoting
the overall expectation, we have

(1.2) R.(t., G§)=E [R**(t,, )= R"(G)
for any ¢, which motivates the following definition.

DEFINITION. A sequence of rules {¢,} is said to be asymptotically
optimal with order g(n) (denoted hereafter by a.o. (g(n))) for some func-
tion g(n)—0 as n— oo if, for some constant ¢>0,

1.3) 0=R.(,., G)—R™™*(G)=cg(n) .

In the component problem of size m, a non-randomized Bayes esti-
mator based on the sum y of the m observations is given by

(1.4) te(y)=m "y +@ )/ o))

where (an)‘/zp(y)zs exp {—(2m) " (y—mb)*}dG(#). It is well-known that

if @ and ¢, are L, random variables, then

(1.5) R,(t., G)—R™*(G)=E [(t,—tn=+P)
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so that in order to define {t,} satisfying (1.3), it seems reasonable to
define t, to be a natural estimate of t2**P. In view of (1.4), such a
t, can be defined by taking the ratio of estimators of p and p’. The
definition of these estimators and some of their properties are the sub-
ject matters of the next section. Sections 3 and 4 deal with the esti-
mation problem under the assumptions that G has compact support and
E[(j6]**)]<o for some y>0 respectively and exhibit procedures {t.}
satisfying (1.3) for some g(n).

Throughout this paper, all integrals without limits are taken to
be over (—oo, o) and all limits are as n—o. P and E denote prob-
ability and expectation taken over all random variables on which they
operate.

2. Estimation of a density and its derivative

For j=1,---,n+1, let

m(j)

2.1) Y= 12=1 X

(2.2) DY) =(2rm(5))"* S exp {—(2m(7)) " (y—m(5)0)'}dG(0) ,
and, therefore, by Fubini’s theorem,
(2.8) ¢,(t)=E [exp {itY;}1=exp { —t*m(7)/2} S exp {itm(5)0}dG(9) .

Abbreviating m(n+1) by m, ,..» by », and ¢, by ¢ for simplicity,
we consider the problem of estimation of p and its derivative p’ using

Y,,---,Y,. Since S[go(t)ldt<oo, we obtain (Loéve [2], p. 188) that
(2.4) py)=(20)" | exp {—ity}e(t)dt .
It immediately follows from (2.3) and (2.4) that, for any 0<M< o,
M
(2.5) |2ept)— " exp (it ottrdt]
=2 | |o(t) | dt=2(2x/m) 0 (—mi"M)

where @ is the standard normal distribution function. Since, for large
M, the rhs of (2.5) is small, one can consider estimating S

-p(t)dt with large M in order to estimate p(y). Since

(2.6) o(t)=exp {mt*(m/m(5))—1)/2} ¢ ,(mt[m(J))

M -
exp { —ity}
M
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for j=1,---, n, a simple unbiased estimate of Sl" exp { —ity} p(t)dt based
on Yy,---, Y, is

@) Poa@)=(nr) 2 | exp (me((mmii)~ 12}

+ cos H(m Y /m(3))—y)dt .
Since the jth summand on the rhs of (2.7) is bounded (in absolute
value) by S:’ exp {mti(m/m(5))—1)/2}d¢, the independence of Y;,---, Y,
leads to
@8 Var Guu@)Sn 31 (| exp (me(mimii) - Dy2)at] .
Combining (2.5) and (2.8) yields that
(2.9) Sl:pE [(Dn,x(¥)—p(¥))’1=1hs of (2.8)+2(mx)"'P*(—m M) .

For estimating p’', observe that since Sltgo(t)ldt<oo,

2.10) PW)=0)" | (—it) exp (it} (01t

Following the same procedure as in the case of estimation of p, one
can show that, for any 0<N< oo,

@11)  pla@)=(n) 33|t exp (me((mmii)—1)/2)
- sin #((m Y,/ m(3))—y)dt

is an unbiased estimate of the integral in (2.10) truncated to (—N, N)
and that

(2.12) sup E (D1, x()—2' @)

<(ury 33 { "t exp (me(m/m(i))—1)/2}t]
+(zm)texp {—mN?} .

(The estimator (2.11) can also be obtained by differentiating the rhs of
(2.7) wrt y.)

Remark 2.1. In case the sample sizes are the same, (2.7) becomes
Do u(Y)=(nz)™ jZ=1 (Y,—y) ' sin M(Y,—7).

Inequalities (2.9) and @(—x)=<((2r)"*x)~' exp {—2*/2} for x>0 yield



RATES IN THE EMPIRICAL BAYES ESTIMATION PROBLEM 393
(213)  sup E [(br,(®) —P))]=(="n) " M +(mz)™* exp { —m M’}

for M*>1. Similarly,
(2.14)  sup E (@), x(¥)— P (¥))']=(4x"n)"'N*4(m=)* exp {—mN?}
v

where 7, »(y)=(nz)™ j‘él (Y;—y)"*{sin N(Y;—y)—N(Y,—y) cos N(Y;—y)}.

As a result of inequalities (2.13) and (2.14) and their intent, we obtain
the following theorem.

THEOREM 2.1. If m(f)=m for all j and M*n)=N?*n)=m""logn,
then Do ym and Dnyaw are such that

(2.15) sup E [(Dn, x0(®) —2(#))1=0(n"" log n)
and
(2.16) sup E (), vw(®) — ' @)Y ]1=0(n""(log n)’) .

The rates mentioned above are better than those which have been
obtained by using the kernel estimates of Parzen [5] (in the case of
estimation of p) or of Johns and Van Ryzin [1] (in the case of estima-
tion p and p’). The reason that better rates are attained is that we
have exploited the fact that the density p to be estimated is a mix-
ture of normal densities.

Remark 2.2. In the more general case of varying sample sizes,
(2.9) and (2.12) can be weakened to obtain for M*>1,

(2.17)  sup E [(n,x(¥) —2®))]

” <(z*n)"'M?* exp {m(m—1)M?} + (m=)~* exp { —mM?*}
and
(2.18)  sup E [(#,x@)—2'®)]

’ <(4nz?)"'N* exp {m(m—1)N*} +(mr) 2 exp {—mN?} .

The following theorem concerning the case where the sample sizes are
bounded follows immediately from inequalities (2.17) and (2.18)

THEOREM 2.2. If m(j)Sm< oo for all j and M*n)=N*n)=(m(n+
1))2log m, then D, ywm and D, vwm are such that

(2.19) sup E [(B, wn(y)—D(¥))'1=0(n """ log n)

and
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(2.20) sup E [(D, vn() — 2 ®))]=0(n"""(log n)’) .

The estimates P,y and )y of Theorem 2.2 are better than those
exhibited in O’Bryan and Susarla [4] in that they are more explicit,
can readily be evaluated by computer methods, and yield rates for mean
square error convergence which makes it possible to obtain rate of con-
vergence results in the non-identical empirical Bayes estimation problem
discussed in Section 1.

Remark 2.3. Slight improvements in the definition of the estima-
tors P, uw and P, ym can be achieved by retracting these estimators
to the intervals [0, (2zm(n+1))""*] and to [—(2zm(n+1))""2, (2zm(n+
1))~'?] respectively.

3. Empirical Bayes estimation under the assumption 6=[0, 1]

In this section we assume that G is a distribution on [0, 1] and as
in Section 2 we will denote m(n+1) by m and ,.,p by p. Recalling
from (1.4) that a nonrandomized rule which is Bayes with respect to
G in the (n+1)st problem is given by

3.1) tz@)=m"'y+ @ W)/p(v)) ,
it is immediate that
(3.2) [PW)o(y)|S1+m™y| .

In view of the discussion following (1.5), as a candidate for an empiri-
cal Bayes estimator {t,} satisfying (1.3), let 0<M(n)— 0, 0K N(n)— oo,
and 0<d(n)—0 be sequences to be specified later on and define

(3.3) t(y)=tr (m~'y+ (Da(y)/max {P.(y), 6(n)}))
where tr stands for retraction to [0, 1] and

(3'4) f’n = ﬁn, M(n) and i’?’%':i):l, Nn)

with P, » and ) 5 defined respectively by (2.7) and (2.11).

In light of (1.5), we examine (t%—t,)’ and obtain from (3.1), (3.2),
(3.3), and the inequality (ab~'—ec(max {d, 8})~!)*<267{(a—c)*+a2b~*((b—
d)+6*[b<a))} for all a,b>0,¢,d, and 6>0,

(3:5)  (Ea(®)—t.(¥))=2(0(n))*{(Py) — P W)+ A +m|y|)*

- (D) — (W)} +2(L+m [y ) [p(y) <d(n)] ,
where [ ] has been used to denote the indicator function of the set
inside the brackets. The following lemma is needed to bound the ex-

pectation of the last term in the rhs of (8.5) and can be obtained in
the same manner as Corollary 4.2 of Susarla [7].
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LEMMA 3.1. For 0<a<l and >0,
(3.6) E [A+m™| Yo ) [n(Yar) <Ol =cla, m)o*
for some finite constant c(a, m) depending on a and m.

As a consequence of (1.5), (3.5), and Lemma 3.1, we have that for
0<a<l,

3.7 0=R.(t., G)—R™(G)
<2(3(n))H{E (DU Vas) — 2/ (Yos)VI+E [A4m™ [ Vo]
* (D Yos) = D Yart))']} +c(@, m)(3(n))°" -

Using the inequality E [(1+m™|Y,,|)]<(1++2)} and (3.7), the follow-
ing two theorems follow directly from Theorems 2.1 and 2.2.

THEOREM 3.1. Let m(j)=m for all j and 0<a<l. Then with
M¥n)=Nn)=m"'logn and d(n)=n"Y*>, the sequence of rules {t.}
with t, defined by (3.3) and (8.4) is a.o. (n"¥**(log n)*).

THEOREM 3.2. Let m(j)<m< oo for all j and 0<a<l. Then with
M¥n)=Ni(n)=(m(n+1))log n and 3(n)=n""">™, the sequence of rules
{t.} with t, defined by (3.3) and (3.4) is a.o. (™" (log n)?).

4. Empirical Bayes estimation under the assumption E [|#[**]<oo

Since the results in Section 2 did not depend on G having a com-
pact support, it should be possible to obtain a rate for risk convergence
of the sequence {t,}, with t, defined in (3.3) less the truncation to [0, 1],
under the assumption that m(j)<m for all j and a weaker condition
than that the support of G is compact. To this end we prove a lemma
which is analogous to Lemma 3.1 and is interesting in its own right.
Let Y abbreviate Y,,,, and recall that p is the density of Y, and m
abbreviates m(n+1).

LEMMA 4.1. If E[|6*]=B,<co for some >0, then
(4.1) E[@(Y)/p(Y))Ip(Y)<d]<c(m, B,, r)(—log (8(2zm)/*) 7"

for 0<d<1 and some finite constant c(m, B,,r) depending on m, B,,
and 7.

PrOOF. Since G is a probability measure, parts (a) and (d) of prob-
lem 5, pages 70-71 of Rudin [6] yield the set inequality

42 w<oc || g—mordco>—2mlog Geemy”) .
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Since S(y—m())’dG(ﬁ)g(y+mB)z where B'=E [#]<oco since B, <o, a
Markov inequality and (4.2) yield

(4.3) P [p(Y)<8]<(—2m log (6(2rm)"?))* E [(Y—mBY]
=(—log (8(2xm)"*)) "c,(m, B)

where c¢(m, B) is a finite constant depending on m and B. By Hélder’s
inequality,

4.4) lhs of (4.1)<(E [|p(Y)/(Y) PP [(Y) < d]y'e+ .

Since p'(Y)=p(Y)(E[0|Y]—m™'Y), the finiteness of B, and the c,-
inequality imply that the first term of the rhs of (4.4) is bounded by
a finite constant cy(m, B,, ) depending on m, B, and y. Consequently,
(4.3) and (4.4) complete the proof of the lemma.

With ¢, defined by

(4.5) ta(y)=Di(y)/max {p.(y), o(n)}

where p, and 9, defined by (3.4), one obtains using Lemma 4.1 an in-
equality similar to (3.7) under the assumption that, E[|#|**']<oco for
some y>0,

(4.6) 0=R,(., G)—R™(G)
=2(3(n)){E [AY)—p'(Y))]+E [(@' (Y)Y ) (DY) —p(Y))]}
+e(m, B,, r)(—log (8(n) (2zm)}))7/@+

Since the finiteness of B, implies that E [(»'(Y)/p(Y))]<co as in the
proof of Lemma 4.1, Theorems 2.1 and 2.2 together with (4.6) yield
the following theorem.

THEOREM 4.1. Let E[|6**"]<oco for some y>0. If m(j)=m for all
J, let M*(n)=N*(n)=m""'logn and (2zm)”*6(n)=n"" for some 0<B<1/2.
If m(j)Em<oo for all j, let M*(n)=N*(n)=(m(n+1))2logn and (2zm
(n+1))2(n)=n"* for some 0<B<(2m)™'. In either case the sequence
of rules {t.} with t, defined by (4.5) is a.o. ((log n)~77¢*),

5. Concluding remarks

Under the assumption that the sample sizes are bounded, Theorem
3.2 is a distinct improvement over Theorem 3.1 (in the case of normal
distributions with known variance) of O’Bryan and Susarla [4] in two
directions ; namely, (1) the simplicity of the estimator and (2) the rate
of risk convergence of the estimator. Again under the assumption that
the sample sizes are bounded, Theorem 4.1 is an improvement over
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Section 3 of this paper and Theorem 3.1 of the above paper in that
the weaker condition E [|#[**"]<oco for some y>0 was sufficient for the
results as compared to the assumption that G has compact support.

As a final remark, we point out that perhaps the techniques of
this paper can be used analogously to obtain similar results for empiri-
cal Bayes estimation of the location parameter of some exponential
families.
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