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ON A NEW METHOD OF TESTING STATISTICAL HYPOTHESES

G. TRENKLER

(Received Apr. 26, 1973)

In [1] Matusita, Suzuki and Hudimoto have introduced a new con-
cept of testing statistical hypotheses. The purpose of this paper is to
improve the quality of their tests by strengthening some inequalities
and using a better measure of distance between probability measures.
Before stating the major theorem some important notations and lemmas
will be needed.

Let 2 be a set, ¥ a o-algebra on 2 and P, Q probability measures
on A dominated by a o-finite measure 1 on A. Further let

_dP
(1) =4
_dQ
(2) T da

denote the [2]-uniquely determined Radon-Nikodym-densities. Suppose
Ec¢U and te[0,1]. We define:

(3) L(P, Q®)=|_s@)g(a)—diz)
and in the case E=0:

(4) I(P, Q)(t)=1(P, Q)(?)

I(P, Q)(t) will be called the distance-generating-function. Obviously we
have

A N
E ¢
Ec¥ tel0, 1]

(i) Ix(P, Q)(t) exists

(i) 0=IL(P, Q)@)=1

(iii) Ix(P, Q)(t) is independent of the choice of the dominating measure A.
Let E; ¢ ¥, ¢=1,-..,n and put

(5) Po(% E)=]1 P(E)
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372 G. TRENKLER
(5) yields a uniquely determined probability measure on
%I‘”’=0(L>”< E|E. €%, i=1,---,n}> :
=1

In a similar way we find Q™ and the dominating o¢-finite measure ™.
Now we can easily see that
(6) I(P™, Q™)) =I(P, Q)" .

We proceed now to our first lemma.

LEMMA 1. Suppose X=(X1,---,Xm)r, }7’=(Yl,---, Y..)* be two mul-
tinormally distributed random variables with the properties:

(7) EX)=p
(8) E((Y)=p.

We assume that the covariance matrices of X and Y are equal and posi-
tive definite. It will be demoted by V. The following abbreviations are

‘appropriate :

(9) X~N@, V)

(10) Y~N@, V).

Then

s e (- ye-arve-n)
(12) 0= (=) ey % (£ G-V G-P)

are the density funmctions of X and Y respectively. If P and Q are the
corresponding probability measures (om the o-algebra of Borel-sets B™ on
R™), we have:

(13) I(P, Q)(t)=exp (~%t(1—t)(ﬁ—ﬁ)T ViGE—p)) -

ProoF. (11) and (12) are well-known facts, (18) follows by simple
calculation.

LEMMA 2 (Neyman-Pearson). Let E €U and k€ R* have the follow-
wng properties:

(14) A k- f(x)=g(x)
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(15) A k-f(x)>g(x).
X
rek

Then we can conclude that
(16) 19‘ QUE*)=QE) .

E*ed
P(E¥*)=P(E)

Proor. See for example Hogg-Craig [2], p. 262. The set E is of-
ten called critical region.

LEMMA 3. Suppose Ec U, ke R* be as in Lemma 2. Then we have:

AN
t
te[0,1]
. 1 1-t¢
(17) (i) P(E)g(—k—) 1P, Q%)
(18) (i) 1—QE)<KIP, Q) -
PrROOF. Let t€[0, 1] be arbitrary. First we have
o 9(x)\'*
(19) A FE@sfEr(fD)
xeE

which gives

(20) |, f@u@s| fer(42) qe
or
1) P(B)s (%)"‘IE(P, QW -

Since Ix(P, Q)(t)<I(P, Q)(t) it follows that
22) P(E)< (%)"'I(P, Q) .

From (15) we conclude that

(23) /; g(x) =K' f(x)'g(x)*
zek

which yields

29 |, s@rdx@ =k | @@ —dia)
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or
(25) QE)SKIP, Q1)
and hence

(26) 1-QE)SKI(P, Q)(t) .

Suppose now we have two nonempty families

%z{Pﬁ}iel ’ Q:{Qj}je.f

of probability measures on 2 dominated by the o-finite measure 2. For
the following considerations we propose a useful distance between these
two families: Let £€[0,1]. Then

(27) d.(B, Q)= sup I(P;, Q)(?)
@, DeIxXT
will be called the t-distance between P and Q.

Remark. (27) is a generalization of the distance of Matusita,
Suzuki and Hudimoto [1].

Clearly we have

(28) A 0=d.(P, Q)=1.
t
telo0,1]

The preceding lemmas and definitions enable us to state the

THEOREM. Suppose X be a random variable. On the basis of n in-
dependent observations X,---, X, on X we now test the hypotheses:
H: X has a probability distribution belonging to P
G: X has a probability distribution belonging to Q.
Suppose the following conditions are fulfilled :

(29) (1) YV dR9)>0
te[0,1]
(30) M) VY 4 D=IR W
PoEo"B @ EQD‘
(i) If
(3D flanse oo, 2 =11 42 (@)
(32) 0w m) =1 L2 (@)
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(33) W={(, -+, )| - fo(@1,+ +, Zo) SGo(X1,+* +5 24)}
and
A AN D(W)SPO(W)  QP(W)ZQ(W)

i J
keRt iel jeJ
we can conclude :

(a) W 1is a critical region (for the test H against G)

(35) () A Péﬂ(W)g(%)“’%I(Po,Qo)(to»"
iel

(36) © A 1-QPW)SKHE, Q@)
jeJ

Proor. It follows immediately from (i)-(iii) and Lemmas 3 and 4.
Remark. This theorem is a generalization of Lemma 3 [1], p. 134.

With the preceding theorem bounds for the error probabilities are
available. We have:

37)  Pr(Error of the L. kind)<P™( W)g(%)""’(f(ﬂ, Q) (&)

(38)  Pr (Error of the II. kind)<1—Q{(W)=Eko(I(Py, Q) (L))" -

For practical purposes it is often required to construct a critical region
W which satisfies the following conditions:

(39) (i) A (W)<a
ier
(40) (i) A 1-QW(W)=inf 1—-Q¢(W")) W' critical region
J w
jeJ

where 0<a<1 is a given bound for Pr (Error of the I. kind).

Modifying these so called uniformly most powerful tests in view
of the considerations from above we compute %k (and hence W) from
the following conditions (assuming the theorem is valid):

(41) (a) k- Sfo@y,- ey ) SGo(@yy 00y X0)

(42) (b) ¢, is chosen so that ¢ € T, and
ko(I(Py, Q) (b)) = inf E'(I(Fy, Q) (1))
tETk

where
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(43) 7,={tltc 0, A (L) U, QO =d]

In the following two examples it will be seen that % is uniquely de-
termined. Unfortunately there exist considerable difficulties in com-
puting k if the random variable X is not normally distributed. This
fact is due to the rather complicated form of K'I(F,, @)(f) in those
cases. Even the normal case is troublesome if the variance is not
known.

If one compares the testing principles developed in [1] with those
just proposed one must admit that in the new proposal considerably
smaller bounds for Pr (Error of the II. kind) are obtained.

Ezxample 1. Let X=(X;,---, X..)* be a vector-valued multinormally

distributed random variable with unknown mean 4 and known positive
definite covariance matrix V. We will consider n independent observa-

tions X,,-+-, X, on X and pose the simple testing problem:
H: 6=p  with g=(z, -, ptn)”
(44) L
p  with p=(p,- -+, pn)" .
In this case we have

(45) P={P} Q={Q}

L exp (G- VE-7)

) @)= (m>m'71«/T_V

where 2 is the Lebesgue-measure on the Borel-g-algebra 8. From
Lemma 1 we conclude:

(48) I(P®, @) ®=exp (- 2 t1—t) G—)" V-Gi—7))

with the notations:

dP™ e n
(49) dl"""’ (xlr %y xn)—‘f(wlr "y (3,.) Tr dl(’") ( )

; dQ® o ay_ e = _dQ
(50) dl("m) (xly %y wn)—f(zl; ] xn) T[ dl""’ (xi)
and

(51) 4, Q)=exp (—L A—) 7" V-Gi—7))
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so that
(52) /t\ a.(B, Q)>0.
telo, 1]
If we put
(53) P=P, @Q=Q
(54) fi=r, =g
we have
(55) A d(B, Q)=I(Pr, Q) (?) -

tel0,1]
To find a suitable ¢, and a suitable k& we consider the inequality
(56) k-fi@,- -, B)S0(@1s - -5 @)
which is equivalent to (verified by straightforward computation):
(57 (p—p) V™ i%Ez"glog k+%(b’TV“ﬁ—ﬁTV“ﬁ) .
The number
(58) o=log k+ 2 5"V~ V ')

will be called critical value for the test H against G. (58) is equiv-
alent to

(59) h=exp [c—2GVE-FV R
Thus we have
1-t
©0) (%) I, @) t)y=exp la—0-[ 2@V 55V —c

—-’zit(ﬁ—b’)’V“(ﬁ—ﬁ)]} :

Demanding ¢t € T, we obtain

6)  o=—BE L R GY GV~ L) VG )

which gives

@) I, Q) @=exp |t - BL_2 G ViG5| .
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To determine the value of ¢, which minimizes k‘I(P“, @Q™)(t) we min-
imize :
t

(63) Hi)=——L

log a— 222 (i—3)"V"4—7)

Differentiating H(t) we obtain

dH(t) __ 1 LM ryrye o
(64) & Ay loga 2(;1 PV (z—p)
dH@t) 2
(65) @ Ay loga .

As t€[0,1], (64) and (65) confirm that

2log (1/a)
We—p)"V " (g—p)

is a minimum of H(-). (Of course n is to be chosen so that te¢ [0, 1)).
From (61) we derive that

(67) c=vZnTog () G—p) V- "Gi—p) —ni"V='Gi—) -
Thus we accept G (reject H) if

(66) ty=1— \/

(68) E-BTV R Eze

or equivalently

(69) 3 G— VG~ i)z Ven Tog () G V-G -

To size up the probability of the error of the II. kind we calculate
the upper bound

EoI(P™, Q™) (t,)
which yields

(M0)  1—Q™(W)<exp (—%(Vn(ﬁ—ﬁ)’V“(ﬁ—ﬁ)—«/Z Tog (T/a))') -

We consider now two

Special cases :

a 0
[ \
(71) 1) V—( N )
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Accept G if

379

Omitting some steps of computation we have:
(72) i (o;— ) (®.;— 1)) > 2_ logl f\_‘

j=1 o} “An o i=1
where
(73) F,=L 3w, j=1,-

n i=1
is the arithmetic mean taken over the columns of the observation
matrix
(@ Dizyren

and

(14)  1-Q™(W)<exp (_%( \/n i (u

a;

2) m=1

In this case we have the classical simple testing problem:

(75) H: upu=p, against G:

If yy>p, we accept G if

(76) Egpo+a\/-2—log-1— .
n o

If w<p, we accept G if

" :Tcgpo—o\/—z-logl .
n a

(x=Q1/n) iﬁ‘. 2, is the arithmetic mean of the
=1

In both cases (pu<pw, pu>pm) we obtain

(78) 1-@ (W)sexp | — (v 1=l vaTog i) |

Example 2. We shall now study the testing problem

Ma

(79) H: Hy=a, against

[}
-

J

)2—\/2log

observation.)

G: Xp=a
Jj=1

with a;—a,>0. The same assumptions as in Example 1 will be made

on X. It is obvious that both P and Q are infinite for
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L |
(80) 3={ Pl I50=(75) 7o
___]_-_ I Y 4 V4 1 0~ S wTe—
xexp( Z(x Bvi(= #))/\pe al}
_ de = 1
@ o-{0| 6 @=(1%) var
__1_ Z DTV 73 _7 -
xexp( z(x P V(= p))/\p e—az}
where
(82) ée=1,1,---,1)T.
Clearly I(P™,Q™)(t), f(%,---,%,), 9(%,---,%,) are the same as in

Example 1. To obtain d(P, Q) we consider I(P, Q)(t) with arbitrarily
chosen Pe P, Qe Q and fixed t€[0,1]. To maximize I(P, Q)(t) subject
to the given conditions on z and p means to minimize

(83) (g, p)=(z—p)" V'(—p)
subject to ‘
(84) Ftr—é:al b.T_ézaz .

Using the method of Lagrange multipliers we consider the function
(85) L(g, g, 2, 2)=9(i, p)+2(p" € —a,)+2(p" é—ay,)

which gives

(86) a,, =2V -2V 542,
@&7) aaL—zv-l* 2V1Gi+2,8
0
(88) %:pré—a,
(89) g—z=ﬁré—a2 .

For minimum values all the partial derivatives (86)-(89) must be zero.
All values which satisfy these necessary conditions will be indexed by
the sign ,. From (86) and (87) we obtain

(90) Zlo= ‘—zzo .
Multiplying (86) and (87) from the left with V yields
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(91) [lo Po— ———Ve

Using the facts p”é=a, and p"é=a, we can see that

a. a;
(92) 2=220
93 fh—p=2"nyg
( ) H— Ve Ve
(94) (o) V" (a— i) ==

e"Ve

Next we will show that (z—p)"V '(z—p) must attain its minimum.
As V! is positive definite we can find a regular matrix B with

(95) B*B=V™.
We must prove the existence of

(96) (mm | B(z—p)|*
B,

subject to pTé=a, p’é=a, (||-|| the Euclidean norm) which is the prob-
lem of ﬁndmg

97 min || By ||
deM
where
(98) M={y|y=p—p, p'é=a,, p"é=as} .

Clearly M is a convex and closed set in |R™| and so is B(M) (B under-
stood as a linear mapping). Because

(99) min || By||*= !!;in [12]]*
ﬂ?M % ¢ B(M)

we can confirm the existence of a minimum using a well-known result

from the theory of topological linear spaces [3] p. 347. p and p, are,
of course, not uniquely determined. However, we obtain:

(100) 4P, Q)=exp[ - Lo Lwl ],

We now test

(101) H: pup=p, against G: p=p,
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which is equivalent to the testing problem:

(102) Hy: pa=p, against G,: p=p+ Z.:,_V‘f‘ Ve
é

where z, is fixed for the moment. (102) is a special case of Example 1.
We accept G, if

N (3T BT s (a;—a4)"2n log (1/a)
(103) ?"':1 (Z:— o) STVs e=\/ Ve

or equivalently

Ms

(104) ?, 3} 0y 20+ V&V E-2n Tog (1/a) -
= 1

We now return to the more general problem of testing:
(105) H: pfé=a, G: p'é=a,.

As critical region for the test H against G we naturally choose:

(106) W= {(aa,- L BT

i‘. i z,;2na+veT Veé-2n log (l/a)} .
i=1 j=1

It remains to demonstrate that

(107) A P™(W)SP(W)
Pe$
(108) g Q”(W)zZQP(W) .
Qe
If H is true we have X~N(z, V) which gives
(109) X7é~N(a;,6"Ve) i=1,--+,m
and
(110) 3| ji X, =3} X7é~N(na,, n&* V) .
Hence
(111) P™(W)=Pr(Z=+2log (1]a))=P"(W)

where Z~N(0,1). If G is true it is clear that X~N(s, V) and
112) zl jﬁl Xi,=g"l X6~ N(na,, né* Vé)

from which we can conclude that
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(113) Q™(W)=Pr (zgﬁ U—% 4 V2Tog (l/a)> =QM(W) .
VeTVe

From (70) and (94) it follows directly that

(114)  1-Q=(W)Sexp [—%((ag—ao\/é,‘%—m)z] .

of\ 0
N\
0 a2,

can be solved in the same way as in Example 1.

We should now discuss the quality of the preceding (of course not
uniformly most powerful) tests. We shall do this only in the case of
Example 2. We can easily see from (111) that

(115) A POW)<a.
Pep

The special problem

The following table shows the relationship between the given a and
the real probability of comitting the error of the I. kind:

a v2log (1/a) Pr(Zzv2log (1/a))
0.001 3.7169 0.0001
0.01 3.0349 0.0012
0.03 2.6482 0.0041
0.05 2.4478 0.0072
0.0084 3.0902 0.001
0.0668 2.3263 0.01
0.1706 1.8808 0.03
0.2585 1.6449 0.05

But as the table indicates it is possible by choosing a bigger a* than
the desired a, to achieve that
(116) /1§ P™»(W)=a.

Pep
One of the great advantages of these tests is the possibility of an easy
computation of an upper bound for Pr (Error of the II. kind) for every

n. Moreover there is no table of the X*-distribution or of any other
distribution needed, a fact which makes the test rather handy.

Remark. With the principles of this paper one can easily test
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(with known ¢) for example:

H: y<s—a G: p=a
where a>0 is a given constant or

H: |plsa,  G: |plza,

a,, a; given constants a,—a,;>0. These tests will also improve those
proposed by Matusita, Suzuki and Hudimoto [1]. Details can be taken
from [5].

INSTITUT FUR QUANTITATIVE OKONOMIK UND STATISTIK, FACHRICHTUNG ANGEWANDTE STA-
TISTIK
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