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1. Introduction

The problem of estimation of the parameters of the growth curve
model under Behrens-Fisher situation has been discussed in Chakravorti
[3]. Here we have considered the most general situation by violating
the assumption of normality of the underlying parent distribution.

Let us consider the observation vector Z(1xgq): (Y, X), the
ath observation in tth population (a=1,---,n,, t=1,--., m), where Y®
is 1xp vector and X® is 1xs, s=¢—p=0. Then considering growth
curve model as MANOCOVA model (Rao [10]) we have

(£) — () ) Q)
(1.1) YO=9®4+ XPB+ e

where (1 Xp), B(sXp) are the parameters involved in the model, &,
the random error component, distributed with continuous distribution
function, F,(¢®), X(1xs), the concomitant vector variable distributed
as F(x®). Our object, here, is to study the asymptotic properties of
the maximum likelihood estimates (m.l.e.) of the parameters, if they
exist. The asymptotic efficiencies of the estimates have been compared
with those of the m.l.e.’s obtained under the normality assumptions.

Inagaki [6] discussed these properties for independent not neces-
sarily identically distributed (i.n.i.d.) random variables with parameters
O(kx1) in the line of Huber [4]. In the model (1.1), we consider ob-
servation vectors Y as i.i.d. with respect to a=1,---,n, and i.n.i.d.
with respect to t=1,2,--., m. Then in line of Inagaki we have es-
tablished the consistency and asymptotic normality of the estimates of
the parameters of the model (1.1) under less restrictive assumptions
(that is, without the assumption (vii) of Inagaki [6]).
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2. Notations and assumptions

Let us define @, the parameter matrix of order (m+s)Xp, where
(2.1) 0I=(?(1)I, cee, ?(m)l, pr) .
The likelihood function is given by

n,

2.2) L=T[ U FYO—g®—XOB) .

t=1a

GENERAL NOTATION

(X, A, P): probability space,

6: a parameter space which is a subset of the k (=(m+s)p) dimen-
sional Euclidean space R* such that for any M >0, 6N {||8||<M)}
is closed,

0y )=0log f(YO—7O—XOP)lon®, $P(B)=0log f(¥—y®—XOB)

ap, (t=1,---, m, a=1,...,m,) are functions in X x6O

[l-]]: the maximum norm of the matrix,

é,,: maximum likelihood estimate of @ based on m observations,

T.: any other estimator for @,

L(Y), E(Y), Cov(Y): the distribution, mean and variance-covariance

matrix under probability measure P respectively,

L(Y, P): distribution of Y under probability measure P which is spec-

ified.

We shall make the following assumptions, similar to those of Inagaki [6].

ASSUMPTIONS

(1) ¢¥(%®) and @g(B) are PB-measurable, where B is the o-field
of Borel-subsets of @ and separable when considered as a process of 6.

(ii)

e = goay |70 oy |0
for any fixed 8, ¢ 6.
A7)
(2.4) A= z(;tm) =A6)+0 for 8+86,,
> ra(f)

where n and =, are large so that r,=mn,/n finite and bounded away
from 0 and 1,
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(iii) There are two positive constants i, and H.>0 and positive
functions b*(4)>0, t=1,..., m such that

(2.5) E [Sup {¢°/b(0)}] < oo

(2.6) }.1}2 ”})1”120 {Max b)) <1

2.7 }.iIE ”}’1;1_13& [| 2a]]> 2. >0

(2.8) E {n},lnm {llg°—2*]}<1

(2.9) E {!}’}[m [l g— 260} < He

these last two convergences being uniform for t=1,-.., m, a=1,---, n,.

(iv) For all n, and =, E||gP%(y?)—2%(5®)|}, E|g(B)—22(B)I!
exist and

®)— A9 (p®) |20 as n,— oo

'1_;2E1|¢ﬁ”(‘3)—lm(ﬂ)”2—’0 as n— oo .

2 a

3

(v) Let uf,‘)zn Sup ||g(z)—@P(@)]|, t=1,---, m. Then for some
T-0li<d
constants H;, H, and d,>0, and for d=<d,

E@P)<Hd, VuP)<Hd

() To*)=—E[ 380 poo)=Tnmree)

a=1 av(n’
rp=-e[sx @], f(ﬂ)=—F “B) . rp)
B n
F,)m ﬁ= —E [ @%] I—;”(l)’ﬂ—)r(v(l), ﬂ) y
uniformly in the neighbourhood of 8,. Let I'(8,) be the information
matrix corresponding to the parameters z{,---, »{™, 8, and it is finite

and non-singular. It may be noted that derivatives of ¢{’(»*) w.r.t.
7 for t+#t' are null matrices so that submatrices in the information
matrix corresponding to %, %“” are all null matrices.

(vii) Since the derivatives of the log likelihood function w.r.t. »*
and B involve the random vector X implicitly, in general, we con-
sider all the expectations as unconditional taking into consideration the
following facts:
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E(X®=0, a=1,--:,m, t=1,---,m
E(X®X®)=X¥, finite and positive definite .

3. Consistency and asymptotic normality of the maximum likelihood
estimates

Under the set up in Section 2 we consider the estimating function
&.(0) as follows. Let

(3.1) An,(?“))=%’ % ¢§c)(’7(t)) , t=1, cee,m
(3.2) L= 3131600)

Then the estimating function &,(@) is given by
3.3) §0)=(4,,---, 4, ,4) .

Let 8,=(%",-+-, %™, 8') be the maximum likelihood estimates of 6=
®*,---, 9™, #). Then we must have

(3.4) P {lim [£,()]=0} =1.

LEMMA 3.1. Under the assumptions (i), (i), (iv), (vi) and (vii),

1 <
An (1)
m 1(770 )

(@ | 1 4 (o |—0inP
m nm(ﬂo )

1
i ':/T An(ﬂo)

J

(b) [6.(60]— N (0, I'By) in law.

PrOOF. (a) From the assumptions (i), (ii), (iv) and (vii) each of
(1/¥n,)4, (%), t=1,---,m, converges to zero in probability and since

m is finite, r, bounded, (1/vn,) ,Y:} #(B,) converges to zero, it implies
a=1

that (1/+/n)4,(8,) converges to zero in probability by W.L.L. NS. (Loeve
[9], p. 274). Hence the result follows immediately.
(b) We consider a matrix 4 € R*, where k=(m+s)p, such that

J[’=[II{,‘ %y Hrr,u Hn,H-l]

where H, is of order 1xp, t=1,---,m and H,,, of order sXp. Then
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let us consider the linear function

T=tr §.(00)H

=tr i 4, H,+1tr 4,H,,,
=tr 3} «/;, 2 OOV Bttt 55§ B
—_-'g ~/_ tr 21:, {95,(.‘)(1]5‘))'[1;4-4/’)”_,¢,(.')(ﬂo)'Hm+1}

3= 31U

¢ =1

§

where
UL=tr @O0, VT $0B)) (g ) -
Now from assumptions (ii) and (vi) we have
EU»=0
Var (U®)=tr T'°H*H®=G®  (say)
where H*'=(H/, H}.,) and

o= [F(v“’) */Ttp (7}“)’ ﬂo):'
Ve, (P, B I8

is finite. Hence {U®} satisfies the Lindeberg-Levy’s condition for
C.L.T., so that

.f[i s U,,‘"]—+N(O, G) in law .
n;, «=1

Hence it follows that T—‘ 1( T 2

as N(0, G), where G is the variance of T, given by tr 4'I'(8,).9, where
I'(6,) is the variance-covariance matrix of &,(6,).

Since for any 4 € R* this result holds we have the result (b).
Hence the lemma is completely proved.

E U. “’) is asymptotically distributed

Consistency of the m.l.e. én

én being the maximum likelihood estimate for #, it follows from
(3.4) that
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~ 1 R -
il An (¢))
Vi (@)
]'. A
A” (m)
‘/’n‘—m m(v )

—0in P.

1 A
i ﬁdn(ﬁ)

Hence in the line of Huber [4] and under the assumptions (i)-(v) and
(vii), {én} converges to 6, in P.

Asymptotic normality
To obtain the asymptotic distribution of the m.l.e.’s @, in the line

of Inagaki [6] let us define the concept of relative compactness (see
LeCam [8]) in the following sense.

DEFINITION. In order that {_L(Y,)} is said to be relatively compact
it is necessary and sufficient that for any ¢>0 there exists a positive
number M >0 such that

(3.5) P{|Y.I|I>M}<e, for all m.

Now 6, being m.l.e. of 8,, the relation (3.4) implies that {_/ (E,,(é,,))} is
relatively compact. Hence from Theorem 3.2 of Inagaki [6], {-L[v 7 -

(é,,-oo)]} is relatively compact. Hence we have the following.

THEOREM 3.1. Under the assumptions (i)-(iii) if { L[V 7 (6,—6,)]}
18 relatively compact then

(3.6)  3,(Vn (6,—0,)=8.06,)—&.8)+vn (6,—0)[—0 in P

where
J:a(;)<l)_vgl))
3.7 Vn(6,—6)= v, (H™ —p™)

vV (B—By)

ProOF. Following Lemma 3.2 of Inagaki [6], page 7, it can be
easily shown that, under the assumptions (i), (i), (v) and (vi), for any
M>0 and large n (putting T=+"n (r—8,)),

(3.8)  Sup [|8,(T)||= Sup
B

ITsM

—0in P.

& {00+ fﬁ —&,(0,)—TT(6,)

This shows that &,(0) is “ weakly asymptotically differentiable” (in the
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sense of Inagaki [6]). Now since { L[V % (6,—8,)]} is relatively com-
pact, the result (3.6) follows from (3.8) in the line of Theorem 3.1 of
of Inagaki [6]. Hence the theorem.

Thus we have
THEOREM 3.2. Under the assumptions (i)-(vii)
LIV (6,—8,)]— N, ['(8,)) in law .

PROOF. Since (3.4) holds for m.l.e.’s 6, of 6,, we have from The-
orem 3.1 that

LIVE (8.~ (6,)]— L]£.(60)] -

Hence from Lemma 3.1 (b) we have the desired result and the theorem
is completely proved.

4. Asymptotic efficiency of 6,

é, being m.l.e.’s of the parameter matrix 6,, is complete sufficient
for Peg,+./yw, Where

A (L Lg 1
(4.1) — (mH 7 B @_HMJ

so that
i H
(l)+ 1
% T

m

H
(m)_y *Em
"
Hm+1

ek

Then any other estimator 7T, which is location invariant is independent

of 6, (see Basu [1], [2]).
Now T, will be said to be asymptotically location invariant at 6,
if for any Y € R*

(4.2) ot—2 =

(4.3) .E[T,.— (o,,+%) ; Pawﬂ(/ﬁ} —L in law
where L is independent of 4. The necessary and sufficient condition
for this is that &,(T,) is location invariant at 8,. That is

(4.4) L[&XT,); Po,+9)yn]—G in law
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where G is independent of .4(.
Under this set up, following Theorem 5.1 of Inagaki [6], it can be
shown that the limiting distribution L can be expressed as a convolu-

tion of those of £.(6,) and —&,(T,) under P,, N(0,I'(6,)) and G(Z)=
1—-G(—Z), that is

(4.5) ' L=GxN(, T).

Hence it follows from Corollary 5.1 of Inagaki [6] that

4.6) lim[W7n (T,—6,)]=lim [vVn (T,—8,)] * lim [V 7 (6,—6,)] .

Since 8, is sufficient statistic for 8, it follows from Kaufman [7]
that (T,.—é,.) and 6, are independently distributed. Hence if ¥V and

V® be the dispersion matrices corresponding to T, and 6., then it fol-
lows from (4.6) that ¥V — V® must be at least positive semidefinite.

This proves that 8, is asymptotically efficient as compared with the
estimator which is asymptotically l-invariant.

5. Relative efficiency of 8, compared with m.l.e. when parent dis-
tribution is multinormal

The m.l. estimators of the parameters of the growth curve model
under Behrens-Fisher situation have been considered in [3], so that
when the underlying distribution is multinormal the asymptotic distri-

bution of ¥ (6,—8,), defined by (3.7), has been shown to be N(0, J™)
where J is the information matrix with off-diagonal submatrices zero.

To compare the relative efficiency of the estimates 6, with that
under normality we are only to compare the corresponding dispersion
matrices, V*(8,)=I""Y8,) and V*®(8,)=I9%(8,), so that relative efficiency
is given by

V(Z) 1/p
6.1) = H_WT’H :

This ¢<1 provided V¥ — V® is at least positive semidefinite.
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