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Summary

One-sample test problem for ‘stochastically more (or less) spread’
is defined and a family of tests with isotonic power is given. The prob-
lem is closely related to that for ‘longer (or shorter) tail’ in the reli-
ability theory and the correspondence between them is shown.

To characterize the tests three spread preorders in R" and corre-
sponding tail preorders in QR" are introduced. Functions which are
‘monotone’ in these orders, and subsets which are °centrifugal’ or
¢ centripetal’ with respect to these orders are studied. These notions
generalize the Schur convexity.

1. Introduction

Firstly, we define the notion of ‘ stochastically more (or less) spread’
between probability distributions on R! and give a family of isotonic
one-sample tests for these alternatives (Section 2). The spread order
is closely related to the notion of ‘longer (or shorter) tail’ between
probability distributions on R}, and the test problems to those in the
reliability theory (Section 3).

The Shorter Tail Problem includes as a special case the test of the
exponential hypothesis against the increasing failure rate average, IFRA,
and the problem is well studied [11]. Our approach, however, gives deeper
insight into the problem and improves previous results by Barlow and
Proschan [3], and Marshall, Olkin and Proschan [9] on the subject.

The More Spread Problem is similar to that by Fraser [7], who dis-
cussed two-sample problem without much success. Our setup is new so
far as the authors know.

To study the characteristics of the isotonic tests we introduce in
Section 4 three spread preorders of different strictness in the sample
space R". The strict preorder is a kind of sample version of the
spread order of distribution. The loose one is known as majorization.
A function which is monotone with respect to the preorders is an un-
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biased test statistic and a generalization of the Schur convex function.
The monotone function determines as its level sets a layer of ‘cen-
tripetal or centrifugal’ sets.

All the discussions of Section 4 are transferred to R in Section 5
with a slight change, and new results on the reliability theory are ob-
tained as mentioned above. The intermediate of three preorders means
smaller ‘studentized cumulative normalized spacings,’ statistics used in
a life test.

Section 6 discusses some related topics: spread order which is equi-
librium for sign change; two-sample tests; and the Lorenz curve.
Section 7 is supplementary and states some elementary facts on order
relation used in Sections 4 and 5: an upward (or downward) set as a
synonym of our centrifugal (or centripetal) set ; mapping which is mono-
tone in order relation; strictness comparison of orders; and the ways
to define order in R".

Throughout the paper, X and Y are random variables with contin-
uous distribution functions F and G respectively. The generalized in-
verse of these, F'~! and G are defined as usual (see [8]). Bold lower
case letters are column vectors in R* or R, the positive orthant of
R*. Bold upper case letters are random column vectors in these sets.

2. Test for spread

In this section F and G belong to &, the set of all continuous dis-
tribution functions on R

DEFINITION 1 (Spread order relation in &).
G>F(S) or Y>X(S)

iff G™'(u)—F~'(u) is a nondecreasing function in 0<u<l. We say ‘G
(or Y) is stochastically more spread than F (or X)’ in this case.

The fundamental property of this definition is shown by the follow-
ing theorem.

THEOREM 1. The following conditions on F and G in F are equiv-
alent.
(1) Y>X(S).
(2) There exists a mondecreasing function h defined on R' such that
Y has the same distribution as X+h(X).
(3) There exists a monincreasing function k defined on R' such that
X has the same distribution as Y+k(Y).

PrOOF. Write G™'(u)—F ' (u)=H(u). Putting u=U, the uniform
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random variable, Y~G (U)=X+H(F(X))=X+hX). Thus h is non-
decreasing iff H is nondecreasing, which shows (1)<=(2). (1)<(3) is
similarly proved.

Remarks. Fraser [7] introduced Definition 1 in the form G'(v)—
G (w)=F(v)—F'(u) for all 0<u<w<1, and stated a sufficient condi-
tion for the two-sample unbiased test against the more spread alterna-
tive. A trouble in his theorem will be discussed in Section 6. Doksum
[6] said ‘G is more tail ordered than F'’ if G™'F(x)—« is nondecreasing
in x, 0<F(x)<1, and discussed the power of rank tests for stochastically
largerness. Justification of Definition 1 and its comparison with other
definitions were discussed elsewhere [12].

Strictly speaking & is a preorder relation in &. It is easy to see
that G>F (S) and F>G(S) iff F(x)=G(xz—a), for all xe R' and for
some a € R It is also easy to prove that ¢X > X (S), where ¢>1.

Now we state our first test problem.
Test problem: Given a random sample from Fe .
Hy,: F(x)=G(x—a), —co<x<oo, where G T is known but —co<a<
co is unknown.
H,: G>F (S) (Less Spread Problem)
H,: F>G(S) (More Spread Problem)

As the Spread Problems are invariant for the location change we
make use of a maximal invariant statistic. Test functions or test sta-
tistics can be functions of V=(Xo»—X, +, Xeoy—X), where X,’s are
the order statistics of a random sample X=(X,---, X,) and X is its
sample mean. V is a random point in the pointed convex cone Iy'=
{x; xe R*, 2,0, <+ =X, 2 2,=0}.

THEOREM 2. Let ¢ be a test function defined on Iy. (V) is un-
biased for the More Spread Problem and 1—¢(V) is unbiased for the Less
Spread Problem if ¢ is ‘ nondecreasing’ on Iy, that is,

da+b)=d(a) , for all a,bely.

Proor. Suppose F>G (S). V(X) has the same distribution as
V(Y)+T, where V(¥)=(Yy,—Y, -+, Yo—Y) and T=(WYuw)—MY),
co o, M(Ye)—MY)) €I, since X;~Y,+h(Y;), where h is a nondecreasing
function, by Theorem 1. E [¢(V(X))|F]1=E[¢(V(Y)+ T)|GI1=E [¢(V(Y))|
G] if ¢ is nondecreasing. It is clear that 1—¢(V) is unbiased for the
Less Spread Problem iff ¢(V) is so for the More Spread Problem.

Remarks. Note that if ¢ is defined by ¢(v)=1 if T(v)=c and 0
otherwise, then ¢(V) is unbiased if T is nondecreasing on I7*. Let A=
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{v; vely, ¢(v)=1}, the critical region for V. Using the terminology
defined in Section 7, ¢(V) is unbiased for the More Spread Problem if
A is a ‘centrifugal’ set, or equivalently A°=I7"—A is a ‘centripetal’
set. Properties of the unbiased tests are studied further in Section 4.

The test has actually isotonic power for the spread semiorder in
F. If Fo>Fi>G(S), then E[¢(V)|F,]ZE [#(V)|F]ZE[#V)|G]. ¢ and
1—¢ are ‘one-sided tests’ of opposite directions.

Our result does not depend on the null distribution G, but the level
of test depends on G. In other words, given a level of test we have
to choose the criterion ¢ for a statistic T according to G.

3. Test for tail

Let &, be the set of all continuous distribution functions on R:.
In this section we assume F and G to belong to F,.

DEFINITION 2 (Tail semiorder relationship in &,).
G>F (9) or Y>X ()

iff G™'(w)/F~"(u) is a nondecreasing function in 0<u<1. We say ‘G
(or Y) has longer tail than F' (or X).’

THEOREM 3. The following conditions on F and G in F . are equiv-
alent.
(1) Y>X (D).
(2) There exists a nondecreasing function h defined on R such that
Y has the same distribution as X-h(X).
(3) There exists a monincreasing function k defined on R such that
X has the same distribution as Y-k(Y).

PROOF. The proof is similar to that of Theorem 1.

Remarks. Definition 2 is equivalent to 2~'G™'F(x) is nondecreasing
in 2, 0<F(x)<1, or G™'F is a starshaped function. If Y is exponential
random variable Y> X (9) means that X has the Increasing Failure
Rate Average. See [1], [2] and [5]. By Definition 2 we compare not
only the length (or weight) of tails of distributions but also that of
their uprising near the origin.

It is shown that F>G(J) and G> F (9) iff F(x)=G(cx), 0<x< oo,
for some 0<¢< oo,

Test problem: Given a random sample from Fe & ..

H,,: F(x)=G(cx), 0<x<co, where Ge &, is known but 0<c< oo is
unknown.

H, : G>F(9) (Shorter Tail Problem)
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H,,: F>G(9) (Longer Tail Problem)

As the Tail Problems are scale invariant, we make use of a maxi-
mal invariant statistic. Test functions or test statistics can be func-
tions of W=(Xu/2 X;, -+, X/ Xi)', a random point in Li={x; x ¢
g{’:-, Oéxléxzé S, 2 xi=1}°

THEOREM 4. Let ¢ be a test function defined on L. H(W) is un-
biased for the Lomger Tail Problem and 1—¢(W) is unbiased for the
Shorter Tail Problem if ¢ is ‘ mondecreasing’ on 43, that 1s,

#a-b/la-bl)=¢@), foral a bed,
where a-b means the componentwise product of vectors and |al|l is the

n
l, norm, > a;.
i=1

PrROOF. The proof is similar to that of Theorem 2.

Remarks similar to those at the end of Section 2 can be made here.
The discussions in Sections 2 and 3 are quite parallel because of the
following fact.

THEOREM 5. Y>X () iff log Y>log X (S).

Proor. Compare condition (2)’s of Theorems 1 and 3.

4. Spread order in R"

We write I™={x; x ¢ R", i 2;=0}, an n—1 dimensional subspace
in ®" such that I’cI". We introduce three orders in Iy, b>a (S.),

a=1,2,8. For a, bel™ replacing a; and b, in Definition 3 by a., and
b.,, the ordered components of @ and b respectively, we obtain preor-

ders in I". For a, b ¢ R*, replacing a; and b, by a,,—a and bw,—b, the
ordered residuals of @ and b respectively, we obtain preorders in R".
In all cases the orders or the preorders compare spread (dispersion, var-
iation or whatever named) of components of vectors.

DEFINITION 3. For a,bely, b>a(S.), a=1,2,3, are defined as
follows.
Ss: b,—a; is nondecreasing in 1=1,:--, n.

Syt (n—i) "t S by—b2(n—i)"' S gy —a;, i=1,---, n—1.
i+1 i+1
Sl: ébkgi Ay i=2r"'v n.
[ i

Remarks. (S;) This is equivalent to b,,,—b,=a;.,—a;, i=1,---,
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n—1. Notice that b>a (S;) iff there exists c € I'y* such that b=a+e,
namely b—acly. The condition of Theorem 2 is ‘¢ or T is nonde-

creasing (S;) in I’ (S;) This is equivalent to i?:_.}b;,+(n—i+1)b,§
:V‘_,la,,+(n—i+1)ai, 1=1,---,m—1. The right-hand side, say, is equal to
1

é {(n—k+1)(a,—a,_,)}, which corresponds to the cumulative normalized
spacings in the theory of life test See the discussion in Section 5.
(S,) This is equivalent to 5‘__, b,,sz a, and said ‘b majorizes a.” The

theorem due to Karamata et al. says that 8> a (S, iff there exists a
doubly stochastic matrix P such that a=Pb. See [4]. It is shown that
b majorizes a iff b—ac {x; (x,y)=0, vy eI} =", since the equal-

ity (x, y)=é(xi—xt_l)éyk+xlﬁr}m implies that (x,y)=0, vx € I}

i:ykgo, 1=2,---,m, or ‘y majorizes 0.” (I")* is the polar cone of Iy
i

and includes /7*. In all orders the minimum point is 0, and ca>a (S.),
c¢=1, for any aeI’. Strictness of these orders are compared in The-
orem 7.

The conditions of S,, a=1, 2, 3, are expressed in the form L,(b—a)
=0, where L,’s are (n—1)Xn matrices. Now the discussion in Section
7 on general orders in R is applied to Definition 3.

THEOREM 6. b>a(S.), a=1,2,3, are expressed as L(b—a)=0,
which are equivalent to b—a € K/ R, where L,’s and K,’s are (n—1) X
n matrices defined in the following. A differentiable function H defined
on I 18 mondecreasing (S.) 1ff K, grad H(x)=0, xeI?. This 18 also
true for a symmetric (invariant for a permutation of components) dif-
Sferentiable function H defined on I™.

-1 1 0..- 00
L=| 0 -1 1... 0 0f,
0 00 -1 1
—(n—1) 1 1 ... 01
—(n—-2) —(n—-2) 2 ... 2
= —-n—3) —(mn—8) —(n—-3)--- 3 |’
-1 -1 -1 n—1
—m—1) 1 1. 11
L,= 0 "'(’”’ 2) 1- 1 1 ’ K;=L,,
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L1= y K1=L3.

T

1 1
1 1
0---1
0 0

o o o o
S OO

Proor. If a,bely, then, 1'(b—a)=0, where 1 is the column vec-
tor with all components one. For each a=1, 2, 3, the matrix L, with
a row 1’ added is nonsingular. The first n—1 columns of their inverses
form K/ or K/ postmultiplied by a diagonal matrix with positive diag-
onal elements. For example,

[i"z :|_1=[L4(L2L5)_1, n71],
n(n—1)
L,Lj= (n—1)(n—2)
2-1

Considering to premultiply the right-hand side matrix to the inequality

1 |e-a=0,

we can neglect the last column and this inequality is equivalent to
b—a e LL, L) 'R =LiR}, .
Functions on Iy* of the form H(v)=3 h;(v;—v:;), where h;’s are
i>i

nondecreasing function on R, are nondecreasing (S;). Of these typical
ones like > (v,—v;)!=n > v} and jZic,('v,—vi)=v,.—v1, where ¢,=1/(n—1)
i>i >

and ¢,=1/j(j—1), j=n—1,..-,2, are nondecreasing (S;). The linear
function H(v)=c'v, is nondecreasing (S;) iff ¢,<---=c,, while nonde-

creasing (S; or ;) iff ¢;<(n—1)! i‘,c,, 1=1,.-.,n—1, or equivalently
i+1

2SS (m—1)" 3 6, S - S(Cai+C)2S0n -
1 2

THEOREM 7.
b>a(S)=b>a(S,)=b>a(S)).

Therefore if ¢, a test function on Iy, is mondecreasing (S, or &), then
#(V) is unbiased for the More Spread Problem and 1—¢(V) is so for the
Less Spread Problem.
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PROOF. S3;=>8, will be shown later in the proof of Theorem 9.
To prove S;,= S, put

n—1 1 1---1 13[nm(n—1)
My= n—2 0 1...1 1 (n—1)n—2)
‘1Jlo 0.--0 1 2-1

which is nonnegative. Then,
M,L,+»7'(1,2,: -+, n—1)1'=L,
and
M/K =K, .
Each of these equations shows S,=S;.
A function H defined on R*" is called Schur convex if it satisfies

0H oH
(2, xt)(gg 5;)20
If H satisfies H(x+s81)=H(x), —o0<8<oo, namely if H is essentially
defined on I*, then Schur’s condition means that H is nonincreasing
(S;). Thus nondecreasing (S, or S;) functions are further generaliza-
tions of the Schur convex function, and K, grad H(x)=0, a=2, 3, are
generalizations of Schur’s condition. The functions defined on /™ or R*
and nondecreasing (S,), a=1, 2, 8, are symmetric. All the nondecreas-
ing (S.) functions take their minimum value at 0.

Let A be a symmetric (with respect to permutation of coordinates)
convex set of I™. Then A is centripetal (S;) and vice versa. The
Birkoff-Neumann theorem states that every stochastic matrix is a con-
vex linear form of permutation matrices. Combining with the theorem
by Karamata et al.,, we see that the smallest centripetal (S;) set con-
taining a fixed point b€ ™, that is {a; b>a(S))} is nothing but the
convex hull of n! points which are obtained by permuting the compo-
nents of b, or the smallest symmetric convex set of I™ containing b.
The I'* part of such a set A is a critical region for V of an unbiased
test for the Less Spread Problem. Refer to [4], [10] for majorization
and the Schur convexity.

5. Tail order in R2

We write 4"={x; x€ R?, ﬁ]x,:l}, the unit simplex. 47 is one
1

part of m! symmetric partition of 4. We introduce three orders in
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4, b>a(<,), a=1,2,3. For a, b € 4", replacing a; and b, in Definition
4 by au and by,, we obtain preorders in I™. For a, b€ R%, replacing

a;, and b; by a / ﬁ‘, a, and b, / i b., we obtain preorders in R%. In all

cases the orders or the preorders compare spread of tail components of
nonnegative vectors. By analogy with the distribution case we use
the symbols of ¢tail order.’

DEFINITION 4. b>a(d.), a,be 4;.
Ty: bija; is nondecreasing in 1=1,---,n. (If a;=0, then b,=0 and 0/0
is regarded as zero.)
J,: The same as &,.
.. The same as S,.

Remarks. () This is equivalent to a;,,/a;<b;/b;, 1=1,2,---,n—
1. Notice that b>a () iff there exists ¢ € 47 such that b=a-c/|la-c|.
Thus the condition of Theorem 4 is ‘¢ or T is nondecreasing (<) in 43.’
b>a(J;) and a,>0 is equivalent to log b>log a (S;), where the loga-
rithm is operated componentwise. This fact corresponds to Theorem
5. (y) If a,be R, b>a(J,) means that b has smaller ‘ Studentized
cumulative normalized spacings,’ the statistics used in the theory of life
test for indicating shorter tail than the exponential distribution. (<,
and 9,) Even if a, bec 4%, b—a belongs to I™, then the definitions for
I’ can be applied directly. In all orders »~'1 is the minimum point.

We could define tail orders just by log b>log a (S.), and I, is actu-
ally equivalent to this. Our definitions are justified by some well estab-
lished statistical procedures. One reason for preferring these definitions
is that 47 or 4* is a simplex in a hyperplane of R", but the exponential
transformation of I* or I'” is not. In other words, normalizing a vec-
tor in R” we prefer the sum to the product of its component being
one.

THEOREM 8. b>a(d,) is expressed as Lyfa)b—a)=0 or as (b—a)¢
K/ (@)R", where Lya) and Kya) are (n—1)xXn matrices depending on
a defined below. A differentiable function defined on 47 is nondecreasing
(Ty) iff Kix)grad H(x)=0, xedi. For b>a(d.), a=1,2, the corre-
sponding expressions are the same as Theorem 6

—-a a 0---0 0
La)=| © ..—(.Ls as--- 0 0

0 0 0-:-—a,

’
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s 1 n -
— 2
aas 2

1
(12 )

1
>la;

n

Kya)= Kya),

1
- a’n— lan

a,,j

where IZ'a(a) 18 an (m—1)Xn matric with the ith row (——al,---, —a,,

1 n i n
am‘;ak/zak,---,a,.;‘,ak Zak)-

i+1 i+1

PrOOF. It can be shown that

l: Lya)

¥ ] =[Ky(a), a] .

Remarks. Kia) in the condition of the theorem can be replaced

by Kia). The theorem assumes that @, b€ 4. An elaboration of the
condition is as follows. For a € 47, b belongs to 4% and b>a (T,) iff
b=a+ Ky(a)p, where p is a positive vector such that 1’p<1. It should
be remarked that Ly1)=L; and Kj(1)=K;. (The vector 1 does not be-
long to 4% but »n™'1.)

THEOREM 9.
b>a(d,)=b>a(d,)=b>a(q)) .

Therefore if ¢, a test function defined on 43, is nondecreasing (I, or I,),
then ¢(w) is unbiased for the Longer Tail Problem and 1—g¢(w) is so
Jor the Shorter Tail Problem.

PROOF. T,—T, Let My(a), a € 43, be an (n—1)X(n—1) nonneg-
ative matrix with elements m,/(a) defined by

na, , 7:=1,

i-1
mi/(a)= $Gk+(n—%+1)a¢ ’ 1<i57,

n

[—(n—i)a‘+§;‘lak] é‘,a,,/ Sa., J<i.

J+1

For example, when n=4, My(a) is
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4(1,1 4011 4011
(—2a,+a;+a,)a, a
+3a a,+3a
a;+as+a, ' ’ ' ?
(—a,+ a)a, (—a;+ 04) (a;+a,)
a;+a;+2a
PREERE ay+a, PR

Then it can be shown that

1
>a;

Ms(a) [0 2122 Ls(a)

+<é a,—(m—1)a,---, an_an—l>’1,=L2 ’
2

and
Ms(a)’Kz=Ka(a) .
I,=>, is equivalent to S;=&;.

Remarks. This proves S;=— S, since Lga) and K,(a) include as
limits L, and K,. Barlow and Proschan [3] proved 4;=9, and 9;=
Ti.

The discussion on S; at the end of Section 4 can be applied for ;.
For example, a centripetal (4,) set in 4" is nothing but a symmetric
convex set, and a differentiable nondecreasing (<I,) function on 4* satis-
fies Schur’s condition.

An example shows the difference between I; and 4,. Put

Alp)={w; we Ly, w;Spw,<---Zp"'w,, 0<p<1}

= {w; HOw)=0},

where
HOw)=—p" 'w,+pw,,, weds.

K, grad H®(w)=0 is not satisfied, since grad H®(w)=(0, ---, —p'},
Di,+++,0) and —»*'4+p'<0. However Kyw)grad H”(w)=0, w € A(p).
Therefore A(p) is centripetal (<) but not centripetal (<,).
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6. Some additional observations

One may think @ and —a should have the same spread. In our
definition b>a (S.)<= —b> —a(S.), but we cannot always compare b
~and —a. A looser ‘equilibrium’ definition is ‘b>a(S,) or b> —a (S.)’
to compare a and b. In this case we have always ‘a> —a and —a>
a.” A stricter ‘equilibrium’ definition is to require ‘b>a(S,) and b
> —a(S,).” In this case, however, a>a iff a=—a. If b>a(S;) and
b>—a(S,) for a, be R, then ||b—bl||=|la—al|| for any norm in I™.
In R this discussion regards a and 1l/a (componentwise reciprocal) to
have the same tail.

Our results on one-sample problems are beautiful. Then what on
two-sample problems. Fraser [7] states a sufficient condition for a two-
sample test to be unbiased for the Spread Problem. There is a diffi-
culty, however, in the problem. The two-sample Spread Problem is
invariant only for linear transformation allowing different shift for each

sample. A maximal invariant statistic is (V, W)=Xp»—X, -+, Xew—X;
Y—Y, -, Y—Y). Test functions ¢(v, w) such that

o, W)=¢(®, w), for D=v (S;) and W=w (Ss)

are unbiased for G>F (S). A similar statement holds for the Tail Prob-
lem. The tests, however, are not similar for the null hypothesis H,.
That is, P [H,|H,] depends on the distribution F' or G. To specify the
null distribution is to break down the problem into one-sample problem.
Thus the similarity condition contradicts with the invariance require-
ment. If the locations of FF and G are known, then the situation is
quite different.

There is a tight relation between spread order in & and &;, and
between tail order in &, and I,. Regard x, y € R" as sample points
and consider empirical distributions F? and F}. If we extend Defini-
tion 1 to discontinuous distribution functions, then y>x (S, iff F¥>
F?(S). This is also true for tail. If we regard F~'(u) as the limit of
Ty, n— oo, we get from y>x (), x,y € R%, a tail order defined by

1 1
v 0

S: G—i(u)du/S:G—l(u)dugS F“(u)du/g Fiw)du .

This is equivalent to

-1 -1
_1— SG () sdG(s)éL SF w de(s) ’
Pa VO pr V0

that is ‘G has the uniformly smaller Lorenz curve than F’s.’
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7. Some notes on order relation

Let E be an ordered set with the relation b=a. (Here and in the
following order can be just preorder.)

DEFINITION 5. A set ACE is ‘upward’ iff a€ A and b=a imply
bec A. Similarly it is ‘downward’ iff be A and b=a imply a € A.

A set A is upward iff its complement A° is downward. If A;’s are
upward (or downward) sets LiJAt and QAi are upward.

For spread and tail order we call ‘centrifugal’ or °centripetal’
rather than upward or downward.

DEFINITION 6. A mapping 2 from an ordered set E to another
ordered set F is ‘nondecreasing’ iff h(b)=h(a) for any b=a. A ‘non-
increasing ’ mapping is similarly defined.

DEFINITION 7. For a nondecreasing h, H(h, )={a; h(a)=4} is a
‘high-level set’ and K(h, ))={a; h(a)=<2} is a ‘low-level set.’

THEOREM 10. A mapping h from E to F is nondecreasing iff high-
level sets H(h, 2) are upward for all 2€ F'.

Proor. For a fixed ac E let H(a) be the meet of all H(h, 2)’s
such that a € H(h, 2). H(a) is an upward set if H(h, 2)’s are all upward
and H(a)={b; Mb)=h(a)}. From the definition of an upward set k(b)
>h(a) for all b=a. Thus k is nondecreasing. The necessity is obvious.

Now assume that two orders a and g are defined in E and « is
stronger than B: b=a (e)=>b=a (8). If a set A is upward (or down-
ward) with respect to the weaker g, then it is so with respect to the
stronger a. If a mapping & is nondecreasing (or nonincreasing) with
respect to B, then it is so with respect to a.

As well known an order relation in R* is defined by a pointed con-
vex cone C, that is, b>a if b—acC. For any mXxn matrix L with
rank n, L(b—a)=0 defines also b>a. (The inequality means compo-
nentwise inequalities here and in the following.) If L is square and
nonsingular, then this condition is equivalent to b—a ¢ L'R7%. In gen-
eral, however, a computational process is necessary to obtain an mXn
matrix K such that L(b—a)=0&=b—ac K'R7.

THEOREM 11. H(x) is a differentiable function defined on R*. H
is mondecreasing with respect to order relation b>a<=b—ac K'R?} iff
K grad H(x)=0, x € R".

ProorF. Let #?, i=1,..., m, be the column vectors of K’. They
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are extreme rays of the cone K'RT. H is nondecreasing iff H(a+
2 »t®)=H(a) for any ac R" and for any small nonnegative p,’s.
Therefore the derivative in the directions of #*, 3 t®*.8H/oz;, should
be nonnegative for k=1,.-.,m. This is equivalent to K grad H(a)=0
for any a e R".

Suppose that two orders @ and 8 are defined in R" using the cones
C. and C;, the matrices L, and L,, or the matrices K, and K, as above.
Then «a is stronger than g iff C,cC,, there exists a nonnegative matrix
N such that L;,=NL,, or there exists a nonnegative matrix M such
that K,=MK,.

In the definition of b>a by b—a ¢ C, the pointed convex cone C
may depend on a provided that the cone satisfies the condition b-+C(b)
ca+C(a) for any b>a. This condition is satisfied if C(b)cC(a), which
is expressed in terms of the matrices L or K as the last paragraph.
An order relation determined by varying cone appears in Section 5.
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