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Summary

The new test criterion for testing the homogeneity of parameters
of several populations is proposed and the test properties of it is dis-
cussed. The asymptotic expansions of the distributions of test criterion
are discussed under (i) null hypothesis, (ii) fixed alternative hypothesis
and (iii) local alternative hypothesis converging to the null hypothesis
with appropriate rate of convergence as the sample size increases. As
a particular case the asymptotic theory of a statistic for a homogeneity
of variances of normal populations is also discussed and the exact mo-
ments of it under a null hypothesis can be used to obtain a percentage
point by a Pearsonian curve fitting.

1. Introduction

Let x,=(&iy, Tig,* ) Tin))s 1=1,2,-+4, k be a random sample from
the ith population with probability dens1ty function (p.d.f.) f(x|6;) which
depends on an unknown parameter §;. The problem considered here
is that of testing the hypothesis

H: 01=02=..'=0k (=0, Say) 9
against
K: violation of at least one equality .

Let (i be a maximum likelihood estimator (m.l.e.) of 6, in terms of x;
under the alternative hypothesis K, and ¢ also an m.l.e. of 4 in terms

of n= 5‘_, n; observations x=(x;,- -, x;) under H.

Hayakawa [4] has studied the asymptotic expansions of the distri-
bution of the likelihood ratio criterion i defined as
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For the class of density functions satisfying the condition such that
0=31pf., p=mjn (>0), i=1,---, k, he showed that the limiting dis-
i=1

tribution of —2log 2 under a fixed alternative hypothesis K,: 6,=0+¢,,
1=1,---,k is normally distributed and it has singularity at the null
hypothesis since the variance of its limiting one vanishes. He also
showed that the limiting distribution of —2log 2 becomes a non-central
chi-square with k—1 degrees of freedom with non-centrality parameter

a*=(1/2)d*(8) é op:—@)* under the sequence of Pitman’s alternative K, :
i=1 N
0.=0+¢,/yn, i=1,..., k, where

02(0)=E[{310gaj;(x|0)}2

x
H:‘ ’ ¢=§ PiPi -

Due to a method suggested by Wald [17] for a construction of a sta-
tistic expressing a measure of departure from a null hypothesis, we
propose a statistic for testing a homogeneity of parameters as follows:

—_ k A —_
(1) T=ns'(9) 3 p.6.—0 -
For the case of means of normal populations N(,,1), i=1,---,k, T
becomes as

k
(2) Tu=n 3 pE—3),
where
iE‘:g_‘{ TN w=i§1 P, .

For a fixed sample size n, T, is distributed as follows:

(i) central chi-square with k—1 degrees of freedom under H: 6,=
cee=0,,

(ii) non-central chi-square with k—1 degrees of freedom and a non-

k k
centrality parameter o*=n 3 p(e;—¢)?, é=3] pie; under K, : 6,=0-+
i=1 i=1
€iy 'I:=1,' tcy kr
(iii) non-central chi-square with k—1 degrees of freedom and a non-
k
centrality parameter 6'=3] p(p,—¢)* under K,: 6,=0+¢,/v 0, i=
i=1

1,---, k,
(iv) T gives a uniformly most powerful invariance test.
For the case of variances of normal populations N(0, 6,), i=1,---,k, T
becomes as
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n & S\2/a2
(3) .,=-2—§ pis:—38)*[s
where
g K
;=21 ,  S=2)ps:
a=1 i=1

Nagao [8] has studied the testing a homogeneity of variance and co-
variance matrices of k p-dimensional multivariate normal populations
H: >=-..=23, and proposed a test statistic T,. 7, agrees with T,
when p=1. Nagao gave the asymptotic expansions of the distribution
of T, under various hypothesis [8], [9], [10].

Rao ([15], p. 389) studied this problem and proposed a test statistic
R such that

(4) R= nE

(T 0)2 0 Ef:[ nT,; / n;

s(Ty) | =0 s(T)

where T,’s are consistency estimators of 6,’s enjoying that n,(T;—8.)
has an asymptotic normal distribution with mean zero and variance
s¥0,) as m; goes to infinity. He gave the limiting distribution of R
under a null hypothesis H.

The following notations and convensions will be adopted.

Defining the log-likelihood function by

2( Ti)

g
L(e)=31log f(®al6), i=1,---,k,

we require for L6;) to be regular with respect to 6,-derivatives.

LaLd8) ...

1 (l)_.
(1) »P=mn; Fral

'U¢= Vﬁ;(éi—ai) .

(i) m(8)=E [log f(x |0¢>1=§ log f(2|6)f(x|6)dz ,

Mm0)=F [ 9 1;”%: f ] —0,

Mge,1(0:) = E [(3* log £1)*(3" log f3)*] ,

o tog =7 102 al0)

k1« 8=0,1,234.

The following equalities hold for m(.,’s by the regularity conditions
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Mea(0:)+Mm2(6;) =0
(5) Mx(60:) +3M e (0:) +msy(0,)=0
Mix(0:) +4Ma1y(0:) + 3M3)(0:) + 6Ma2(0:) + My 4(6,) =0 .

(ili) Any function evaluated at 6=0 will be denoted by the addition
of a circumflex.
(iv) o, and O, will denote orders of magnitude in probabilitic sense.

2. Asymptotically uniformly most powerful invariance of T

The statistic T, given by (2) for testing the equality of means of
normal populations with known variance is same form as (21) in Leh-
mann ([5], p. 275), which implies that the critical region {T,=c} gives
the uniformly most powerful invariant test, where ¢ is the upper
100a% critical point of a central chi-square random variable with k—1
degrees of freedom. Nagao [11] considered the asymptotically uniformly
most powerful invariance of the test statistics 7| and T, proposed for
testing the covariance matrix of normal population.

We show in this section that the test statistic T gives asymptoti-
cally uniformly most powerful invariant test.

Put u,=vn,0(8)(6;—0), o(8)=vo%(8) =V40), i=1,2,---, k, then
k
T=>ul.
i=1
Expanding u,;, 1=1,2,---,k at 6,=---=6,=0 in Taylor series, we have
u=a{(I-Vp Vo W+ p } +0,1) ,
where
u,=(ulv Ugy* ey uk) ’ 0':0(0) y
‘/;,':(‘/E"/E!"'r“/;’:): U=, %),
&=diag (901_?’" ) SDk—éb) ’
k
o=V N(0:=0), =2 pips -

It is easy to show that u is asymptotically normally distributed with

mean o®vp and variance-covariance matrix I—vp+vp’. Since the
rank of I—+p+p’ is only k—1, that is, v p'u=0 with probability one,
the problem should be considered by u*'=(uy,- -, u,_;) where u* is dis-
tributed as
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u*~N(Q©, I,_,—vp._1¥p.—/) under H,
w*~N(P._Vpirr Lioi—VPr1¥oey) under K,
where
Voud =Woi, Vo), Ba=diag (o= 1= P) -
As

(Lecs— VP Vo) '= Ik1+ V P

the problem is invariant under the transformation L,_, on u* such that

(6) L, 1<Ik 1+ V Pr—1 ¥ k—l)Lk =1 1+'——V Pr- 11/Pk-1 .

The construction, for example, of this matrix L,_, is as follows. Let
the last column of (k—1)x(k—1) orthogonal matrix A=[a;, @;, -, @]
be defined by a:.1=vpi_1/¥1—p.. The other (k—2) column vectors can
be defined by some arbitrary rule. Let H be an orthogonal matrix of
order (k—1) such that H=diag (H;_;, 1) where H,_, is also an arbitrary
matrix of order (k—2). Putting L, ,=AHA’, L,_, enjoys the following
properties.

L, ,Li =L, Ly, v Pr-1= Y Pr-1

which implies that (6) holds.
Thus, the maximal invariant is expressed as

z=u*'<I,,_1+—;)1—Vpx_1 Vpk_l’)u* ,
k

and z is asymptotically distributed as non-central y* with k—1 d.f. and
non-centrality parameter °

——'(0@1: VPt (Ik 1+ ~/—k—ﬂ/Pk 1)(0@k 1V Pi-1)

%

k
=5 Selo =g
2z can also be rewritten as

Z—E(u y+ —(‘V Pr-1 u*)i= Zui

These facts give the following theorem.
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THEOREM 1. For the testing H against K, {T =c} is the asymptoti-
cally uniformly most powerful invariant test in above sense.

3. Asymptotic distribution of T

In this section we consider the asymptotic expansions of the dis-
tribution of T under various hypothesis. The method used here is same
as in Hayakawa [4]. The similar type of argument is applied in the
distribution theory of a likelihood ratio criterion for a composite hy-
pothesis of parameters of a single population, Hayakawa [3] and Peers
[12].

3.1. Null hypothesis

First we consider the asymptotic expansion of a distribution of T
under a null hypothesis H: §,=6,=--.-=60,=6.
Expanding T at 6,=...-=6,=¢ in Taylor series, we have

(7) T=a=v'(1—6¢?’>v+%[%]."7'”'”'”—*’7*’7'”

+'2%;[‘da2§;l(v'«/7 YW (I—vp v p'Y+o(ln) .

The equation satisfied by v may be written as

0=%=2+ Y,v—l—%Y,v‘” +% Y. v®+o0,(1/n) ,

where
=2, 2, 2)=WD, -+, YD)
v =, v, -, %), 1=2,3
Y,=diag (¥, ¥°,---, ), 1=2,8,4.

We have by solving the above equation with respect to v,
( 8 ) v=— Y’—-lz_ _%_ Y," Y,z‘” _% Y,“" Y;zm +_:-5_ Yz—4 sz,(a) +o,(1/n) ,

where
Z(D':(zi’ Z:r""zi) ’ l=293'

Finally, inserting (8) into (7), we have with a little algebra the asymp-
totic expansion of T in terms of @-derivatives %{”’s under the null hy-
pothesis up to order O,(1/n) as follows:

(9) T=lL+l+1l+0,1/n) ,
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where
L=d2Y;I-vp Vp")Y:'z
L=c2 Y (I—v p v ) Y 1Y,2®
Vln [d"z ] Vo Y22 Y (I~ p Vo) Yz
=0 2Yi -+ p Vp') Y Yiz®
— XY~V VP Y i

-I-—‘:;Z‘”’Ys Y{s(I-— 5 ﬁ/) Y{sYgz(”

1 , —
m[ } VP Yz 2 Y (I~ p Vo ) Y Yez®
2;_[ jlx/p Y Y22V (- Vp ) Yi'z
+_1_[_d7)2—]z'Y2 W NP Yz 2Yi (- p Vo) Yz .

To find the moment generating function (MGF) of T under H, we
need the Edgeworth type A series expansion for z, Y,, Y; and Y, to
the required order, which is stated as following lemma.

LEMMA. The joint probability density function of z, Y,, Y; and Y,
is expressed up to order O(n™") as

A B) 1
(10) fimhlr Bl 1),
where
fi= ik];[l (2rme2y(0:)) """ exp {—2i/2m2(6:)} ;lj; (YL —my(0:)[m{ %)
—ié m(0:) Hy(2:)/6+/ -P_z+:21 M (0:)Hi(2:)5 v/ o: 0i »

B=37 {men(0)— (M6} 52/

=1

-

- i:z‘{ {mar(0:) — M (0:ymar0:)} Hy(2.)05 o
+ 3 M0V H (23 + 3] (mat(09—8(man(0))) Hi(20/24

k
+ 33 {man(8)) Hi(2)08 2,
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+ #Ej m(zu(oi)m(zl)(aj)Hi(zf)Hl(zj)ag})ag})/ 2v E v E

- g M (0:)Mas(0:) Hy(2,)05 /60
- #21 ’m(zx)(0i)m<1‘)(01)Hl(zt)H'a(zj)agP/ 64/ p: Vo

+3 (mas@)V Hiz)/ 120,
+ #21 m(1!,(0‘)1’",(ls)(ﬂj)H,(zi).H,(Z,)/ 724/ —(_7: 1/ -l;l- .

AP =0T (Y — mx(0.)ni ") [6(yEP — max(6)[ni ")

and 0 1is the rth derivative of Dirac é-function. & enjoies the following
properties.

oY —me(6,))=0, YPEme0)) ,
S 0YP —me(0))dy =1,

S h(' Ty 1‘,2)’ * -)5(115’)—mz>(0¢))d1/§”=h(- *y m(,)(0,), * ) ’

ah

S h(- -, YD, )0 (yP— m(:)(oe))dyg”=(_1)r[ Y)Y ]ﬂ‘=m(l)(‘i) )

H,(2) is defined by
exp {227} H ()= exp (220"} .
The MGF of T under H is expressed as
M(t)=E [exp (tT)|H]=S- . S exp (tT) fidz ]T dY,+o(l/n) .

Carrying out the integration with respect to 2, Y;, Y; and Y,, and
noting the regularity conditions, we have after some lengthy algebra,

— (1 _ O\ ~k—-1)/2 1 L2} @, a,
(1) M)=01-20) /[1+Z{(1—2t)=+(1—2t)*+ 1-2¢ +“°”+°(1/”)’

where

L (8man+2mn)(— 9k —18k+12+155)

= Ty

a2=é[(5m23)+14m<,,m(m+10mzm)k=+ M

— (M +4mayMay + Tmiyy) — (dm + 10m M)+ 9Mian)pl
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h é(i’ —2k+1)(4mey +12mer, +3Mmas +3mis,y)

= 'L [—(mae+ ’m(zn)%2 + 2(4"”%3) +13m M+ 7m221))k
84°

— (6m23) +20mg,me+ lom?n)) - (m2s) +4mgme,+ 3m§21,)i)]
IO‘T [2m,+4mey, +8Mmes, + My, — Mot — 4m(1’))k
—(2m,+6mesp +8met, +5Merr, — 3m?1’))
—(mep+2meup+3men+2man— mi)p]

ay= %[ —(2M M +2mb )k + —g My +8M ey Meary +5M,
- <-g— m23> +6mpmen+ 3m?21)> ZJ]
+ 1 [—(4me,+2m g, —2min))k
8s*
+ (4m 2y — 2Mge2y — My — 3Miyy) + (dMey, +mas + min)o) ,
x
=1 p;

Inversion of this moment generating function gives the following
theorem.

THEOREM 2. The null distribution of the statistic T is expanded
asymptotically in terms of y-distributions for large n with fixed p;=mn;/n
(>0) as

3
(12) P{T<2}= Pk_1+;lb- 2 @Pen-yto(l/n)

where &, @, @, a3 are given in (11) and P,=P {y}=x}.

Applying the general inversion expansion formula due to Hill and
Davis [5], we have a following asymptotic formula for the 100a% point
of T

13)  u [P (f e (F 42 )

FF+2)(F+d)
zazu 2a'lu 2
Pt f42) + 2 ]+0(1/n),

where P {y’=u}=a and f=k—1.
From the MGF of T, the asymptotic expectation of T is expressed
as
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E(T|H)=k—1+%+o(l/n) :
where
C= 2—];; [(4map+2m e +13mery +3mas + 2m%|=>)k
—(2my+2megty +-EMmaty + Mty)
—2(map+4man,+man+ ma’))ﬁ]
- é [{3mis+10mymey,+ 8m} K
+2{8m+23mypmea+ 14mp,, )k

—4{2my+5mpmer+3mp}
— {11mis+36mymean +24miyy} 0] -

A correction factor ¢ which makes the term of order 1/n in E(T|H)
vanish can be obtained.

Cc

c=1= =D

+o(l/n) .

We are able to give the correction factor ¢! such that the term of
order 1/n of the asymptotic expansion of the distribution of —2log 2,
A the likelihood ratio criterion of H against K, and the term of order
1/n of E[—2log 4] vanish simultaneously for a class of a continuous
density of Koopman-Pitman type such that

exp {p(0)K (x)+S(x)+q(0)} a<lz<b, all<B,
f(xz|6)=

s otherwise,

where p(f) is nontrivial continuous functions of ¢, and S(x) and K'(x)+#0
are continuous function of x. We assume that f(x|#) satisfies the con-
ditions

H(6)=46G(6) and 2G(6)<O0, for all 4,

where
G(o):% and H(o)=i?df,?;) .
The correction factor ¢! is given by

¢=1+2(s—1)D/(k—1)n+o(l/n) ,

where
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(48] -2 .

Unfortunately, even though the same family of distribution it is hard
to find similar ¢t for T.

Ezxample 1. Under the null hypothesis H: ¢’=.-.-=¢2 for normal
population, the asymptotic expansion of the distribution of T, expressed
by (3) is given as follows,

P{T,=x} =Pk-l+%{aEPk+5+a2Pk+3+a1Pk+l+a'0PIc—l} +o(1/n)

where

aS:%(—3k2—6k+4+5§)

az=%(4k=+6k—3—7p)
a;= —kz——k+2f)
%=%a—@.

This expression agrees, in the case p=1, with (7.6) of Nagao [8].

Example 2. For the exponential distribution having the pdf
exp (—x/0)/6 , =0
FGalo)=
0, <0,
the statistic 7" becomes
(14) T=n 3 o6~ 0YI6"
and the asymptotic expansion of the distribution of T, is expressed as

3
P (T,<x} =Pk_,+% S0 Practoll/n) ,

where
bi=ai/2 , 'l:=0, 1, 2, 3 .

This expression implies that the convergence of T, to a central chi-
square is more rapid than the one of T,.
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3.2. Fixed alternative hypothesis
We shall consider the asymptotic expansion of the distribution of
T under a fixed alternative K: 34,7, 6,#6,. Expanding o}#) at 6=

~ k
=3 pf., we have
a=1

do* 1 o[ d¥?
o40)='(0) +—= ~,_ Voo % dﬂ]+-§;(~/“‘ oy £ e | +outmy,
and noting

) _g=—le 1+ L o }
0,—0= {e,+~/%a,v y

a.=vVp———e., &=(0,--,0,1,0,-,0),
T will be expanded as following form.
=131 00O G~ 0.0+ VT 3 p. w3 p 0 W +0(Um)
where

l.=200)e.a.+ [%]e: r

W.=a’(5)a,a:+2[%]e.~/7a.’.+%[ ‘Z;‘I: ]ef‘l TXTE
Setting l=Zk] o.l, and W=2k] 0.W,, we obtain the asymptotic expansion
of T up to a(:;'der Op(llJW)ﬂi;l the following form:
To={T—n 3 0.0 G—0.} [v7
= l’v+7=v'Wv+op(1/Jn )
- —l’Y{‘z——é— l’Y;‘Y,z"’+:/—1W—z'Y,“WY,“z+o,,(1/4/%‘) .

Since all cummulants of ¥{® except the first one are O(n'), we may re-
place ¥ by m{(6.)/v/n; in the above expression and still retain the
expansion correct to Oy (1/v/ 7).

The MGF of Ty under K can be obtained by the similar way as
(11) by the use of (10) up to order 1/ym.
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15 Maty=exp [SUEA 14+ (o4 t0) +ol/yT)] |

where
_ - 1 & me(8:)+2men(8) L
bo=tr K/ W+~ @\ <
S ATWES AT ey Ve
K- - 1 & 2m(6:)+3man(6:) 1
b _llK I.IJIK2 ll el BO\Vi :
o T (@0 Vo
and

K,=diag (41(6,), - - -, 0i(6)) -

Putting z%=UK,!l, the inversion of this MGF gives the following
theorem.

THEOREM 3. Under the fized alternative K, the distribution of the
statistic Tx={T—ns*(6) é p(6.—0)} [V T can be expanded asymptotically
a=1

for large n as
(16) P {TufexSa) =0(0)— = (0V@bi/ex+O@hfek) +o(1/y/7)

where b, and b, are given in (15), and @Y(x) is the jth derivative of
the standard nmormal distribution function.

Under the null hypothesis H: 6,=-..=8,, %=0, because I[,=0,
for all @, which implies that T has also singularity at the null hypoth-
esis.

Example 3. T, has the asymptotic expansion of the distribution
under the fixed alternative hypothesis as follows;

P (T, /rx <z} =¢(x)—717ww(x)bl/m@w(x)b,/f;} +o(l/n)
where
_ _n _ —
Tu={T— 24~} v ,

T?{ =2 {A4 _ 2A2A3 + A?}

ju—y

64

b1=i5kj al— 44,434
=1
bs=?0A6—8A3 A4—A2(8A5—14A§)+A§<14A4—?A2 Ag) 64
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~ k 0 l
a=0,5 , Al=‘21p¢<—;‘-> , 1=2,8,4,5,6.

3.3. Local alternative hypothesis

In 3.2 we have studied that the limiting distribution of T has the
singularity at the null hypothesis so that we have to know the asymp-
totic behavior near the null hypothesis. In this section we consider
the asymptotic behavior of T under the sequence of alternative hy-
pothesis converging to the null hypothesis with arbitrary rate of con-
vergence as the sample sizes tend to infinity. The sequence of alter-
natives K, is specified as, K,: ;=60+¢;/¢(n;). Especially, three cases
are studied, (i) ¢(n.)=n""Vp;, (i) ¢(n)=n"'yp;, (iii) P(n)=n"*vp;.
(i) Case of ¢(n)=n"*y/p;

Under the sequence of alternatives K,: 6,=0+o,/v 7, ¢;=c/v p:)
T is expanded asymptotically as,

T=d(v+0Vp Y(I—vp Vo )v+0Vp)

+ =2 (VB v+ B0+ 8V YUV P VB0 +V )

+o (1T -

Replacing v by (8) and setting %{™(0,) with m{(8,)/v/n;, we have the
following asymptotic expression of T';

T=d(z—Y:0vp )Y I—vVp Vo ) Yii(z—Y:9V p )
{a’m<,)(D;'z+ éﬁ)l([__ G J;’)D;‘P“/’z"’

1
7w

. (D'z+0Vp )} o l/yT) .
Using Lemma 1 and expanding ¢*(6,) at 8,=@ in Taylor series,

D:l:lzl—_lzl[%]qwo(—l—), o=diag (pi, g1, > 1)

o vn gt Jyn
the MGF of T will be expressed after some lengthy algebra as follows;
(1) Mi(t)=(1—2t)-*-P" exp { LA »2}[ 4L é (1—26) + o( _>]
1-2¢t v ojs v
where

3= %3' (meyp—ma) ,
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Gy = —;{ (Meap+mas,) +§%’7 (M, —mas)(e—ko)

a,= 'l My — —1— (M + Moy )prp— Lz (M —mas) (@ —ke)
2 2 20

Y3

ao= 6

Mg+ *;— (me+ m(m))i’”z ,

k k
¢=12=1 @iy U;=§ Pa(%‘_(o)t ’
Inverting this MGF, we have the following theorem.

THEOREM 4. Under the sequence of alternatives K,: 6,=60+¢,/v 7,
1=1,2,---, k, the distribution of T is expanded asymptotically for large
n as

3  —
(18) P (TS0} = Pui®) e S &,Pacssas(B)+o(1/VT)
where 2=mqyy(2, P (A)=P {y}(A)=x} and (&) is a non-central y’-ran-
dom variable with f degrees of freedom and with mon-centrality param-
eter 2. a,’s are given in (17), respectively.

(ii) Case of ¢p=n"y/p;

We are able to give the asymptotic expansion of MGF of M,(t)
of T for the case ¢=n%'y/p, by the use of M(t) for p=n""y/p,. Myt)
is expanded up to order 1/4/7m and the next term should be order 1/,
of which fact can be checked from the derivation of My(t). This im-
plies that we obtain the asymptotic expansion of the MGF of T up to
order n** if we replace ¢; with ¢,/¥m in My(t). Therefore, Mt) of T
for ¢=n"*y/p; should be expanded as the following form :

Mi(t)= (120> {14 92 (1-26) 1} +o(U/ v 7]
since @,;’s in My (t) are homogeneous polynomials of degree 8 with re-
spect to ¢,, which implies that order a,’s are O(1/¥n}) if we replace
991 With SDI/ W-

THEOREM 5. Under the sequence of the alternatives K, : 0,=0,+¢,/¥ 7},
1=1,2,---, k, the distribution of T is expanded asymptotically for large
n as

— MYy —
(19) P{T=x}=P.,+ oW {Pipi— Py} +o(l/ym),

where P,=P (y}=<x) and 3} is a central y' random wvariable with f de-
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grees of freedom.

Note. It is interesting to note that the expression (19) is same
form as the expression (37) in Hayakawa [4]. This means that the
likelihood ratio criterion for testing the homogeneity of parameters has
the same behavior up to order 1/4/7% when the rate of convergence is
n¥.

(ili) Case of ¢p=n""y/p;
Under the sequence of alternatives K,: 6,=0+¢,/¥m, T can be
expanded asymptotically as following form:

(20) T*=n-1/4{T— JWa‘u,—VW{bp,[%]}

=207 'Y;‘z+v% {a’z'Y,“(I— Vo Vp')Yiiz
T2 Py Sy
[da](”zﬁyz z+20v p ' OY'2)+ 2 [ 75 ]ga v,}
+oll/y/T) .

Using Lemma 1 and

et L[S0 k).

we have the moment generating function of T* after some lengthy
algebra as follows:
(21) M(t)=E [exp (tT*)]
3
—exp (20t} [1 +717 Ra+oll/yT )] ,

where

.

= —2[%](;;,—;3»,)
a=4d"; .
Putting *=4¢%,, the inversion of bM,(t) gives the following theorem.
THEOREM 6. Under the sequence of alternatives K,: ,=6+o¢ /Y7,

1=1,2,---, k, the distribution of the statistic T* given in (20) can be
expanded asymptotically for large n as
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P {T*/r<a) =@(x)—717 jz; 3,09 ()’ +o<71_7&_—)

and a;’s are in (21).

4. Moments and percentage point of T,

We have studied the asymptotic expansions of the distribution of
T under various hypothesis in a previous section. In this section we
discuss the percentage point of T,. Under the null hypothesis H: ;=
...=g,, the statistic T, can be represented as

r-nfh )
i=1 pi
where {2z, 2, -+, 2;} are Dirichlet random variables with pdf

kL(n/-z)—— ﬁ A (1 —kii zf>nk/2_l ’ 0=2z=<1, Zk] z=1.
i=1 =1 i=1
1L I(n/2) '

It seems to be difficult to have an exact distribution function of T, for
arbitrary %k, however, we are able to give an exact expression of a dis-
tribution of T, for k=2.

P{Taéx}:-P {Izl—plléW}

where 2, is a Beta random variable with pdf

(gl omo-s.

k
The exact moments of 3} z2}/p; can be obtained as follows.
i=1

n+2k

a,=E[X z%/Pi]—': )

0= [{3) 20} 1= [0+ A(k+2)m? -+ 4he(lo+10)m + 485,) /U (n+2i)

0 =B [{2 2o '1=]T (n+2)"'[n*+6(k-+Hn'

+ (121 4+ 168k +160)n’ + (8k* + 240k* +1408k + 144p,)n’
+(288k+4096)p,n +3840p,]

a.=E {2 2/0} 1] =]T (n+23)" [0+ 8(k + 6)ns
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+ (24K + 432k + 832)m* + (32k* + 1152K* -+ 8832k + 5376
+288p,)mt + {16k*+ 960k + 16064k + 71424k
+(1152k+18688)p,} nt + {(1152k*-+ 44288k -+ 359424),
+153607;} nt+ {(30720k+T98720)5,+ 69125}
+6451207,] ,

where
k
ﬁl=§ 1/p.) , 1=1,2,3.

The four central moments g, g, g, s of T, are expressed in terms
of a;’s, 1=1, 2, 8, 4 as follows.

m=5(@-1)
n
M= T(az —aj)
nd 3
U= ?(as—&llaz +2a3})
nt 2 4
t=—(a,—4a,a0;+6a.al—3al) .

16

Using these moments g,=y3/14 and B,=p./p2 are calculated and we can
approximate a percentage point of T, by the use of Table A given by
Johnson, Nixon, Amos and Pearson [6].

Example 4. When k=5, m,=n,=...=n,=50, using (13) of the
generalized inversion formula we have the following approximate 52
point of T.,.

First term Term of order 1/n Approximate value
9.4877 —0.1164 9.371

From the exact values of moments we have
m=3.96825, «u, =2.8054, +B, =1.4752, B,=6.5078
Table A in [6] gives 1.9276, which implies the 52 point of 7, is
3.96824-2.8054 X 1.9276=9.3759 ,

which shows remarkable agreement with the value due to the asymp-
totic expansion of a percentage point.

Example 5. When k=2, n,=n,=12, the exact distribution of T,
can be evaluated by a Beta distribution (23). Using a table of the
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percentage points of the Beta-distribution, Pearson and Hartley, Table
16, [13], and (22), 5% point of T, is obtained as 3.401. Since v, =
2.0461, B,=17.9876, the tables given in [6] does not cover the case v
=2.0461 which is close to the extreme value 2.0 in [6], we extrapolate
the value for (v B, B)=(2.0461, 7.9876) and obtain it as 3.400. This
value also shows an agreement with the value due to incomplete Beta
function.

Table of 5 percentage points of T, is given for k=2(1)10 and v=
1(1)10 in the case of equal sample sizes. For k=2, the incomplete Beta
tables are used and for k=2 the tables of Johnson et al. [6] are used.
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Upper 5 percentage points of 7,

2 3 4 5 6 7 8 9 10

E
/
<
—

2 0.99 1.80 2.31 2.63 2.84 2.99 3.10 3.19 3.26 3.31
3 2.68 3.84 4.33 4.70 4.90 5.05 5.16 5.25 5.31 5.37
4 450 5.81 6.36 6.66 6.85 6.98 7.08 7.16 7.22 7.27
5 6.36 7.72 8.25 8.52 8.69 8.80 8.88 8.95 9.00 9.04
6 8.23 9.58 10.06 10.30 10.44 10.53 10.60 10.65 10.69 10.72
7 10.09 11.39 11.81 12.01 12.12 12.20 12.25 12.28 12.31 12.34
8 11.92 13.15 13.51 13.67 13.75 13.81 13.84 13.87 13.89 13.91
9 13.73 14.86 15.16 15.28 15.34 15.37 15.40 15.41 15.42 15.43
10 15.52 16.53 16.77 16.85 16.89 16.91 16.91 16.92 16.92 16.92

THE INSTITUTE OF STATISTICAL MATHEMATICS

REFERENCES

[1] Bartlett, M. S. (1937). Properties of sufficiency and statistical tests, Proc. Roy. Soc.
London, A, 160, 268-282.

[2] Ghosh, B. K. (1972). On Lehmann’s test for homogeneity of variance, J. R. Statist.
Soc., B, 34, 221-234.

[3] Hayakawa, T. (1975). The likelihood ratio criterion for a composite hypothesis un-
der a local alternative, Biometrika, 62, 451-460.

[4] Hayakawa, T. (1976). Asymptotic expansion of the distribution of the likelihood ratio
criterion for homogeneity of parameters, Essay in Probability and Statistics, Editorial
Committee for E.P.S., 265-285.

[5] Hill, G. W. and Davis, A. W. (1968). Generalized asymptotic expansion of Cornish-
Fisher type, Ann. Math. Statist., 39, 1264-1273.

[6] Johnson, N. L., Nixon, E., Amos, D. E. and Pearson, E. S. (1963). Table of percent-
age points of Pearson curves for given x/TS_l and fB:, expressed in standard measure,



328

[7]
(8]

[91]
[10]
[11]
[12]
[13]
[14]
[15]
[16]

[17]

TAKESI HAYAKAWA

Biometrika, 50, 459-498.

Lehmann, E. L. (1959). Testing Statistical Hypotheses, John Wiley and Sons, New York.
Nagao, H. (1973). On some test criteria for covariance matrix, Ann. Math. Statist.,
1, 700-709.

Nagao, H. (1973). Tests of covariance matrix of multivariate normal distributiion (IV),
Meeting of Math. Society of Japan held at Osaka Univ. (October).

Nagao, H. (1974). Asymptotic non-null distributions of two test criteria for equality
of covariance matrices under local alternatives, Ann. Inst. Statist. Math., 26, 395-402.
Nagao, H. (1974). On the test property of a certain covariance matrix, Meeting of
Math. Society of Japan held at Kyoto Univ. (October).

Peers, H. W. (1971). Likelihood ratio and associated test criteria, Biometrika, 58, 577-
587.

Pearson, E. S. and Hartley, H. O. (1966). Biometrika tables for statisticians, Vol. 1.
The Univ. Press, Cambridge, England.

Pitman, E.J. G. (1939). Tests of hypotheses concerning location and scale parameters,
Biometrika, 31, 200-215.

Rao, C. R. (1973). Linear Statistical Inference and its Application, John Wiley and Sons,
New York.

Sugiura, N. and Nagao, H. (1969). On Bartlett test and Lehmann’s for homogeneity
of variances, Ann. Math. Statist., 40, 2018-2032.

Wald, A. (1943). Tests of statistical hypothesis concerning several parameters when
the number of observations is large, Trans. Amer. Math. Soc., 54, 426-482.



