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Summary

Fairly sharp bounds (lower and upper) of the quantities log I"(z+1),
log (1+2) ﬁ} 1/(x+17) and ﬁ‘, 1/(x+1)* are given by evaluating the cor-
i=1 i=1

responding series of inverse factorials. These results are useful in the
asymptotic theory of order statistics and record value statistics and
also in the elementary analytic number theory, with which the quan-
tities frequently concerned.

1. Introduction

Let g(x) be a real valued function in real z. Consider a situation
in which the functional form of g(x) is known but is not so easy to
handle it exactly. In such a case we must usually make an effort to
search a good approximation for g(x). For example, as the approxima-
tion, we may use a few first terms of a certain asymptotic expansion
for g(x). There often occurs, however, that we are not satisfied with
the asymptotic expression for g(x), and then our desire gives rise to
find some accurate upper and lower bounds for the function.

The purpose of this article is to give some exact evaluations for
the familiar quantities mentioned before, by means of estimating the
following convenient but less known infinite series (cf. [4], [5]).

Suppose that g(x) has the convergent series of the form

< a;
(L.1) =5 ey *<D,

where D denotes the domain of convergence for g(x) and a,’s (i=1,
%+1,.-+) are real constants independent of z. In such a case we
shall say that g(x) is expressible in the inverse factorial series. This
type of series for certain quantities is useful for deriving exact lower
and upper bounds of them in the later sections.

The main steps to obtain the bounds for g(x) are
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(i) to give the corresponding inverse factorial expansion to the
quantity g(x) under consideration,

(ii) to evaluate the coefficients a,’s by a double inequality of the
form

1.2) a<a;<a;,  (i>4)

and finally,

(iii) to calculate the majorant (the minorant) of the g(x) with the
coefficient a,(a;) (¢>1,) by the aids of Lemma 3.2 below, and hence we
obtain

1.3) 9(@)<g(x)<g(x), xeD.

So far as the author is aware of, the inequalities presented below
have not appeared yet in literature. The use of our results in this
article may be recommended, from the view point of their accuracy
and passable easiness of computations, in various approximation problems
(e.g. [2]).

The first result in Theorem 2.1 sharpens the well-known Stirling
asymptotic formula for natural numbers by presenting a double in-
equality, which also become an improvement of H. Robbins’ evaluation
[3]. The second and the third inequality for the quantity log (1+z) in
the theorem are useful, too, because of their sharper bounds. Thus
the results are sometimes more convenient than those obtained by
using the usual Maclaurin’s formula. Other inequalities obtained in
the theorem are related to the sum of reciprocals, which have also
wide applicabilities in the theory of record values and that of analytic
number theory. The main results are presented firstly in the follow-
ing section. In Section 3 some necessary lemmas are stated. The
proofs of the main inequalities are carried out in the final section.

2. The main results

We list up the inequalities in the following theorem based on the
inverse factorial expansions introduced in the preceding section. The
proof of the theorem will be given in Section 4.

THEOREM 2.1.
(i) For positive number x>2, it holds that

2.1) logF(x+1)=—1-log 27+ <x+i> log x—w—i—L—R(fc) ,
2 2 122

with
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2-2) R(x)< R(x)< R(v),
where
2.3) R@)=3 ity

& @+ 1)(@+2)- - (@+) |

1 1
2.4 aq 78 H1—t)(@2—1)- - (r—l—t)(;—t)dt, (r>2),
(2.5) R()= 1 - 1 :
) Se0ae—D)@+1) 1208@—1)@+1)
and
(2.6) R(x)= 1 + 11

360x(x—1)(x+1) 480x*(x—1)(x+1)
(ii) For real mumber u>0, it holds that

@.7) log (1 +%> =%—S(u)
with

(2.8) S(u) < S(u)<Sw) ,
where

(2.9) Sw=3 b

= u(u+1)(u+2) - (u+13)
2.10) bl=%:, brzsot(l—t)(2—t)---(r—l-—t)dt, (r=2),

1

(2.11) Su)= 2u(u+ D T euur 1y
and

con 1 1
(2-12) 8= D) T S

(ili) For real mumber v>1, it holds that

(2.13) log (1—%) - —v+1+S*(v) .

with
(2.14) S*(v) < S*(v) < S*(v)
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where

— & bi
(2.15) S = e DD D)

b.’s being the same as in (2.10),

(2.16) S*v)= 2v(v—1) + 6v*(v—1)
and
@.17) S*v) =5 1

2v(v—1) + 6v(v—1)

(iv) For real number £>0 and positive integer p>2, it holds that

L1 _ x+p 1/ 1 1 \ T@+p , T(x+1)
(2.18) D log x—|-1+2<a;+p x+1> vtp | ot
with '
(2.19) T(s)/6< T(5)< T(s)<T(s) ,
where
—~ Cit1

(2.20) T(s)—i§=:'; (3+1)(s+2)---(8+’i) ’ (s>1)1
(2.21) c,=_H:t(1—t)(2—t)---(r—1—t)dt, (r=2),

' _ 1 1 _ 1
(2.22) I)= 12(s—1) 6(s—1)(s+1) 6(s—1)(s+1)(s+2)
and
(2.23) T(s)=— 1

12(s—1)

(v) For real number x>0 and positive integer p>2, it holds that

Y4 1 _ _
(2.24) by o U(z+1) U(x+p+1).
with
(2.25) U< Ui)< Us),

where
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d

(2.26) U(8)=§_1 GID6TD) Gri=D (s>1),
(227) ‘ drzr(r)/'r ’ ’l"=1, 2; M)
3 1 2
(2.28) L P ) A rpar
and
(2.29) U(s)— 1 2

28(8+1) + 3s(s—1)(s+1)

From (iv) and (v) we can easily obtain the following result given
by Schlémilch [4]:

COROLLARY 2.1.
(i) For positive integer p=>2, it holds that

=C+log p+——— = T(p)
2p p

(2.30) ﬁ:
where C denotes the Euler comstant (=0.5772157...).
(ii) For positive integer p>2, it holds that
1_7

2

(2.31) S =%~ U+1).

o
-

3. Necessary lemmas

In this section we state some lemmas which play fundamental
roles for the calculations in the proof of the theorem. First, we prove
the following

LEMMA 3.1. Let g(x; m, n) be a real-valued function of the form

3.1) oa; m, n)= S (1 —e-ty ¢t |

where x is positive numbers belonging to the domain D, m any real num-
ber, and n takes value 1 or 2. Then, we can rewrite the integral (3.1)
into a more convenient form :

(3.2) ot my m= L B Ay by wiy

where T,=—1, 7,=1/2 and

3.3) n:S:tu—t)- C(i—1—bdt, i>2,
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and where
h(y; )=y
h(y; 2)=(G—-1)y*(1—y).

Remark. The above lemma is closely related to the Schlémilch
theorem on the expansions of the series of inverse factorials for a cer-
tain analytic function (Cf. [5], pp. 142), but unfortunately we cannot
directly follow the theorem in our real-valued situation, chiefly be-
cause of the non-existence of the inequality like Cauchy’s one for the
derivatives of analytic functions. Conversely, our proof below can be
applicable to the complex statement corresponding to this lemma.

(3.4)

PROOF. Making the following transformation for 0<y<1,
(3.5) e¢*=1—y, and hence t=—In(1—y),

we have from (8.1)

1—-e
(3.6) o(w; m, my=lim |~ (1=~ y [~ In (1—9)|dy
Now, let us modify the term [—In(1—y)]™ in the integrand. Note
here that for any real w€[0, 1] and y € [0, 1—¢]

! Y — —Y
(3.7 |, (—vrdu=p b,

and that, since 0<y<1, by the generalized binomial theorem we can
represent the integrand in (8.7) as

(3.9) A-9r=3 V(¥ =S siw; ).

Since, for each 7 and any temporarily fixed y, ¢,(u;y) is a continuous
function of u over the closed interval [0,1] and the infinite series i‘,
i=0

¢:(u; y) converges uniformly over the interval to the continuous func-
tion of %, (1—y)*, by (3.8), we may carry out the integral term-by-term;

l_u_°°1_iu il
6o [ wra=g[] (Y )alr=-5 2y,
where 7,=—1, 7,=1/2 and

(3.10) T;:S:t(l—t)---(i—l—t)dt, i>2.

Then, from (3.7) and (3.9), we have
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1) [FmA-glt=-3 Ty, yefo,1-4.
i=0 9!

Well, since ¢, (y)=(7./i!)y*"" is continuously differentiable function of
y over [0,1—¢] and g ¢i(y) (n=1, 2) converges uniformly over [0, 1—¢]
by the Weierstrass _f:’heorem with noticing the inequality |7,|<I'(7)/6
(t>2) proved later, the series g%(y) is also differentiable and its de-

rivative coincides with i} ¢oi(y). Thus, we have for y € [0, 1—¢],
i=0

(312) [~In(A-gl*=3 T gL y1=5 Te i1yt —y).

=0 ¢! dy i=o g}
Hence, noticing the fact that the series in (8.12) is also uniformly con-
vergent, we immediately obtain the formula (3.2) from (3.6), (3.11) and
(3.12), which completes the proof of the lemma.

Secondly, we show the inequalities for a,, b, and ¢, defined in (2.4),
(2.10) and (2.21), respectively :

LEMMA 3.2.
(i) For r>8, it holds that
rer—1) F(r—1)< 37 )
1 1r=2) g, < 1— )
(3.13) 1200 =" 64 157

(ii) For r>2, it holds that
(3.14) Lr=1) o I'(r)
6 ~ T 6
and hence for r>2

(3.15) %ﬂ)—gc,g% .

PrOOF. For each r>3, decomposing the integral in (2.4) in such
a way as

a,=— " 2(l—x)(2—x)---(r—1—2x) l—x dx
0 2
—Si/z r(l—2x)-- -(fr—l—x)<x——;->dx] ,

and making the substitution y=1—2x in the second part of the RHS
of the above, we can express a, as
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(316) a,=>{"ya-u)(-v)le-9)E-v)-—1-9)

-1+ @2+y)---(r—2+y)ldy .

Then, it can be easily seen that

a >l[§.£. L. 2r=1)—-1_ 3 5 | .2(7—2)+1]
T rl2 2 2 2 2 2
=Ly \dy=0
-So y( —y)(—z— y) y=0,
and that
ar<%_[2.3. coe(r=1)—1:2- o+ - (r—2)]
A 1= (L _(r=2)(r—-1)
So va y)<2 y>dy 64r ‘
Thus, it follows that
(3.17) 0<a,<T=DL=1) _ox 53,

64r

The above lower bound zero, however, is not desirable to our purpose;
we try to find a better bound than the above. Let us assume tem-
porarily that r>4, then we have

1.5 7 .. .2r=83{" q_ 1_> —y)—
(3.18) a>-. 2.1 22 va-( 5 -v)ie- -+l
= 1 <_5__1_..._27’_3>>P(’I'—1)
120r \2 2 2 120r -

On the other hand, we have for r>4

319) a,<L.2.3.....(r—2 S‘"y(l—y)(l—y)[(r—l—y)—(lﬂ)]dy
r 0 2
_I'(r-1) _ 37 *
Y (l 157') (<az).

It should be noted that the bounds in (3.18) and (8.19) can be applied
even when r=3. In fact it is easily calculated that a;=1/360, which
coincides with both the lower bound in (3.18) and the upper bound in
(3.19) when putting formally »=38 in both bounds. Thus, we obtained
the statement (i) of the lemma.

The proof of the case (ii) can be accomplished by the same man-
ner and will be omitted here,



SOME INEQUALITIES BASED ON INVERSE FACTORIAL SERIES 299

Finally we list up two formulae which are useful in subsequent
discussions (cf. Lemma A.l in [1]).

LEMMA 3.3.
(i) For real number x>0, it holds that
(3.20) S (i) =1

i=t 2(x+1)---(x+1) Tt
(ii) For real number x>2, it holds that
= I(i+1) 1

(3.21) A = .
i [x+1+1) (x—1)I(x)
PrOOF.
(i) By induction it is easily verified that for natural number n
(3.22) 1_ 2 I'(7) _1 I'(n+1)

2 i1 g@tl) (@t 2 (@+1)@+2) - (@+n)

Thus, letting n — o we immediately obtain (3.20).
(ii) For natural number n we can also see the following equality

" PG41) & TG+
(3.23) AT@ritD) & @l
_ 1 'n+1{ I"(j)
o—1 = (@t —2) (@ +7—2)

_ I'g+1) }
(@+j—DI'(z+5-1)

_ 1 {1 1 I’(n+2)}.

2—1 (I (x) x+n I'(n+x)

Accordingly, by letting n — oo, we obtain (3.21).

4. The proof of Theorem 2.1

In this section we prove the inequalities of Theorem 2.1 according
to the steps described in the introductory section.

4.1. The proof of the inequality (2.2)

The formula (2.1) with (2.3) was given by Schlomilch [4], when =z
is any positive integer greater than or equal to 2.

By Binet’s first expression for log I'(-) in terms of an infinite in-
tegral (cf. [6], p. 248), we may express

4.1) log I’(a:+1)=—i12— log 27+ (:v—l—-;—) log x—x+ R*(x),
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where

(4.2) R*(m)sg (-;-—l+ - il ) "_t” dt .

Then, our problem is to evaluate the remainder term R*(x), which is
easily reduced to

(4.3) R*(x)=§g(m: 0, 1)—g(; 0, 2)+g@+1;1,1).

Here, in view of Lemma 3.1, we have

A=y g, 1 _3 1i
@4 o(wi0,)=], v Yo Bt @ril)

4.5) g(x;0,2)= S(l—y@—x—idy S 1 ;/);- dy

od 7 (1_ 1—1 )
+i§=12 w(@+1)- - -(x+i1—2) r+i—1/’

and

6 gat1:1,n={ L=V gy 3 [ =0 gy L
e 2 ) Y 3z

< 1 ( _ Tinn 7 >
+2 @t (@ti—2) V' zti-1/

From (4.8)-(4.6), it follows that

— o @iy
(4.7) R*(x) 12(17 122 w(m'i‘l)' . -(x—l—’i) ’

where for r>3

4.8) a,=—1-{r,+l—(r—-1->r,}=lg't(1—t)--.(r—1—t)(l—t)dt.
r 2 r Jo 2
Thus, by (4.1) and (4.7), the formula (2.1) with (2.3) immediately fol-
lows.
We are now in a position to prove the inequality (2.2). By (i) of
Lemma 3.2 and (i) of Lemma 3.3,

- 50
9 R(x)>' B 2@t ) (i1
ol ()
120 (& @—Da@+D)- - (a+i—1)G—1)
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-3 I'(7)
Ez (x—1)x(x+1)- ~(a:+1l—1)i}
2130 i I'(7) _ 1 i I'(z) . ’
=2 g(x+1)---(x+12) 360 i= x(x+1)---(x+i—1)

by (i) of Lemma 3.3,

=L[L_ 1 ]_1[1_l_ 1 ]
120 Lo x(x+1) 360Lx—1 2z 2x(x+1)

"~ 860x(x—1)(x+1) 12O<x2—1 a:2> R(z) .

On the other hand, by (i) of Lemma 3.2 and (i) of Lemma 8.3, we
have

1 riE—1) 37 ¢ ri—1)
410) R@) <t B 2et1). i) 960 2@+ 1) (at+i—1)
171 1737
SGT[F x(x—i—l)] 960 120E(®)
1 1

which completes the proof of (i) of Theorem 2.1.

Remark 4.1. For any positive integer n, H. Robbins [3] gave the
following inequality

1 1
. 0 11
(4.11) <BM< o Tonti

Comparing this bounds with ours in (2.2) with (2.5) and (2.6), the lat-
ter ones are more accurate than the former, except for n<2. Note
further that our bounds in (2.2) are also applicable for any real num-
ber x>1.

4.2. The proof of the imequality (2.8)
Since, for b>a>0 and an arbitrary ¢>0

Sw L"'”dwgh e duze"’sm Liu=clog 2,  (ae<o<be),
3 t ac Y a U a

then by letting ¢ — 40, it follows that

(4.12) Iog%:S: (e’“‘——e"")%t—, @>0, b>0).

Making use of the above formula, we have for >0
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(4.13) log(1+ 1) log —— u+1 Sm e (l—e )dt

here using Lemma 3.1

=g(u; —1,1)

=-5 1 a—vyv-hiws Day
1=0 ’L

-5 7

B Wt D) )

Noticing the fact that 7,=—1, 7,=b, (¢>1), we thus have proved the
formula (2.7).

Now, we shall prove the inequality (2.8). By (ii) of Lemma 3.2
and Lemma 3.3, we can evaluate S(u) in (2.9) as

N 2u(; IRV 6u(u1+ 1 S

On the other hand,

¢ S(u)<—23(?1113 % = (u+11)1-(?)'(u+i)
- Zu(z}+1) + 6uz(11+1) =S).

Combining (4.14) and (4.15) we get the inequality (2.8), and thus we
have completes the proof of (ii) of Theorem 2.1.

In almost the same manner as the above proof we can prove the
inequality (2.14).

4.3. The proof of the tnequality (2.19)
Since for a>0

(4.16) 1 g” e-oidt
a 0

we have for real number >0 and positive integer p>2

o —p— (Dt
= S PnCas i 1—e dt
0

1l—e

_ o e-t e—(z+p)t ) Soo ( e—e e-(z+1)t )
=\ (£-—— dt—\ (£-— dt
So ( t 1—e oNt 1—e

@win 5
i=1

x+1
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=g(@+p)—P(x+1),

where for s>1

—t e st
o= o 0= (5 o
(cf. [6], p. 247). Further, by using (4.12) with a=1 and b=s, we can
rewrite ¢(s) as

(4.18) d(s)=log s+ S: (%— i _le_t )e‘“dt )

and making the transformation (3.5) and using (3.11), it follows that

7
(4.19) Pls)=log s— E1'L.9(s-|-1) “(s+1—1)

—logs—1 —17(.
2s s

where T'(s) is the infinite series defined in (2.20).

From (4.17) and (4.19) we immediately obtain (2.18).

Next, we shall show the inequality (2.19). By (2.20) and (3.15)
and applying Lemma 3.3 it follows that for s>1

rG+1)
(420) T()< Z‘i(s+1)(s—l—2) GL)G+D)

T+l & I@E+1) I’(s+1){ 11 }
ST ATetitD . 12 G-)le) I(s+1)

-1
_m_m).

On the other hand we can evaluate T(s) as
I'(3)
(21) TE)>= Z_i (s+1)(s+2) NP YER )
f} @) +1s I'()
= +1 GFD e Fi+D) | 6 & D (st D)
1 r'()
(8+1)i21 (+1)---(s+i+1)
_S$ 1 I'(z+1)
T 6 = (+D)(E+itl) G+1)---(s+9)

by applying Lemma 3.3, for s>1

=3
6 i

-

05

1 s s
66D 12612 <s—-1 _1>
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_ s'+s—4
12(s—1)(s+1)(s+2)
-1 1 1 T(s)
12(s—1) 6(s—1)(s+1) 6(s 1)(s+1)(s+2)
1 o
2m—T(8)/6-

Thus, we have completed the proof (iv) of the theorem.
4.4. The proof of the inequality (2.25)

Since

(4.22) 1. S” tedt  (a>0),
a 0

we can represent

2 1 © 1—e®
4.23 > ——:S te~ e dt
(4.23) =1 (x4t Do l1—e

= Sm te (1 —e™ ) dt— Sw te~ @Y1 —gt)-Idt
0 0
=¢/(x+1)—¢'(z+p+1),

where for s>0
(4.24) #(s) = —log I'(s)= S te=t(1—e~)~'dt

(cf. [5], p. 261). Making use of the transformation (3.5) and the
Maclaulin expansion,

(4.25) P(s)= “(1 ¥ {—In(1—-y)}dy

oo di
- =U(s
E 8(8+1)---(s+1—1) ®)
where d; is the same coefficient defined in (2.27). Thus, from (4.23)
and (4.25), we have the formula (2.24).

Now we shall prove the inequality (2.25). By Lemma 3.3 we can
evaluate U(s) as

_ 1 > I'(G+1)

(4.26) V=5t 57D T4 Grse+1)--619)
1 2 > I'(y)

st 2s(s+1) + =2 s(s+1)---(s+J)

1 2
t oD eern)  J®-

@ |~ co[H
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On the other hand,

1, 1 1¢ I'G+1)
(4.27) U<t 6D T3 B 5610 617)
L1 +F(s) &> I'(G+1)
2s(s+1) 8 i I'(s+j+1)

1 2 =
o6t sse—Dern L

» |- o |-

Therefore, we have completed the proof of the theorem.

Finally, we remark that our inequalities can be improved more
accurately by considering some additional terms in evaluations of the
underlying inverse factorial series.
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