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1. Introduction

Let X be a real-valued random variable with a family of possible
distributions indexed by 1€ £, 2 is the realization of a random variable
A taking values in the space 2. For each 1, let f, denote the condi-
tional density of X given A4=2 with respect to some o-finite measure
p¢. Let @ be a family of possible a priori distributions G for A.

Consider the problem, after observing X, of testing H: 1€ » against
K:2¢€ o where o is a subset of 2, o its complement and H, K are
both composite hypotheses. Recently Meeden ([2], [3]) formulated this
problem in a way which bears an obvious analogy with the correspond-
ing problem in classical analysis, involving, as usual, the two kinds of
errors proper under such set up. Under certain assumptions about &,
{fi(x)} and w, Meeden suggested best tests for the above problem,
minimizing the second kind of error and dominating the first kind of
error by a pre-assigned quantity, uniformly for Ge G. These have
been derived primarily on the basis of their counterparts in the classi-
cal Neyman-Pearson theory and seem to be the best one can obtain under
the assumptions made. Therefore, whenever these assumptions cease
to hold, it is difficult to obtain best tests in the above sense.

The purpose of this note is to suggest, under certain assumptions,
some ‘approximately minimax’ test procedures for the above problem.
Specifically, the object here is to derive upper bounds of the two kinds
of errors for variations in G ¢ & and then to suggest test procedures
proper for controlling the upper bound of the first kind of error and
minimizing that of the second kind of error.

2. Formulation of the problem and derivation of main results

Throughout the following, we adhere to the notations used by
Meeden. Quite naturally, the occurrences of the two types of errors
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are as follows:

type (i) error: A€ »° decided and A€ w occurs,

type (ii) error: A€ o decided and A€ o»° occurs;

and the probabilities of these errors, assuming that G is the true dis-
tribution of A, are

@1 Potype (i) erron=| {{_ s@)fi@)du]ac)

2.2) P, (type (ii) error)=S {S + (1—5(w))ﬁ(x)dy(x)}dG(/l)

w®

where, as always, d(x) is the (randomized) test function defined on the
range of X which takes on values in the interval [0, 1] and if X=x is
observed, K is decided to be true with probability é(x) and H with
probability (1—é(x)).

Analogous to the problem of finding uniformly most powerful (UMP)
level a tests is the problem:

(2.83) subject to: P, (type (i) error)<a for all Ge &
(2.4) minimize: P, (type (ii) error), uniformly for Ge G.

A test which achieves this is called UMP level a test relative to &.
Under certain assumptions about &, fi(x) and », Meeden provided solu-
tions to this problem. ,

Our object here is to provide, under some different conditions, a
kind of minimax solutions for testing H against K.

General procedure
Under the assumption that & is a parametric family of a priori

distributions i.e., G ={G(]6), 6¢[6, 6], the form of G known, 6, 6
known}, the two kinds of errors have the expressions

2.5) P, (type (i) error)= S {S - a(m)ﬁ(x)dp(x)}da(z 16)

[ 0 || £@)d6(210)| dute)
(by applying Fubini’s theorem)

= | 2@ 75 @dpta)

and

26) P, (tyve Gi) erron={_{[.. 1—s@)s@duw]dcalo)

«®

_ Sx {S Fi(@)dGQ| o)} (1—8(x))dp(x)
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=| A —s@) 2 @due)

where we write f.5®(x)= S f{(x)dG(2]|6) and fiP= S fAx)dG(]6). Tt is,
of course, assumed that X does not depend on 2. The general problem
is then to find a test function d4(x) such that subject to: S o(x)-

FEO(x)du(xr)<a for all €[, #], the quantity S 1 —0(x)) £ P (x)dp(x) is

a minimum, uniformly for #¢[6,8]. We shall now find upper bounds
to each of these errors and choose d(x) such that the above conditions
are satisfied wrt these “upper” functions. To this end, we have a
number of procedures. :

Procedure 1.
Since

Sup 4., 307 aMute)] 5  , 30) (Sup (720} Vo)

0€(9,6]

and

Sup { [, 1—0@) fE@)u(@)| < . L—2@){Sup (L@} dp(e) ,
serg,a (X x 0e10,3]
and further that, whenever f°®(z) and fi®(x) are continuous in 4,
uniformly in x, these suprema are attained (the functions being defined
over closed domain), it follows that if we choose d(x) minimizing

[ (10} {Sup (£27())}di)

6e(0,6]

subject to
(@.7) [ 9@ (Sup (£ @@ du@)<a
0el4,6]

then this d(x) provides a ‘kind of minimax solution.” Quite evidently,
o(x) is given by
1, for Sup fi®x)>k Sup fO(x),

6el6,8] 6e[0,8]

5(6!7): d ’ for Sup f:g(’)(x) k Sup fG(a)(x)

0e(6,d] 6e[0,d]

0, otherwise

where k and d are such that (2.7) is satisfied. Strictly speaking, this
o(x) satisfies (2.3) exactly and minimizes ‘some sort’ of maximum of
(2.4).
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In practice, however, this procedure is not very suitable since de-
termination of the ‘sup functions’ is not at all easy. The following
two examples will make this point clear.

Example 1. Let X, given A=21, have the hypergeometric (n, 2, m)
distribution where 1¢(0,1,---,n)=2 and m and n are known positive
integers such that 0<m<n. & is the class of binomial (n, p) distri-
butions for pe M, a closed subset of [0,1]. Suppose that our object is
to test on the basis of an observed value x of X the hypothesis H: 2
<1, against K:1>1, where 1, is a given integer € 2. Obviously we
must have x<min (1, m).

To apply Procedure 1, we require to compute Su}[) fEP(x) and

pe

Sup £ (x) where, as can be easily verified,
peEM

q
n—m—(3—2)—1 — )%
fma(p)(x)zlg f;(x)dG(l | p)= <m>pzqm—;c So ? (1—2) dz
- a: Bn—m—2+x, {—x+1)

and

F1P@)= 3 f(2)a6aIp=(" )re | e —apds
53 @ B(n—m—2+x, —x+1)

If then a (=0) and 8 (£1) are the infimum and supremum of M, we
have

fE(x), for x=<ma,
Su}d) fE8P(g)=1 fEP(x) , for x=max {m,@, —1—19_—‘3 (n—zo)} ,

a function of z, 1, n, m, otherwise

and it is really the explicit determination of the last composite func-
tion which is difficult. Similar expressions for Sup f.:”(x) can also be
PEM

obtained and the same difficulty is involved.

Example 2. Let the distribution of X given A=2 be normal (1, o})
and the distribution of 4 be normal (6, ¢2) where ¢! and ¢; are known
and # € M, a closed set of real numbers, is unknown.

As before, if our object is to test H,: 1<, against K : 2> 2, (where
2, is a fixed number), we need to compute §3&P f50(x) and §5P FiP(x)

where, quite evidently,
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xloi+6jat) [T, 1
“G(0) x ———@[<Z _ x/0'1+0/0'2> /"—+_‘] T 0, 0,2+0_2
f ( ) 0 1/0'f+1/0‘§ \/O'f 0'% f( l 1 2)

and

FIO () = {1—@[(20—%> \/ﬂ]}ﬂwlﬂ, a+ad

f(x|p, ¢® denoting the normal density with mean g, variance ¢ and
di(z):Sz f(2]0, 1)dx. Here also determination of the ‘sup functions’

cannot be easily performed.

Procedure 2.

Here we assume that the family {G(1|4)} admits a density func-
tion g(1]8) wrt some o-finite measure p* over 2. Since then

Sup P, (type (i) error)=Sup ([ { s@) @02 0du*du)]
={ |, @) 1ia) (Sup oa1 O} e dpta)
and
Sup P, (type (ii) error)= S - S (1—a(x)).fu(x) {Sup g(2] )}
- dp*()p(z) ,

we can determine 6(x) such that subject to

(

[ 02 (@)p(o) Sa

| L =2 F2@)dptz)

is a minimum where we write
(2.8)

Fo(@)=\_£(@)(Sup o210} dp*(d)

and

o= £1@) (Sup o210} dp* .

Such a test function 4(x) obviously satisfies (2.3) and minimizes ‘some
sort’ of maximum of (2.4). Further, specification of d(x) presents no
difficulty since in most cases determination of f.%(z) and f.f(x) is rather
easy. By way of illustration, we outline the procedure for determining
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f%(x) with reference to the Example 1 mentioned earlier.
From what has been discussed there, it follows that we have

Fre= 560 [sap (3 Jpe
=500} )00 2 @A) 7 )07
+ 5 a@fi@( ey

where
1, for 254, where A3 /n=a
51(2) = {
0, otherwise ;
" { 1, for 1+2,<21=<1, where a<(4,+1)/n<i/n<p
&(A)=
’ 0, otherwise ;
and

1,  for 4=A=4+1 where (14+2)/n=p8
53(1)={ .
0, otherwise .
We, of course, assume M, for the sake of simplicity, to be the
closed interval [a, 8]. Therefore, f%(x) is known for every x. Similarly

f.5(x) can also be explicitly obtained, thereby leading to the specifica-
tion of d(x).

Procedure 3.

Under certain assumptions, we shall now give a procedure which
will enable us to determine quite generally the explicit expression for
the ‘approximately minimax’ test function.

ASSUMPTIONS. (i) G ={G(|6), 6¢[6, 0]} is a family of distribu-
tions having monotone likelihood ratio in 2.
(ii) The density fi(x) is a nondecreasing function of A, for 1€, uni-
formly in x.

We shall presently see how with the help of these assumptions we
can obtain explicit expressions for the upper bounds of the probabili-
ties of the two types of errors. Now

P, (type (i) error)=\_ d(x){\ fux)dG(2]0)tdpu(x) .
X ®

We take w=(0, 4] where 2,, a fixed number, €. Define
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fi(=x) for lcw,

(2, x)={ 7 for 1€ »®° where 5 (independent of 2,
may or may not depend on x)=f, ().

Then, by assumption (ii) and a lemma of Lehmann ([1], p. 74), it
follows that E,7(a, x):Sn ¥(2, x)dG(2]|0) is nondecreasing in #, uniformly
in . Making use of this fact, it is easy to verify that

(2.9) P, (type (i) error)ggxa(x) [f*(x16)+7{G~(8)—G*(9)}dp(x)

where
reln)={_r@icasn, 0=\, dalm.
Again
P, (type (i) erron)={_ (1—a@)!{  f@)dG@I0]duo)
Define

* for 1cw,
T*(2, a:)={
- fi(x) for 1€ o°

where 7* (non-negative, independent of 1, may or may not depend on
©)<f,(x). Then E,¥*(a, x) is nondecreasing in 6, uniformly in z and
we have quite readily

(2.10) P, (type (ii) error)ggx(l—ﬁ(x)) Lf*(210)+7*{G*(0)—G*()}d ()

where, as before, f "'c(xlg):S cfl(x)dG(AIE) and G"(b’):S dG(2]6). The

critical function d(x) which satisfies the size condition and minimizes
the r.h.s. of (2.10) is then explicitly given by

1 for f*(x]0)+n*{G(6)—G(6)}
>k[f(x|0)+n{G"(0)—G"(0)}],

@2.11) d(x)=1 ¢ for f(x]60)+7*{G(60)—G(9))
=k[f*(x]0)+{G~(0)—G()}],

0, otherwise

where ¢ and %k are determined such that

2.12) | 3@ @1 8)+7{G-0) — G- ()} p(o) St .
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This function §(x) obviously satisfies the basic condition (2.3) and more-
over, minimizes ‘some sort’ of maximum of the second kind of error.

We now illustrate the application of the procedure with the help
of the following

Example 3. Let X given A=2 have the truncated exponential distri-
bution, truncated at i, with the density fi(x)=e “®, =2 (wrt the
Lebesgue measure) where 1¢ (0, ©0)=£2. & is the class of exponential
densities (wrt the Lebesgue measure) with a parameter 6 i.e., dG(2|6)
=1/0-e7*"da, 6¢€[6, 6], a closed subset of real numbers with 6>0. It
may be seen that the assumptions (i) and (ii) are satisfied in this case.
Suppose now that on the basis of an observed value x of X our object
is to test H: 1<, against K:2A>2, A being a fixed number € 2. It is
to be noted, however, that the procedure outlined in (2.11) is not read-
ily applicable in this case since X, the domain of variation of X, de-
pends on i. The appropriate test function &(z) can however be con-
structed without any difficulty following lines very similar to those
stated earlier.

For this purpose, we begin from the definitions of the two kinds
of errors. We remember that

2.13) P, (type (i) error)=S [S i)E,a(ac)ﬁ(aa)ozy(a:)]azG(/zw)

oo L ) @)ita) A1)
0@ [, F@EQI0) dnta)
@) [, F=)GaI0)]duta)
" 8(0) [£(219)+7{G-0)— G-(O)} dp(x)
(using (2.9))

oo

S
\
<\
g
and similarly

2.14) P, (type (ii) error)= S [S L (1—3@)) ﬂ(x)dy(x)]dG(l 16)
I a—a@)[ [} @dcai0due)

|, a—ae)| | £edcalodue

+{ a-s@)[|" s@dcain |due)

I

0
oo
0

Since for any critical function 4(x), we can define, a forteori, do(x)=0
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for x<2,, it is indeed with the first part of (2.14)' that we are con-
cerned. Defining, then,

0 for 2<4,,
T*)=< fix) for <1<z,
p¥* for 2>« where fi(x)<p** for all i<z

it can be easily seen that
(2.15) first part of (2.14)gS:° (1—5(90))[5? f{(@)dG]7)
+7+{|"a6a19)- " a6u10)} [apz) .

Performing necessary integrations, we get the minimax critical func-
tion d(x) proper for this problem, analogous to (2.11), in the following
form
e /A=D __ p—2(1/7-1>
1-6
1— 8—10(1/5—1)

o) = gk[e‘” {—T_E—} +y(e™>"” —e“o/f)] ,

1, for e"”{ } + pkH(g 717 — g /1)

0, otherwise, for +1

and
1,  for e*(x—a)+y**(e " —e ) Zkle A+l s —e )]
5(9;):{

0, otherwise, for 6=1.

Taking, in particular, »=f,(x) and »**=1, it is readily found that the
minimax critical function é(x) is given by

1 for z=¢

(2.16) 5(x)={ } whatever ¢, 6

0, otherwise

where the constant ¢ is such that
|| @D+ £, )6 @) - G (0} o a
i.e.,

(2.17) e~[&(k, 6, 0)]<a

where ¢ is a completely known function of 2,, # and 6. It may be
noted that (2.16) (with ¢ to be appropriately chosen) represents the
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UMP critical function for testing H againt K in the classical theory
of hypothesis testing where 1 is treated as a constant.

Remarks. Minimax test procedures are useful and meaningful only
when the quantity viz., the maximum value of the second kind of
error, which we minimize, is really assumed for some value of the
relevant argument belonging to the appropriate domain. In our con-
text, this means that the expression for the supremum of the second
kind of error (considered as a function of #), which we are really min-
imizing (by choosing d6(x) properly), should be the value of the second

kind of error itself for some §¢€ M=[¢, #]. It may however, be noted
that this is not generally so in our problems unless the closed interval
M is degenerate, a very trivial case. The results therefore hold only

under the assumption that ¢ and 6 are ‘close’ to each other. This is
revealed by the term ‘approximately minimax tests’ that we have used
implying thereby that in all cases d(x) satisfies (2.3) exactly and min-
imizes ‘some sort’ of maximum of the second kind of error given by
(2.4).
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