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1. Introduction

Consider a random sample of size n from a distribution with abso-
lutely continuous distribution function F(x—¢), where 6 is unknown
and F is symmetric about zero. Suppose the sample has been censored
symmetrically under a type Il scheme with a fixed proportion a of
censoring from each end (0<a<1/2). For distributions with heavier
tails than the normal distribution i.e. contaminated by gross-errors,
Tukey and the Statistical Research group at Princeton (1949) proposed
the a-Censored mean and a-Winsorized mean as estimates of @, the
location parameter. A survey paper on the properties of these esti-
mates has been published by Tukey [17]. Hodges and Lehmann [10]

proposed the median of the (n—2|—1> averages of pairs of observations

as the estimate of #. This estimate is based on the study of Wilcoxon’s
one-sample statistic. Huber [11] considers the class of maximum
likelihood estimates of # and found those members of this class which
minimizes the maximum variance over various classes of contaminated
distributions. Rothenberg et al. [13] show that the 0.375-censored best
linear unbiased estimate of location parameter is most efficient relative
to the maximum likelihood estimate for the Cauchy-family. It is also
well-known that the maximum likelihood estimate of ¢ for the double
exponential distribution is the “median” of the sample. Recently,
Bickel [4] studied the asymptotic properties of the a-censored mean,
a-Winsorized mean and Huber’s estimate and he compared them with
the Hodges-LLehmann estimate and remarked “unless the computation
involved is prohibitive, the Hodges-Lehmann estimate is to be preferred
in any situation where degree of contamination and type of distribution
is not known with great precision.” A general survey and advances on
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robust estimate of location may be found in Andrews et al. [2].

In this paper, we consider the Wilcoxon’s one-sample statistic in
an a-censored sample and study its efficiency property as a test statistic
for the hypothesis 4=0. Next, we consider the estimation of # based
on this statistic and it is shown that the estimate of # is the “median

of (n—22k +1> averages of pairs of observations in the uncensored por-

tion of the sample,” (k=[na]). This may be termed as the Hodges-
Lehmann estimate in an a-censored sample. Finally, we compare the
estimate with an a-censored mean, the a-Winsorized mean and the
Huber’s estimate and it turns out that the a-censored Hodges-Lehmann
estimate reduces considerably the effect of contamination by gross-
errors (see Section 5). Further, if the distribution is known, the effi-
ciency of the estimate may be improved by properly choosing the pro-
portion a of censoring.

Rank statistics in censored samples have already been discussed by
Basu [3], Gastwirths [7], Hettmansperger [8], Sobel [15] and Tamura
[16]. Hettmansperger [8] and Tamura [16] demonstrates that efficiency
of test statistics may be improved by proper censoring of the sample.

In Section 2, we define the Wilcoxon’s one-sample statistic in an
a-censored sample and study its asymptotic properties. In Section 3,
we. propose an estimate of # based on this statistic and study the
asymptotic properties of the estimate. In Section 4, asymptotic rela-
tive efficiencies (ARE) of the estimate are given for various distribu-
tions. In Section 5, we consider the lower bound of the efficiency of
the proposed estimate with respect to the families of all symmetric
and symmetric unimodal distributions, the a-censored mean, the a-
Winsorized mean and the principal estimate proposed by Huber [11]
(proposal 2). This section reveals the reduction of the effect of con-
tamination by the use of the proposed a-censored Hodges-Lehmann
estimate.

2. The Wilcoxon's one-sample statistic in a a-censored sample

Let X, X;,---, X, be n independent random variables from the
c.d.f. F(x—60) where ¢ is unknown and F is symmetric about zero.
Further, F is strictly increasing c.d.f. and absolutely continuous with
respect to Lebesgue measure possessing the density f(x—@) which is
continuous and strictly positive on its convex support C={x:0<F(x)
<1}. Let U, denote the a-censored Wilcoxon’s one-sample statistic.
@.1) v0=""FH" 5 #Xe, X)

ksisjsn—k

where X=(Xuw, Xc10,-**» Xow_w) and k=[na] denoting the largest in-
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teger contained in [ ]. Further,

1 if X(i)+X(j)>0 '
2.2) Xy Xepp)= )
otherwise .

In this section we first study the asymptotic property of U, defined
above and propose an estimate of # based on U, in Section 3.

Let X, <Xp<---=<X., be the order statistics of the random var-
iables X, X;,---, X,. Assume «a¢ (0, 1/2) and the density f continuously
differentiable in the neighbourhood of the population quantiles &, and
&1-. of orders a and 1—a respectively. Let X, and X,_, be the sample
quantiles corresponding to &, and &,_,. Then, conditionally on the vec-
tor statistic

(2.3) Z={Vn(X.—¢&), v (Xi..—&)}

U. is Wilcoxon’s one-sample statistic based on a sample of size n—2k,
(k=[na]) from the distributions C, with density

fz—0) . X,<z<X..,
2.4) g(x|2)=] FXi.—0)—-F(X.-0) =v=

0 otherwise .

Now, define the statistie
_ -1
(2.5) R,= <n 22k+1> > ¢ Xw, Xp)—E(9|2)},
ksisjsn—k

where E (¢]|Z) denotes the conditional expectation of ¢ in (2.2) given
the vector Z in (2.3). Lehmann [12] has shown that the conditional
distribution of U, given Z is asymptotically normal for all # and Cramer
[6] shows that the density of Z converges point-wise to the bivariate
normal density. Further, it follows from Theorem 2 of Sethuraman
[14] that the random vector

(2.6) Wn R, vu(X,—§.), v (Xi—61_0))

is asymptotically distributed as a trivariate normal distribution for all
0 with the elements of the covariance matrix as follows:

2.7 1 —a(l—a) _a(l—a) o

Uuzmy O = fz(Ea) y O3 b i)

)] F&)
alj=0 R 7j=2,3.

Now,

(2.8) Vu{U.—E (U)}=vnR,+v7n{E ($|Z2)-E (U.)}



238 A. K. MD. EHSANES SALEH

where

2.9 E, (¢| Z)=P (X(i)+X(j)>0)
:le—“ S“'l-“ f(x—0)f(y—O)dxdy
x, Jv  [F(X,_.—0)—F(X.—0)]

An application of Theorem 4.2.5 of Anderson [1] shows that 4% (U,—
E (U,)) is asymptotically normally distributed with zero mean and var-
iance

(2.10) 3_(?1% .

The above conclusion follows from the following considerations: consid-
er the asymptotic variance of U, under the hypothesis §=0. In this
case,

2.11a) E, (U.)=1/2

and

(2.11b) Var {nm(U,,—%)} —Var (n'"R,)+ Var {n‘/’(Eo @] Z)—%)}
+2 Cov {n'”R., n'*(E, (¢| Z))}

Now,

2.12) E (412)= 3;;%3}27;—?})((2)5]2 '

By Taylor’s expansion of (2.12) about ¢, and &_, we have

@2.13) E, (¢|Z)=-§-+(X.,—ea)(Tﬂ%HXl-a—a-a)%f%w(n*) :

This results in

vl 1\ = 1 2a -1
2.14) var {n(U.— 2 )} e R
__ 144a -1
=Sz O™
Hence,
(2.15) lim Var {n‘”(U,—%)} =§(11+T42ﬁ)_2 .

Also, for any 6, the asymptotic mean of U, is given by

(2.16) 12(1— 20) S:‘ S; f@—6)f(y—6)dzdy
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and the derivative of (2.16) evaluated at =0 is
(2.17) 12(1 —2a)"* Se“" Fix)da .
eﬂ

Note that for a=0, the corresponding result coincides with the un-
censored Wilcoxon’s statistic. Therefore, it follows that

THEOREM 2.1. For the class C, of distributions 0<a<1/2, the asymp-
totic efficiency of U, relative to U, is

- e
(1+4a)(1—2a)2<S: fz(x)dx>z '

(2.18) ARE (U, : U)=

Moreover, for C, with unimodal densities

1 ARE(U,: U, 1

(2.19) 14+4a ™ )= (1+4a)(1—2a)* °

PROOF. First part follows from the definition of asymptotic relative
efficiency (ARE) and the result (2.19) follows from Hettmansperger [8].
The lower bound is attained by the rectangular distribution. Bickel
[4] has shown that this lower bound is the same as the efficiency of
a-censored mean relative to the mean.

3. Estimation of location parameter

From Section 2, we consider two immediate properties of U, con-
ditional on the vector random variable Z:
(a) U, is symmetrically distributed about 1/2 independent of F when

=0,
(b) U(Xp+a, Xointa, -+, Xu_p+a) is non-decreasing in e for all
(X(k)r Tty X(n—lc))'

The possible values of (n——22k+1> U, are 0,1,2,--., M where M=
<n—22k+1>- M may be odd or even. Let M=2l+1, then we have

6x*=sup {0: UX—0)>1/2} = Waro
(3.1)
6x=inf {0: U(X—0)<1/2} = Wepn

where Wy, <Wa, < --- < Wy, are the ordered averages (X,+X,,)/2=
W.,, k<i<j<n—k. Similarly, for M=2l,
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0f*=sgp {0:U(X—0)>1/2} =W,y
3.2)
0;*=i101f {0:U(X-0)>1/2} =W, .

In both cases, we have the a—cenéored estimate of @ as

3.3) 6.= med M .
© ksisjen—k 2
We now consider the asymptotic properties of é.. Following Leh-
mann [10], it may be proved that 6, has an absolutely continuous dis-

tribution conditionally on Z. Further, under the same condition 4, is
translation invariant i.e.

(3.4) b(X+a)=0.(X)+a .
Thus, we have
(3.5) P, {(0.—0)<u|Z} =P, (6,<u|Z)

where P, denotes that the probability has been computed assuming @
to be true value of the parameter. The distribution of 6, is condition-
ally symmetric about ¢ by Theorem 3 of Hodges and Lehmann [10].
Therefore, 6, is an unbiased estimate, (conditionally on Z) follows from
the fact that n'?{U(X—6—a/yn)—1/2} is asymptotically normal with
zero mean and variance 1/3(1—2a) for all # using the theory of U-

statistics due to Hoeffding [5] and Lehmann [12]. Thus, by Hodges and
Lehmann [10],

(36) Gl@=lmP, (n'(6,—6)<a}
=lim P, [0 {UX—0—a/yn) =} o =n"(1{2—pm)]o]

where

f1—a
(8.7a) = —;— - ’n—l/z(lz;ZZa)—z Se Sfix)de+O(n™)
(3.7b) p=_Ltia

T 3(1—2a)

and as n— oo

g ) gy S

Thus, as n— oo
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(3.8) G(a)=0(aB/A)
where
B=4(1-2#)~K* and A'=_Lltda
3(1—2a)°
K= S:‘ fia)de

a

and @ is the standard normal c.d.f. Therefore, it follows that n'*(d,
—6) is asymptotically normal with zero mean and variance

3.9) (14+4a)(1 —2a)* )
o i

The asymptotic variance of the uncensored Hodges and Lehmann esti-
mate of @ is given by

1/12(51 f2(x)dx)z.

Therefore, the asymptotic relative efficiency (ARE) of 4, may be ob-
tained as

o e

(3.10) ARE (4, :6,)= _ .
(1+4a) (1—20()2(8_00 fz(x)dx>

s

which is the same as the result given in Theorem 2.1.

The following table of efficiency of the Hodges and Lehmann esti-
mate of # in censored sample relative to uncensored sample gives a
good idea of the performance of the estimate we have proposed.

Table 1
a .10 .20 .25 .30 .35 .40 .45
Logistic 995 968  .945 917  .882  .842  .798
Double-exponential 1.029 1.089 1.125 1.164 1.204 1.246 1.289
Cauchy 1.089 1.258 1.339 1.403 1.435 1.441 1.405

These tabulers values have been quoted from Tamura [16]. For the
normal case the efficiency is near optimal for a=.05. Higher values
of a reduces the efficiency for other distributions listed.

However, it is useful to compare our estimate to the optimal linear
a-censored estimate as presented in Chernoff et al. [5]. The asymptotic
variance of the optimal linear a-censored estimate of the location param-
eter is given by
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3.11) 0’321»»:{5:1-" xzf(x)dm+m} .
a a
Therefore, the ARE (é, 1 6°") is given hy
. 2
12(& fz(x)dx)

(1+4) (120 [

ARE (6, : )= T )
a xzf(x)dx—i- fcffa) }

a

4. ARE examples

If ¢(x)=(2r) %2, —oco<x<oco, the standard normal density and
@(x) the corresponding c.d.f., then the ARE is given by

@an 3 [20(22¢,_)—1]*

T (1+4a) (1—2a)2[1—2a+2¢“1(a)¢(q)‘1(a))+2 ¢2(¢:(a))]

for 0<a<1/2. In this case, ARE (4, : 6°%)<.955, for all 0<a<1/2 and
decreases to 0, as a—1/2. If f(x)=(1/2)e™'*!, —co<x<oo0 (the double
exponential density), then

3(142a)*
8(1+4a){1—a(l+1n 2a)}

(4.2) is always =1 for all 0<@<1/2 and increasing in a and

(4.2) ARE (4, : o) =

lim ARE (4, : =1 .

a—1/2
If f(x)=7"'A4+2Y)"!, —o<x<o00. The ARE becomes
(4.3)
ARE (4, : 62
_(3 > {(1/x) sin 7(1 —2a)+ (1 —2a)}?
™ 2(1+4a)(1—2a)2{tan 2120+ cos’ =(1—2a)/2 —%(1—2@}

a

for all 0<a<1/2. This ARE is a convex function of a« and has a max-

imum at a=.375 further as a—0 or a—1/2, ARE (0:, :0)—0. Thus,
the middle 25 percent observations gives most efficient a-censored
Hodges and Lehmann estimate of the location parameter 6.

5. Comparison with a-censored mean, a-Winsorized mean and Huber’s
estimate '

Let & be the family of all symmetric distributions possessing the
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regularity conditions of Section 2 and let & be the family of all sym-
metric unimodal distributions which possess the same conditions as out-
lined in Section 2. In this section, we compare the a-censored Hodges
and Lehmann estimate with a-censored mean, a-Winsorized mean and
Huber-estimates.

ba. Comparison with a-censored mean

Consider the a-censored mean defined by
— L _Sxo, k=[nd.
n—2[na)] i=k

It has been shown by Huber [11] that it is the maximum likelihood
estimate of # when the density is given by

(5.1) X.=

e (=5)
(62  f@)=

%/%—:_exp{—alwl——%—az} for |z|=a

for |z|<a

which a=F(—a) and F is the c.d.f. corresponding to f(x) and 0<e<1

while a depends on e. Bickel [4] has shown that n“%X,—#6) is asymp-
totically normal with zero mean and variance

(5.3) a —2a)-2{ S: xzf(x)da:+2a53}

for any symmetric f(x). We may compare our estimate with (5.1) and
obtain the ARE as

Ao 12 oo L 2
(.4) ARE (@, : X.)= (1+4a)(1_2a)4(86a f(x)dx>

. 15:1_" xzf(x)dx-|—2aéﬁ} .
(i) If f(x) is normal we obtain

3 [20@P0TNa) 1T (1 94 | 20 (a)p(@ ) + 20O~ )T} -

(6.5) 1+ 42) (122

(ii) If f(x) is double-exponential distribution we have

3  (1+2a) o
(5.6) = (1+4a)(1_2a)2[1 2a(1—1In 22)] .

(i) If f(x) is Cauchy‘distribution, we have

6{(1/7) sin 7(1—2a) +(1—2a)}? s
6.7 ) (b {m tan* Z (1 —24)
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+tan %(1—201)—%(1—201)} .

Now, we present the following theorem which gives the lower bound
of the efficiency defined at (5.4).

THEOREM 5.1. Let ARE (é, : X.) be the efficiency of the Hodges and
Lehmann estimate é, and the mean X, in an a-censored sample. Then

: Ao 1 27 11— 9e(c) - 10a
(5.8) Fl‘telfg ARE (oa.X,)_(lHa) 27 2000 {(1—2a)c(er) +10a}
- {8¢(a)—10¢(a)+15)*
where
c(a)=1+%[{3(a+a2)}1/2—3a](1—2a)'1 and
sup ARE (4, : X,)=oo .
FedJ

Proor. Follows from Bickel [4] Theorem 4.2.

The following tabular values are given for the lower bound which
are quite high and we conclude that the Hodges and Lehmann estimate
in a-censored sample is to be preferred unless very precise knowledge
of the required « is available. These values are higher than the Bickel’s
[4] result.

Table 2

a .01 .02 .03 .04 .05 .06 .07 .08 .10

inf ARE(f.:X.) L8911 .9042 .9195 .9268 .9362 .9477 .9507 .9556 .9654
FegJ )

5b. Comparison with a-Winsorized mean
Let X* denote the a-Winsorized mean defined by

n—k
(5.9) X¥=n" {kX(k)_’_i:%H X(i)+kX(n—k+1)} .

It has been shown by Bickel [4] that n'(X*—6) is asymptotically nor-
mal with zero mean and variance

(5.10) S:l'“ CdF(t)+2a (¢, .+l f(E.))

a

for any symmetric or symmetric unimodal densities f(x).
We may compare our estimate with X* and obtain the ARE as
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Ao 12 flma oy z
(.11) ARE (. X)= (1-—2a)2<ge, f(x)dx>

f1-a
AV var O+ 20 el -
The following theorem gives the lower bound of ARE (é,, : X¥) for Fed.

THEOREM 5.2.
) Ao 1 27
5.12 f ARE@,: X¥)=—— 2" _{(1—2a 1
(612 Inf ( )= 17 4x 2000 (T 200(e)+10a}
- {8¢(@)—10¢(c) + 15}

where c(a) ts defined in Theorem 5.1.

Proor. Follows from Bickel [4] using the expression (4.24) on
page 854 and Theorem 5.1. For Fe G, where G is the family of sym-
metric unimodal distributions, the approximate lower bound may be
obtained following Bickel [4] as

(5.13)  inf ARE (9, : X*)=inf (1+4a)"' 20 [(1—2a)'c+10a]
Fegq p 2000

- (8c'—10c+15)%.

Table 3 gives the values of lower bounds for chosen values a as in
Bickel [4] to show the improvement by censoring when FFe & and Fe G.

Table 3

a .01 .02 .03 .04 .05 .06 .07 .08 .10

FinngRE(éa:X't) .8558. .8333 .8125 .7845 .7583 .7339 .7031 .6742 .6179
€

Lower bound of .
ARE (6. : X¥) .8510 .8439 .8286 .8148 .8127 .8019 .7922 .7837 .7813
for Fe G

5c.

Let H(a) be the estimate of ¢ considered by Huber [11] in proposal
2 which is obtained as a unique solution of the system of equations

g:S[’(a, (xi—'T)/S)ZO , Z ¢2(a, (xi_T)/S)zo .

Bickel [4] has shown that +/n(H(a)—6) is asymptotically normal
with zero mean and variance ,

(5.14) (S"_q dF(t))—2<S: #dF(t)+2¢" S: dF(t))
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and ¢ satisfies the condition

(5.15) (@)= S"q PAF(t)+2¢" S: dF(t)
and
(5.16) B(a)= S 1dd(t)+2a* S”dq)(t)

where @ is the standard normal distribution. The efficiency of 8, rela-
tive to H(a) is then given by

(5.17) ARE (@, : H(a))= (1+4a;f1_2a)2 (S: fz(x)dw>2<sq_q dF(?)) -

: (S; #dF(t)-+2¢ S: dF(t)) .

The following theorem gives the lower bound of the efficiency of the

ARE (éa : H(a)). Let r=2a%f(a). Then = is the monotonically increas-
ing function of a. The lower bounds are given in terms of .

THEOREM 5.3.
(a) Sup ARE (4, : H(a))=oo
Feg

) A _ 1 27
(b) I;relgARE(ﬁ,,.H(a))— AT d(—2a) 8

- t73{32a%* 4 (82> — 807)a, + (3c*— 20 —60)}
for 2<7<57.415

a.=1/2—.685(1—2[r),

: g . — 1 _22_ (37— 2
(e) I;rEliéFARE(B,.H(a))— ATdnd—2a) 8 (37 —207460)*}

for 7.415<7=<10

864
_ >10.
ATagd_say o=l

ProOF. Follows from Bickel’s Theorems 5.1 and 5.2 [4].

B We now present Table 4 which gives the ARE (@, : X,) and ARE ((9, :
X*) for normal, rectangular, Double-exponential and Cauchy distribu-
tions. This table has been computed using a=.01 and a=.05.

Table 4
Normal Rectangular ex?;ggget-i al Cauchy
ARE (éa :X-a) .9611 1.0134 1.0412 1.2346 1.4117 1.2757 6.7280 2.7469

ARE (6,: X%) 9580 .0981  .9712 .8583  1.4805 1.4369  8.3597 6.5777
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The first column under distribution is for «=.01 and the second is for
a=.05.

The conclusion of this investigation is that the a-censored Hodges
and Lehmann estimate is robust and reduces the effect of contamination
of distributions.
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