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Summary

In this paper a theory of estimation of a regression function by
the Parzen kernel-type density estimators is developed in the following
points: 1) convergence of the estimators to the regression function at
a continuous point, 2) convergence of the mean square error at a con-
tinuous point, and 3) the speed of the convergence in 2).

1. Introduction

Let (X,,Y),---, (X,,7Y,) be independent and identically distributed
random variables with a probability density function f on the two di-
mensional real space (R? $%. Denote the marginal density function
of the random variable X by ¢ and the regression of Y with respect
to X by 5. Of course we assume the existence of 7(x). Let x be the
Lebesgue measure on (R, B).

To estimate the regression 5(x), Nadaraya [4] introduced the class
of statistics

1.1 ) =3 VK (2% 5 (22K )
(LD i@ =5 VK(E2) B k(272
where K is a kernel which is a $B-measurable function satisfying the
conditions,
1° sup |K(z)|<oo,

—oolr<oo

2°  lim |2K(x)|=0,

3° |7 K@) udz)<eo,
4 S:K(w)y(dw)zl,

and % is a function of natural numbers n satisfying the conditions,
1 h(n)—0,
2" mh(n)—
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with increasing .

In addition, these K and h were given by Parzen [1] for the first
time to estimate the density function g.

Further, Nadaraya showed that

sup |7(2)—7(®)| >0  (n—o0)

with probability one, under the conditions; a) g and 5 are continuous
over the entire real line, b) min  g(x)=a>0, ¢) —0c<ASY=<B<L

—0<asTSh<o
oo with probability one, d) K is a function of bounded variation, and

e) the series ﬁ exp {—vnh¥(n)} is convergent for any »>0.
n=1

In this paper we show the following results as the main theorems
under the conditions given by Parzen without those a)-e) added by
Nadaraya;

(L.2) P {lim | 7.(x)—7(@)| =0} =1,
(L.3) lim E [f,(x)—7(@F'=0,

if 2 € R with g(x)#0 is a continuous point of 5, g, and f for each fixed
ye R. Further we will show the speed of the convergence of (1.3)
under the above-mentioned conditions and those added by Wahba [7].

When the marginal density function g is known, we can consider
the estimator

« _ 1 n r—X;
(14 W)= e & K < h(n) )
instead of 7,(r). For this estimator we will show the same result as
stated above.
It should be noted that our results will easily be extended to the
case where the variable X is multivariate, using Cacoullos’ extension
[2] of Parzen’s results.

2. Convergence of the estimator #,(x) to 7(x) with probability one

Let

(2.1) k(x)=g(x)n(x) ,
~h_ 1 2 r—X;
(22) D=y 2K < h(n) > ’
7. 1 2 r—X,
(2:3) T TR - ( hin) )



ESTIMATION OF A REGRESSION FUNCTION 223

for z € R and for the sample (X, Y)), -, (X,,Y,). Then we have
(2.4) @) =leu(%)/Gn() .

As the condition of &, we also impose the following one which im-
plies the condition 2';

2" There are a constant § and a monotone increasing function H
of natural numbers m such that

(2.5) H(0)=0, H(m)l oo (m— o), and Dm'**<H(m)

for sufficiently large n where D is some positive constant and 0<a<1,
and

2.6 < .

(26) n§n n*h(n) — H(m)

We assume that h(n) satisfies the conditions 1’ and 2" so that it satis-
fies 2’ as well.

Remark 2.1. We think that the following properties are well-known.

If h(n)=0(n"") or h(n)=0(exp (—n’)) for 0<1<1, the conditions 2’
and 2” are equivalent. Therefore the condition 2’ can be replaced by
2" in those cases.

Existence of 7(x) is equivalent to the following assumption :

ASSUMPTION (A)

" vr@ vy | <o

for each fixed z € R.

We omit to mention Assumption (A) in each proposition through-
out this paper.

First we obtain the following lemma by a closer examination of
the proof of the Kolmogorov strong law of large numbers (see Theorem
7.2.2 in [6], for instance).

LEmMMA 2.1. Let (X;,Y), (X, Y,),-- be independent random vari-
ables satisfying E (X, Y,)<oo and E[X,Y,—E(X,Y,)]’< for each n, and
let {b,} be an increasing sequence of positive real mumbers with b,— co.

If

L —_ 2
E E [XnYn E (XnY'n)] <OO ,

n=1 b2

then (with S,=X,Y;+---+X,Y,)
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S.—E S,

5, —0 (n— o0)
with probability 1.

LEMMA 2.2. Suppose that the kernel K satisfies the conditions 1°-4°.
If z€ R is a continuous point of g, then

|Gu(x)—E gu(x)| >0  (n—o0)
holds with probability 1.

Proor. It suffices to show that

@2.7) vEs [Th“(‘WVar [K(%)]@o

holds by the Kolmogorov strong law of large numbers. In fact, we have

2.8) vs3 [nh}n)]* E [K(x’:(:’f)(ﬂz

- 1 1 ® e X—U
=2 Whim) *(n) S-mK <h(n) )g(“)“ (@w) -

However, by Parzen’s result (Theorem 1A in [1]), for any ¢>0 there
exists a natural number n(c) such that if n=mn(), then

1 (® efx—u ® oy
@9 o | K (s see || K+
holds*. Consequently, by (2.8) and (2.9) we have
| = (XU
2.10) VS i S_mK ( = >g(u)y(du)

o oo 1
K u)u(d ] _1 |
+ow | K@pan+e] 5 m—
The result of this lemma follows from this (2.10) and the condition 2"
of the function h.

LEMMA 2.3. Suppose that the kernel K satisfies the conditions 1°-
4°. If x€R is a continuous point of f for each fized y € R, then

|k@)—E ku@)| 20 (n—)
holds with probability 1.

PrOOF. Since the Y, have the same distribution, by (2.5) there
exists a natural number n, such that if n=n,, then

00

* For any rx1 S | K"()) p(du)< oo, since K has the conditions 1° and 3°.
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éP{IYrI.Z_H(T)} P{H(m)=|Y:|<H(m+1)}

N
1)
-

Il
Ms
iMs

<

Il
Ms

m P {H(m)<|Y,|<H(m+1)}

3
L1

A

m P {H(m)<|Y:|<H(m+1))

m=1

% i H(m) P {H(m)<|Y;|<H(m+1)}

éEImP{H(m)éleKH(m-I-l)}
+5 BUTD
Since E {|Y;|} <co by Assumption (A), the above inequality gives
SP{Y.zHm) <o .

Hence by the Borel-Cantelli lemma we have
P{|Y,.|=H(n) for infinitely many n}=0.

Let
{ Y, if Y,<H(n),

0 if Y.=H(n).

(2.11) =

Then by the above statement Y=Y, for sufficiently large n with prob-
ability 1. By Lemma 2.1, it suffices for the proof to show that

(2.12) ves—l o [nh(n)]2 E [Y’K(mh( 7;7)( )] <eo

holds. Let f(x|y) be the conditional probability density function of X
given Y. Then we have
x.|]

b g [ {5

(2.13)

1 [nh(n)]* h(n)
=S s B[ 1|7 (2 Ful Yopta) ]

. However, since z is a continuous point of f for any fixed ye R, for
any ¢>0 there exists a natural number n(c) such that if n=n.), then

1 (- T—u ?
@18 o |7 K (A Falyudn s Twln) |7 K+

holds for a.e. y, with respect to ¢ by Parzen’s result [1].
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Consequently, it follows from (2.13) and (2.14) that

n(t) -1

215 Vos 2 [nh}n)]’ E[Y/2K2<xh(’r§>]

5 L E[Y,.'z{f(wlYn)S_sz(u),u(du)—i-eH.

n=ng(ed ’nzh(’n)

Then it suffices for the proof of this lemma to show that the second
term of the right-hand side of (2.15) is bounded. To do so we shall
show

@16 Vi=|" Kudw 3 L E[YF@Y)]

2h( )

=" Kwpaw 3 Y (@ ypldyi) < oo

n=ng(e) Zh(,n) S—w

and
= s 1 ’2
(2.17) I,2<—5"=;0(‘)nT(n’)E Yn <00 .
Let
(2.18) EUY)=" U S pudy) -
Then it suffices for the proof of (2.16) to show that

: VIES ELY/*

(2.19) | Z=] Zh o) < oo

for the fixed value z. In fact we have

(2.20) Vi=3 nzh( i B 1Y D]
=3 L SB[V Lanonysiny <o)

= nzh('n)
=2 Hégm) E: [Y! Lium-vs v <umnl

where I is the indicator function of a set Be $B. Here, if H(m—1)
<|Y,|<H(m), then Y!<H(m)-|Y,|]. Thus by Assumption (A) we have

VISP S5 ELIY Dunonsivy <nom] =B B Vi <oo .

Further (2.17) can be shown by the same method as stated above.
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We have the following result under the above preparations.

THEOREM 2.1. Suppose that the kernel K satisfies the conditions 1°—
4°. If xe€ R with g(x)#0 is a continuous point of g, u, and f for each
fixed ye R, then

P {lim |7,(z) —7(2)| =0} =1 .
Proor. It suffices for the proof of this theorem to show that
(2.21) Gn(x)— g(x) (n—o0),
(2.22) kfx)—k@)  (n—oo)

with probability 1.
However by Parzen’s result [1] we have

Eg(z)—g(x), Ek(x)—k) (n— o)
under the above-mentioned conditions. Hence (2.21) and (2.22) follow

from Lemma 2.2 and Lemma 2.3, respectively.

Remark 2.2. Continuity of f, g, and 5 as the condition in each
theorem in this paper can be replaced by the following conditions of f.
1) f is continuous in the variable z at x, for almost all y ¢ R.

2) There is a neighbourhood V(x,) of x, such that

| f (@, 9) | <G(y)

holds on V(x,) X R for a positive and Lebesque integrable function

G of y.

Under these conditions of f the other functions g, 7, and f are
continuous at x, (see Theorem 130 in [3]).

3. Convergence of the mean square error E [§,(z)—y(x)]*

THEOREM 3.1. Suppose that the kernel K satisfies the conditions 1°-
4°. Suppose that the conditional variance of Y given X has a finite
value for each x€ R. If we R with g(x)#0 18 a continuous point of g,
y, and f for each fixed y € R, then

lim E [7.(x) —7(x)]’=0 .
ProoF. We have

ford — 2 I’én(x) — E I;n(x) :
G1)  Ef@)-y@P=E 2@ 2k
E kd(x) _ k(x) ku(x) _ Ek.(x)
2 _ B _
* [Eam g(x)] [a,.(x) Ea,.(x)]
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[EIZ-,,(m) _M]z _
E g (x) g(x)

We can easily see the convergence of each term of the right-hand side
of (3.1) by Theorem 2.1 and Parzen’s result, since we have the fact
that if we take a sufficiently small positive number ¢, then there ex-
ists my(c) such that for n=mn(e)

1 1 1
@)t 5@ Em) d@)—

and

1 1 1
F@)+e @) Eg@) g@)—e

hold.

4. The speed of the convergence of the mean square error
E [7.(2) — ()]

In this section we examine the speed of the convergence of the
mean square error E [7,(x)—7(x)]* stated in Section 3.

According to Wahba [7], we set up the following formation. Let
W (M) be the Sobolev space of functions whose first m—1 derivatives
are absolutely continuous, and whose mth derivative is in L.(R, 3, p).
Let

@) IIf"'"II,E{ @], it 21,
p-ess sup | f™(x)] , if r=c0,

and let

4.2) WmMEAS; fe W™, || f™],<M},

where M is a positive constant. We assume mr>1.
In this section we assume that g and k are members of W ™(M).
Further for the kernel K we add the following conditions to those
stated in Section 2;

5° Sl S K(@)p(de)=0 (i=1,2,---, m—1),

6" |*_ o[ K@) da) <oo.

Now we examine the speed of the convergence of each term of the
right-hand side of (3.1) in Section 3, under the above-mentioned assump-
tions and those stated in Theorem 3.1.
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Let

(4.3) 4 E g,(2) E[E g.(x) —g(2)]/9() .

Then, we have

_ 1 [ EBhkix) _
(44 U= T m )]

Since E g.(x)—g(x) as m— oo, there exists a natural number %, such
that if n=n,, then

(4.5) [4E §(z)|<1 .

Consequently by the Taylor theorem there exists a constant 6, such
that 0<6,<1 and

1 =1—4E §(x)+ [4E g.(x)]

(4.6) 1T 7Eg.@) [14+6,4 E g,(=)]*

hold, if n=n,.
Hence by (4.4) we have

4.7 Q@)= [{E () —k(z)} —E k(@) 4 E §.(@)

1

g(x)

L E k()[4 E g (=) ] )
[14+6,4 E g.(x)]*

Here, by Wahba’s result [7], we have

(4.8) |E ko) — k(x) | < MA[R(n)]™ ",
(4.9) |E g,(2)—g(x) | < MA[R(m)]" ",
and hence |
(4.10) | E k(@) | <| k() |+ MA[R(n)]™ V",
(4.11) |E gu(x) || 9(x) [+ MA[R(n)]" 7,
where

1

(4.12) A=

(m—1)![(m—1)g+1]" S_w | K(x)||2 """ (dx)

with 1/r+1/g=1.
Consequently, as the evaluation of Q,(x), we have
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@13) 10| s MALDLE@ -+ Otaemy-)

for n=mn,.

II For the term R, (x)EE [?E:)) — g?ﬁg]

Since E g,(x)—g(x) as n— oo, there exists a natural number »] such
that E g,(x)>0 for n=n!. Hence let

(4.14) 4 §(x) S [§.(x) —E Gu(2)]/E gu()

for n?_n{. Then we have

_ 1 k() w7
(4.15) R@)=g7 B [ s Ek,,(a:)} :

Since 4§, (x)—0 as n—oo (by Lemma 2.2 and the fact that E g,(x)
—g(x) as n—oo), there exists a natural number n{ such that

(4.16) | 4g.(2)|<1

holds for n=n} with probability 1. So let

4.17) _ n, =max (n], n’) .

By the Taylor theorem, for some 6, satisfying 0<#,<1

1 45
1+ 4§.(x) [1+6.4G.(x))

holds with probability 1, if n=n;,.
Hence, in view of (4.15) and (4.18) we have

-1 ko (2)4g.(x)
(4.19) R(v)= E §.(%) E [ {1+01‘1§n(x)}2:|

for n=n,. Here (4.14) gives that there exists a positive number C such
that

(4.18)

1
— = ___<C
{1+6:4g.(x)}* —

for n=n, with probability 1. Since 4g.(x)—0 as n— oo, this C satisfies

(4.21) C=1+0(1)

(4.20)

for sufficiently large » with probability 1. Hence, under Assumption
(A) and the assumption that the conditional variance of Y given X has
a finite value for each fixed z € R, we can apply the Schwarz inequal-
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ity to the right-hand side of (4.19) in the following way ;

k() 4G,()
aze) [ FO0EE

1 =
= \/ L i o.@)* VE h@5.@)
<CVE {ien(@)g,()}*

for n=n,. However Wahba’s result (4.4a) in [7] gives

(4.23) |ﬁ | K (2 - %)) u(da)— Bl(z) | < AT,

where

—= 1 ® 2, m—1/r
@2 AE S_NK(u)[u[ " u(du)

(4.25)  B= S: K (u)u(du) .
Further let
(4.26) @ =g |y rwlaudy)

where f(y|xz) is the conditional density function of Y given X. This
function k* has a finite value for each fixed x € R under Assumption
(A) and the above assumption of the conditional variance of Y given X.
Since

=ty |”_ x5 ')‘)k*(u)y(du) h(w)

[y |7 k(2

s Jola—wypdn) |

i (@) —F k(z)) < BLE@)| m-y/r
(4.27) B {k(2)—E k(x)}’= h(n) A+O0{[Mm)]""+O0(h(n)}]

applying (4.20) with k replaced by k* to the first term and Parzen’s
result (Theorem 1A) to the second term, and similarly

(4.28) E [eu(@)gu(@)t< 250 f(’[’; (h”()]) [1-+O{[A(m)]™"} ]

: {[1+0{[h(n)1’"“"}1“+0(317>

+0[ i )]+O[h(n)]}
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Applying (4.9), (4.22) and (4.28) to (4.19), we have

@29) IR @IsTZEON e 10

. \/[1 +O{[Mn)]™ Y} ]z{ [14+O{[k(n)]™ 7} J*

+0(3)+0| ]+O[h(n)]}

nh(n)

for n=n,.

III For the term S,(x)—E [§gg _ E ggg ]z

By (4.18) we have

@30)  S@)= L E{h(e)—E o) — @@ T

[E g.(=)]* " {1+6.4g,(x)}*
The same method as (4.22) has been obtained gives
E [ {fe(2) — E ku(2)} (ku(x) 45,(x)}]
*3h [ +6.43.(@))

<CVYE [k(x)—E k(@) VE [k (2)45.(»)]" .
Consequently, applying (4.27), (4.28) and (4.31) to (4.30), we have for
n=mn,
B| k*(x)| 9(x) + BC[k*(2)]*[g(2)]*+ BC*[k*(2)]*
')

1),
h()(+0())

bounding the factors [14+O{h(n)}™ Y"+O0{h(n)} +0(1/n)+O0Q1/(nh(n)))] by
[140(1)].

4.32) S,(@)=<

In view of (3.1), I, II, and III, we can obtain the following result,
bounding the factors [1+O([A(n)]* ")+ O(k(n))+O0(1/n)+01/(nh(n)))] by
[1+o(1)].

THEOREM 4.1. Suppose that the kernel K satisfies the conditions 1°—
6°. Suppose that the conditional variance of Y given X has a finite
value for each x € R. Furthermore suppose that g, k and k* are mem-
bers of W™(M) defined by (4.1), (4.2) and (4.26). If xe R with g(x)+#0
18 a continuous point of g, n, and f for each fixed ye R, then the fol-
lowing inequality holds for sufficiently large n (n=max (ny, 7)) ;
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E [7.(2) — n(2) = @ (z) [(n)" "1+ 0(1)]

()]~
+2Q(x) R(x) I )]m " [1+o(1)]

+8(2) ——— ( )[1+0(1)]
where
Q(x) E MA{g(x)+ | k() |}/ 4'(%),
R(x) =B C|k*(=) |/[g(x)I**,
S(x) Z{B|k*(x)| g(x)+ BC|k*(x) |"*[g(x)]'*+ BC[k*(x)I'} g*()-
Constants M, A, B, and C are given by (4.2), (4.11), (4.25), and (4.20),
respectively.

Remark 4.1. In Theorem 4.1 the natural number 7, (given by (4.5))
can be determined explicitly by (4.9). For n,=max (n{, n}), n] (satis-
fying E §.(x)>0) is also determined by (4.9). Determination of n{’ may
be obtained by the result of Ghosh and Sen (Corollary 2.2 in [5]), if
n! is sufficiently large.

5. Consistency of the estimator 7,(x)

In this section we consider the case where the marginal density
function g is known. Namely we take the statistic

S vk (2K

(5.1) ;)"(x)—m

instead of 7,(x) as an estimator of 5(x) in this case.
For this estimator we can obtain the analogous results to those in
the previous sections.

THEOREM 5.1. Suppose that the kernel K satisfies the conditions 1°—
4°. If ze R with g(x)#0 is a continuous point of g, n, and f for each
fixed ye R, then

P {lim |f,(2) —5(z)|=0} =1 .

THEOREM 5.2. Suppose that K satisfies the conditions 1°-4°. Sup-
pose that the conditional variance of Y given X has a finite value for
each x€ R. If x with g(x)+#0 is a continuous point of g, », and f for
each fixed y € R, then

(5.2) lim B [7.(2) — ()} =

The speed of the convergence of (5.2) can be obtained directly by
Wahba’s result and those obtained in Section 4. Namely, we have
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A _ 2 1 242 m-yr . BlE¥(®)]
63 Eh@-nrs_L0rapmy-+ e

- (1+0(h(m) +o(D)} ]

Therefore, in this case, we can seek h(n) explicitly which minimizes
the right-hand side of (5.3). Namely we have

_ 1 Blk*(x)| ]”“’"“'”" Sm—1/r>/m 127>
5.4 h _[ s
G4 mh=| S e A "

Thus we have the following result.

THEOREM 5.3. Suppose that K satisfies the conditions 1°-6°. Sup-
pose that the conditional variance of Y given X has a finite value for
each x € R. Furthermore suppose that k* is a member of WS™(M).

If ze R with g(x)#0 is a continuous point of g, n and f for each
fized ye R, then

E [ﬁn(x) _v(x)]2§ T(x)n—(2m—2/r)/(2m+l—2/r)(1 +O(1)) ,
where

m— / 2A? * 2m—2/r) 1/@m+1-2/7r)
) IM A B k /' /C ./ .
( ) (Z'm 2/”')(2 2/7)gz(x) { ( I (x)l) }

Constants M, A, and B are given by (4.2), (4.11), and (4.25), respec-
tively.
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