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A Bayesian decision theory approach is used to study the multi-
purpose choice of design for ranking, selection and estimation. Various
utility functions, some of which lead to such standard criteria as the
expected mean and probability of correct selection, the trace and de-
terminant, and others leading to a new ranking and a modified deter-
minant criteria are considered. Sensitivity of the optimal design to
changes in these utility functions is investigated. In particular, a
balanced design is seen to be in general not necessarily better than
an unbalanced one. But when choosing among balanced designs, opti-
mality of a design is invariant over all the criteria.

1. Introduction

In recent years, there has been a resurgence of interest in Bayesian
statistics—see the review by Lindley [20] and the references therein.
Much of the work has been concentrated on the problem of inference.
For the equally important problem of the choice of design, Box and
Hunter [2] and Draper and Hunter [8] have proposed solutions for a
number of linear and non-linear models for estimation purpose, and
Ericson [11], [12] and Draper and Guttman [7] have investigated the
allocation problem for various sampling schemes. In addition, Dunnett
[9] and Raiffa and Schlaifer [23] have considered the question of opti-
mal sample size for the selection of the best treatment. In all these
works the solutions are obtained on the basis of some (implicitly or
explicitely) chosen utility or loss criteria.

In practice, we are often in a situation where, due to physical or
economic limitations, the range of available experiments are very limited
and a choice must be made from them. Moreover, such experiments
are rarely conducted for a single preconceived purpose which can be
well represented by a rigidly defined utility criterion. For example,
in a randomized block experiment involving k treatments, one objective
may simply be to make inferences about the %k means in a general way.
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At the same time, certain linear functions of the means may be more
important than others. In addition, it may also be desirable to know
which of the treatments has the largest mean or to order the magni-
tude of all the means. While each of these objectives might be ade-
quately represented by a simple utility function, the problem will rapidly
become intractable if the multitude of objectives are to be simultane-
ously considered. A natural way out of such difficulty is to investigate
the sensitivity of design selection to changes in utility or loss functions
corresponding to different objectives. One is then led to choose designs
which are optimal or near optimal with respect to as many as possible
relevant utility criteria.

This paper adopts a Bayesian decision theory approach to study
the choice of design with respect to a variety of utility functions for
ranking, selection and estimation. Section 2 provides a summary of the
decision framework and distributional results. Section 3 discusses var-
ious utility functions for ranking and selection and Section 4 deals with
the problem of estimation. The criteria proposed in these last two
- sections are then applied in Section 5 to the problem of choosing among
a class of balanced designs which include the usual completely random-
ized complete blocks and balanced incomplete block designs. The paper
ends with a comparison of some balanced and unbalanced designs.

2. Basic framework

To facilitate subsequent discussion, we provide below a brief sum-
mary of the Bayesian decision analysis, Raiffa and Schlaifer [23] and
DeGroot [6], and some key distributional results.

Suppose a choice is to be made from a set of available designs D=
(dy,---,d;). Associated with a specific design d € D, let y be a set of
observations whose distribution p(y|8, d) depends upon d and a vector 8
of parameters of interest. Then, given (y, d), solutions to all problems
of inference or decision concerning & must be based upon the posterior
distribution p(8|y, d)ocp(8)p(y |8, d) where p(f) is the prior distribution.
In selecting d, one needs to specify a utility function U(d,y) (or loss
function — U(d, y)) which is related to features of the posterior distri-

bution of primary concern. For instance, in an inference problem U
might be the reciprocal of the generalized variance. The optimal de-
sign d° is then the one for which

(2.1) l=/'(d°)=mf.x Ud), U@d=EU4,p),

where E is taken over the marginal distribution p(y)=S p(0)p(y|8, d)de.
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In problems of decision, including decision theory approach to inference,
one faces the further task of making a choice from a set of available
actions A whose consequences depend upon #. It is then necessary to
specify a utility (or loss) function U(d, y, a, ), where a € A. The func-

tion U(d, y) is now the expected utility of the optimal act a°=a°(d, y)
such that '

(2.2) U(d, y) = U(d, y, a°)=max }F U, y,a,6)
a v

where E is taken over the posterior distribution of #. Thus, in choos-
ing a design, the needed specifications are (i) the joint distribution
p(y, 0|d) and (ii) the utility function U(d, y), or in a decision problem,
Ud, y,a,?).

Throughout the paper we assume, for each design, a linear model
(2.3) yu=A 0+e

nx1 axk kx1 nxl

where A is a fixed matrix of rank k and e is distributed as N(0, 2)
with £ assumed known. The structural specification of a design is then
given by the triplet (n, 4, 2). We suppose that, a prior:i, 8 is distrib-
uted as N(g, ;) where g and X, ={s{?} are assumed known and in-
dependent of the choice of design. Such a prior distribution might
arise as the result of a previous experiment. It follows that (see e.g.
Raiffa and Schlaifer [23])
(i) the likelihood function depends only on the two sample quantities

(2.4) I =(A'2'4)", 6,=3A2%;
(ii) a posteriors

(2.5) 6~N(@, 3)

where

6=3(Z;'p+3:'0) and T=3(3+3)'Z,={o,};

(iii) @ and the posterior mean vector 6 are jointly distributed as multi-
variate normal with

, NP 4
6 E@, 6)=(¢, ¢ C 6, —
(2.6) @, 8)=(e, )  Cov (8, 6) [V VJ
where
@.7) V=3,—3.

For subsequent discussion, it will be useful to define the following
quantities
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01, =y +v;;—2v; , hu=053’+0§‘})-—20§'}) ’
(2.8)
gu:ﬂu'l‘ﬂjj—zﬂu ’ (5tj+gi/Ehij) .

While the above distributional specification might represent a num-
ber of practical situations, the problem of choosing a realistic and math-
ematically simple utility function is usually much more difficult. In
what follows we consider a variety of utility functions for ranking and
estimation of 4.

3. Ranking and selection problems

Experiments are often conducted to make inferences about the
ordering of a set of parameters #. For example, k¥ drugs may be
compared and we may wish to order the effectiveness of the drugs.
Sometimes, the primary concern is simply to determine which of the
k drugs is most effective (best). Problems of this type are known as
ranking and selection problems or best population problems. Beginning
with the work of Bechhofer [1], a vast literature exists on ranking
and selection procedures derived from sampling theory. Bayesian con-
sideration of such problems has been given by Raiffa and Schlaifer [23],
and Dunnett [9], following some earlier work by Grundy, Healy and
Rees [13] in a fiducial framework. Their main concern was on the
determination of optimal sample sizes rather on making a choice among
available designs.

3.1. Linear utility for selecting the best treatment

Following these latter authors, we begin by considering the prob-
lem of selecting the best of k (treatments) parameters @ in relation to
the linear utility function U(d, y, a., 8)=b,+c8,, (i=1,---, k) where a;
is the act that treatment 4 is chosen. With no loss in generality, we
may set b,=0, ¢;=1 so that

(3.1) ud, y, a;, 6)=0,, i=1,---, k.

It follows that given (d,y) the optimal act is a°=a; when é, is the
largest posterior mean. Thus U(d, y)=max (é) so that

(3.2) U(d)=E max (6)

and the choice of design reduces to the evaluation of E max (d) for
each of the available designs and choosing the one which maximizes
U(d). We shall call this the max mean criterion. Using (2.6)-(2.8), it
is shown in Appendix 1 that
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(3.3) Emax 0)=p+3 (—m)0s i@, R)
+3) 006y, D0, @y, Rey)
where
=1ty — )05 ; a; = {a;} , R, ={p..},

Ost-1 =%(5i,+5u—-5”)(51,5“)'”2 ’ (s, t=1,--+, k; #1);

x;; = {ac~ij} ’ Rij = {Pn'tj} ’ (S, t=1" * k; ?‘:i¢j) ,

As.i5= (ais - Paj'iaij) (1 - ng-t)_m

172 .

Oste1j = (Pst-i—PJj~‘iplj-f) (1 —ng-i)—m(l _‘Pfj-i)_ ’

o a, R)=S : S 6(Z RAZ, Oya, R)=1

L3
and ¢,Z, R) is the joint density of ¢ normal variables with zero means

and correlation matrix R. Note that except for g, E max (é) is a

function of the k—1 contrasts (i, —p,) and the <’2‘7> quantities 4, which

are the variances of the differences (é,—éj). Since g are the prior
means, the influence of a design is completely determined through 4,;.

For k=2, Raiffa and Schlaifer [23] show that E max (6) is monotoni-
cally increasing in é,, so that, the best design is the one which maxi-
mizes §,;. This is a very reasonable result because we see from (2.8) that
0y, is the difference of the prior and posterior variances of §,—@,. Thus,
the optimal design is the one which minimizes the posterior variance g,,.

For k>2, determination of E max (6) would necessitate evaluation
of normal integrals of (k—1) and (k—2) dimensions. When k=3, this
can be done using available univariate and bivariate tables. For t=4,
Steck [24] gives a table from which &4a, R) can be evaluated. The
general case can be handled through reduction formulae given by
Plackett [22] and John [16]. Various simplifications occurs for special
forms of g and V¥, Thm [15] and Curnow and Dunnett [5].

An interesting special case is when g=pgl1. This may for example
arise when the elements of # are regarded as a random sample from
a normal population with mean g. In this case, (3.3) reduces to

(3.4) E max (6) =+ (v2r)"! «Zkﬁ 510, (0, R.,) .

Exact evaluation can thus be done for k<5 using the formulae
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2,0, 1>=-;— a0, R>=§+(2n)-* sin™! 7y

(3.5)
@40, R)=(4r)'[2r—cos™ ry—cos™ ri3—cos™ 7yl
(Moran [21]).

When k=6, the formulae given by Child [4] reducing #,0, R) to a
univariate integral can be used. For larger values of k, numerical
evaluation of normal integrals seems unavoidable.

3.2. Probability of correction selection

The utility function (8.1) implies that, given (d, y), one should select
treatment j when éjzmax (é). A relevant feature of the posterior
distribution considered by Dunnett [9] is the posterior probability of
correct selection

(3.6) U(d, y)=Pr (0,>0:10,>0,; i=1,---,k, #J).
It follows that

3.7) ﬁ(d):jé Pr(0,>0,,6,>0,; i=1,-+, k, +J)

and we should thus select the design which maximizes the overall
probability of correct selection. This shall be called the max prob.
criterion. From (2.6)—(2.8),

38  T@=C) >3 |BCI™

Loy o0 (5 0Bt w50 duods

where u'=(u1, ey, uk_l), w’=(w,, Tty wlc—l) y ;= {vjs}) Nis=HPs— Ly BJ'=
{bsl-j}! bst~j=(1/2)(6:j+6tj—5")’ Cj = {caz-j}! cst'jf(llz)(gaj+g¢jfgst)v (S, t=
1,---,k, +#7j). Similar to E max (8) in (3.3), U(d) in (3.8) is a function

of the (k—1) contrasts p,—p; and the <12° > variances d;;.

For k=2, it is readily verified by differentiation that U(d) is mono-

tonically increasing in 4. Thus, a design which maximizes E max (é)
also maximizes the probability of correct selection, i.e. the max mean
and the max prob criteria are equivalent. For k>2, it will be shown
later in Section 5 that the two criteria are also equivalent in the case
of balanced designs.

In the above we have introduced the utility (3.6) as a feature of
the posterior distribution of . In some situations, it may alternatively
be justified as the expected utility of a decision problem. In partic-
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ular, suppose we have the utility function

1 6,=max (6)

(8.9) Ud, y,a;, 0)=

0 otherwise .
Then
(3.10) Ud, y)=max Pr (6,>0,, all i#35|6) .

In the case k=2, we find
(8.11) max Pr (6,>0.] 6)=Pr (6,>0,6,>6,) .

For k>2, equality of (3.6) and (3.10) can be established when the pos-
terior covariance matrix ¥ takes the form X =d*[(1—p)I+p1,1;] where
1, is a kX1 vector of ones. For, in this case, the probability Pr(¢,>

0,, all iq&jlé) takes the form
(3.12) Proc f(p,=+«ymyy s m)=g_7] exp<—%x’R“x)dx

where x'=(x, -, Te_y)y 9=, -+, 7)) and R=(1/2)(I+1;_1i,). The
desired result follows by noting that f is a symmetric function and
increasing in ;.

3.8. Some general ranking criteria

The utility criteria in (8.1), (3.6) and (3.9) can be readily extended
to the problem of selecting two or more out of a set of k treatments.
In some situations, we may be interested in a complete ranking of all
the treatments. Thus, analogous to (3.6), the utility criterion may be
the posterior probability of correct ranking

ﬁ(d, y)=Pr (0(z)|é<n) ’

where x, denotes a parti(;ular ordering of the k elements of x'=(w,
cee, 1), 1=1,---, k!, so that

(3.13) U(d)=3 Pr (O, bc) -

Like the results in (3.3) and (3.8), the expression (3.13) and other sim-
ilar extensions suffer in general the common practical difficulty of having
to evaluate complicated normal integrals in high dimensions. It is thus
desirable to seek utility criteria which are more amenable to practical
computation. B

Both in (3.3) and (3.8), the utilities U(d) are functions of the con-
trasts g, —p, and the variances 4,;. If we wish to rank the parameters
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8, it is natural to choose a design which, in some sence, will make the
parameters @ spread out as much as possible a posteriori. A reasonable
utility criterion may then be the measure of separation

(3.14) U(d, y)=(6—61yZ6—61,) ,
where :
h=(11Z1,)"11Z8
which, by analogy to Mahalanobis distance measure, may be regarded
as the Mahalanobis distance of # from the central value 4. Thus,

(3.15) U(@d)=(p—al) I (p—pLy)+tr VE-[I—1,(1,51,) 1,3 ]

where p=(1;2"'1,)'1,2'p, which we shall call-the separation criterion.
It can be shown that U(d) is again a function of mi—p, and §,;. The

chief advantage here is of course that U(d) can be conveniently cal-
culated for each available design, involving no more than matrix multi-
plication and inversion. A notable characteristic of the quadratic utility

in (8.14) is that it tends to be dominated by extreme values of 4,.
This would be desirable if our main interest were to find out the *best’
and the ‘worst’ treatments. On the other hand, if we are interested
in the ordering of the complete set of parameters, one should employ
a criterion which tends to damp out the effect of extreme differences.
A utility function possessing such property is

616  Tdw=-Sa;. as=exp(—20—003)

where 0<a=<1. In this case
(3.17) Ud)=-3E (g) ,

where

E (¢:))=9{}[ah;;+(1—a)g,, 17" exp (—alp;— e llah;+(1—a)gy,l) ,

which shall be called the ranking criterion.

This is an intuitively pleasing criterion. Firstly, E (q;;) is increas-
ing in the posterior and prior variance ratio z,,=g,/h;, so that one
should seek a design which makes all the g,;,, the posterior variances
of the differences, as small as possible. This in turn increases the power
to discriminate among the 8 a posteriori and hence sharpens the in-
ference that can be made about the ordering of the parameters. Second-
ly, for sufficiently large value of (y;—p,)*/h;; the derivative a E (q,,)/dx,
is decreasing in (g;—g;)}/h,, (it is monotonically decreasing if a=1). It
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follows that greater effort should be devoted to reduce the variances
g:; corresponding to those parameters which are closer together and
therefore more difficult to order a priori. An illustrative example will
be given later in Section 5.

4. Estimation

One other important objective of experimentation is to make general
inference about the unknown parameters §. In the traditional sampl-
ing theory approaches, the choice of design has usually been made on
the basis of some functions (trace, determinant, ete.) of the covariance
matrix of the estimates of linear forms of 8, Kiefer [18], [19], Elving
[10]. Under the normality assumption, these functions can be viewed
as referring to different aspects (lengths of principal axes, volume, etc.)
of the confidence hyperellipsoid for the linear forms.

In the Bayesian framework, all inferences about # are based on
the posterior distribution p(6|y, d). One should therefore choose a de-
sign to make the distribution, in some sense, as sharp as possible. For
k=1, this is achieved unambiguously by minimizing the posterior vari-
ance o,;,. When k>1, the ellipsoidal H.P.D. regions of the distribution
(Box and Tiao, [3]) are determined by the covariance matrix ¥ which
contains (1/2)k(k+1) elements, and the question then boils down to what
function or functions of these elements ought to be considered. In
general, we may define two set of k and (1/2)k(k—1) functions, the
first are functions of the characteristic roots (;,---,4) of X which
jointly determine the ‘size’ and ‘shape’ of the ellipsoidal regions while
the second set are functions of the characteristic vectors which decide
the orientation. Even if we leave aside the question of orientation,
choice must still be made about functions of the roots. Obvious pos-
gibilities are

4.1) Ud)=U(d,y)=—>4 (trace criterion)
and

42)  T@=U@ y=—T4
(determinant criterion; Box and Hunter [2])

which correspond to well known criteria in the sampling framework.
Such choices can alternatively be viewed from a Bayesian decision
theory approach to point estimation. Suppose one wishes to obtain
a best point estimate of @ relative to some utility criterion U(d, y, a, 8).
" In the terminology of Raiffa and Schlaifer [23], here the action space of
a coincides with the parameter space of #. In this context, the trace
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criterion then corresponds to the quadratic utility (or loss)
4.3) Ud,y,a,0)=—(a—0)(a—0)

for in this case a’(d,y)=6 and U(d, yY)=—>%. On the other hand,
the determinant criterion can be obtained from the zero-constant utility

0 la—8|<c
(4.4) Ud,y, a, 6)=
-1 la—8|>c
where ¢ is an arbitrarily small positive constant. This is because

(4.5) o]E, U=—[1-Pr{la—0|<c|d, y}].

Clearly, a’(d, y)=é and hence

= _ 460
4.6 ,P=—1+|3 |12
(4.6 0@ v)=-1+ 51 2

where 46 is an arbitrarily small volume element of #. Maximization

of sz(d) =U(d,y) in (4.6) is thus equivalent to minimization of the de-
terminant | ¥ |=T[ 4; given by the criterion in (4.2).

4.1. The exponential utility function

The trace criterion has been criticized on the ground that it is not
invariant under general linear transformation of 8, see e.g. Kiefer [19].
In practice, however, it is often true that some linear forms of @ are
more meaningful and important to the investigator than others, and so
it is not always relevant to insist on invariance as a principle of choice.
In the context of point estimation, another criticism of the trace cri-
terion is that the quadratic utility in (4.3) implies too severe a penalty
for large deviation from 8. It is difficult to imagine, e.g. in the single
parameter case that one should incur a loss when |a—#|=100s which
is 100 times greater than the loss when |a—#|=10¢. Surely it seems
more reasonable to have a utility function which damps off for large
deviations. On the other hand, the utility function in (4.4) decreases
too steeply for small deviations from #. Also, the resultant determi-
nant criterion, while enjoying the property of invariance, refers only
to the volume of the ellipsoidal posterior region of &, but not to the
attenuation of the region.

The above considerations has led us to consider the exponential
utility

@7 U@y a 0)=1—exp (—%(a—a)'(a—w) . (@>0).
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The function approximates the quadratic utility in (4.8) for small « and
the zero-constant utility in (4.4) for large « and therefore can be re-

garded as a compromise between the two. In this case, a’(d, y)=é and
(4.8) Ud)=Ud, y)y=1—|I+aZ|"".

This is then equivalent to choosing a design d to minimize the deter-
minant

1.9) I+aZ|=]] (1+e)

which shall be called the modified determinant criterion.
To see the implications of this criterion, it is useful to write

(4.10) Ma+a)=1+3 (¥ wp,
i=1 Jj=1
1 AN k .
where P1=-E 24, Pr= < 2 ) PP SRR P,C=T[1 4;. The quantities (P;,
3 i<j i=

.+., P,) are k symmetric functions of the roots (4,---, ) describing
different aspects of the ellipsoidal region. Specifically, when multiplied
by appropriate constants, P; is the average of the squared lengths of
the principal axes, P, is the average of the squared areas of the ellipses
spanned by the axes taken two at a time and in general P, is the aver-
age of the squared ‘volumes’ of the hyperellipsoids spanned by the
axes taken s at a time, s=8,..--, k. Rather than concentrating on a
specific aspect (the trace P; or the determinant P;), the criterion in
(4.8) attempts to take all the k aspects into account.
As an alternative interpretation, we can write

(4.11) i (1+a21)=1+’:2:‘,1 m,<;?)(aPk)f+akPk '

where P,=P}* is the geometric mean of the 1’s, and m,=P,P,;f. Since
P,=P)*>P;*=... =P (Hardy, Littlewood and Pélya [14], p. 51), it
follows that m,=1 where the equality holds if and only if all the 2’s
are equal. Thus, we may regard the k—1 functions (m,,---, m;_,) as
measures of ‘shape’ or ‘conditioning’ of the ellipsoidal region, in con-
trast to P, measuring the size of the region. The criterion in (4.8)
aims, therefore, at simultaneously minimizing the size as well as re-
ducing the attenuation of the region. We note that a commonly used
measure of ill-conditioning of a matrix proposed by Turing [25], T=
A/ (2 2) (3 )], is in fact the product T=mm,_;.

4.2. Quadratic regression

As an illustration, consider the three level quadratic regression
model
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(4.12) Y=0,+0,x+0;x*+e

where x takes the values (—1,0,1). Suppose a total of n observations
are to be taken and the design problem is to allocate the n experi-
mental runs to the three levels. We shall discuss the situation where
2=1I and the prior distribution of @ is diffuse, i.e. ¥,=0¢2C where C is
a 3 X 3 positive definite symmetric matrix and ¢2—oco. In this case, the
posterior covariance matrix ¥ of € is such that

(4.13) I I XNX

where the rows of X are (1,1,1), (—1,0,1) and (1,0,1) and N is a
diagonal matrix with elements (n,, n,, »;) corresponding to the three
levels (—1,0,1). It follows that

(4.14) P1=l<i+_4_+i), P2=l( 1,1, 1 )
6 7 Ny s 4 niNn, MMy 3’"41%3
1
P,=
? 4nmam,

As is well known (e.g. Kendall and Stuart [17], pp. 158-161), the de-
terminant criterion leads to the balanced allocation n,=n,=n;,=n/3.
On the other hand, the optimal allocation corresponds to the trace cri-
terion is m;=ny=n/4 and n,=n/2. With respect to the modified deter-
minant criterion in (4.9), it can be readily verified that, for a given
a, the optimal allocation is

(4.15) n=n=(n—n,)/2 , %=g[1—<1-—~§g'1>1/2]

where g=.375(2+4a/n) and 1/2<n,/n<1/3. The ratio n,/n approaches
1/3 as a— o and 1/2 as a—0. Table 4.1 shows the values of n,/n,
the trace, determinant, m,; and m, for various values of a/n. It is
seen that if we choose a/n to be around 1, a considerable reduction in
the relative values of the trace, m; and m, is achieved at the expense
of a moderate increase of the determinant from its minimum value of
6.75 when a— oo.

Table 4.1. Values of (ns/n, T As, [I i, M1, my)
for various choices of a

a/n nz/2 DA n A1 my me
0 .5000 8.0000 8.0000 1.3333 1.3333
.1 .4790 8.0128 7.6923 1.3535 1.3438
.5 .4345 8.1400 7.1994 1.4059 1.3717
1.0 .4069 8.2884 6.9881 1.4450 1.3931
1.5 .3919 8.3928 6.9013 1.4695 1.4064
2.0 .3821 8.4710 6.8540 1.4867 1.4158

© .3333 9.0000 6.7500 1.5874 ~ 1.4699
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5. Balanced designs

In the preceding two sections, we have discussed a number of
utility criteria appropriate for various ranking and estimation problems.
We now consider a special class of designs for which the matrix %, in
(2.4) takes the form

(5.1) T=rI+&11.,, (>0, e>—rk™).

We shall call these balanced designs and index them by (r,&). They
include the usual completely randomized design (CR), randomized com-
plete block (RCB) and balanced incomplete block (BIB) designs. First,
we give a general result concerning the optimality of such designs.

LEMMA 5.1. For the class of balanced design defined in (5.1), if
U, y, a, 6)=Ula, 6) and, for every y, Ud)=F (&, 2y, 1) independent of
¢, then U(d) is decreasing in 7.

PrOOF. Let (d, d;) be any two designs indexed respectively by (7, &)
and (y,, &) such that y<y,, and with corresponding observations y and

y:.- We need to prove that ﬁ(d)gﬁ(dl). Now there exists y,>0 such
that

r=nrlnt+r)™.

Let d;, be the design with index (7:, &) and observation y,. Then from
(2.4), the augmented design d*=(d,, d,) with observation (y;,y,) has
index (7, £*). But by hypothesis of the lemma,

U@d)=0@d*) .
Hence,
Ud)=E E max E U(a,¥6)
v wlyy, e 0y, py)
=Emax E Ula, 8) =U(d,)
¥ a ’l'] .
as required.

For the class of balanced designs, when the prior covariance matrix
%, is also of the form (5.1), it is readily shown that the lemma is imme-
diately applicable to the max mean (3.2), and the max prob (3.7) (through
the use of (3.9)) criteria for selection, and to the trace (4.1), deter-
minant (4.2) and modified determinant (4.8) criteria when we are inter-
ested in linear contrasts of #. In addition, it can be verified directly

that for the separation (8.14) and ranking (3.17) criteria, U(d) is de-
creasing in y. Thus, we have proved the following theorem.
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THEOREM 5.1. If X=pI+¢&1,1L, then for the class of balanced
designs (5.1), the one for which y is the smallest is optimal with respect
to the max mean, max prob, separation and ranking criteria, and to the
trace, determinant and modified determinant criteria for estimating
linear contrasts of 6.

In practice, experiments are frequently run in blocks and we are
often faced with the problem of making a choice among different fea-
sible blocking arrangements. In general, suppose we are interested in
k treatment parameters # and the model in (2.3) takes the form

(5.2) y=A 0+Z B+ e

nXk kX1 axb bx1 nx1
where the error vector e is split into two components, the block effects
ZpB and the within block errors e. Each row of A and Z contains a
single unity as its only nonzero element. The block variables 8 are
assumed to be randomly drawn from a normal population such that
B~N(0,6,I), and the errors e are distributed as N(0,¢I). For the
moment we shall consider the case of equal replicate and equal block
size binary designs, i.e. A’A=rI and Z'Z=II where r is the number
of times each treatment occurs and [ the block size. Then, the class
of RCB and BIB designs is such that

(5.3) _ A'ZZ'A=(r—)I+121,1;

where r=2 and 2 is the number of times two treatments appear in the
same block. When r=2, the design is an RCB and when ¢:=0 the
model (5.3) degenerates to a CR. For this class of designs, we have
that

(5.4) r= ‘; F+ed—FH,
with

g _ ik
(5.5) b=l and  f=27,

where f, the well known efficiency factor in the traditional comparison
between BIB and RCB designs, equals 1 for an RCB and (¢=1, f=1)
for a CR. The optimal design in the sense of Theorem 5.1 can be
readily determined. The result (5.4) is, in a sense, to be expected
since y is simply the variance of the best linear combination of the

intra and inter block estimators of the contrasts §,—6. The interesting
and important point here is the invariance of the criterion y to the
purpose of the experiment and the utility functions considered. We
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note that the equivalence of the trace and determinant criteria with
respect to intra block estimates of orthogonal contrasts was established
by Kiefer [19].

5.1. Sensitivity of optimality of balanced designs

In the above, we have restricted considerations to the class of
balanced designs. When the prior means are unequal, one would ex-
pect that for ranking and selection purposes a balanced arrangement
might be inferior to some unbalanced ones even if the prior covariance
matrix %, takes the balanced form as in Theorem 5.1. As an illustra-
tion, consider the simple problem of allocating n observations to three
treatments following the model in (5.2) with ¢;=0 and the prior dis-
tribution of @ is normal with g=(u, i, #s) and 2y=d{1. Let n, be the
number of observation for the +th treatment, <=1, 2,3, (3 n,=n).
Then, for the elements (h,;, v;;, d;;) in (2.8),

(5-6) hij=20l2) y vii=o‘§(1+wn{l)_l y 'UUZO y aij:'vii—'_vjj
where w=d?/d}.
Consider first the problem of selecting the largest 6, with respect

to the utility in (8.1). To obtain the optimal allocation, we may sub-

stitute (5.6) into (3.3) and differentiate E max (é) with respect to =,
under the constraint 3} n;=n. The resulting two equations are

(5.7) <'ﬂz+W>2= LR <n3+w>2= A+ Gy
n+w +0ag Ny +wW Qg3 +0Qg2

where
a;;=05"¢(a;;, 1)@(as.i5, 1) S#EIF] .

It can be readily shown that equality of the prior means, p,=p,, is a
sufficient and necessary condition for n,=m; to satisfy (5.7). In addi-
tion, if p<p,<py, then for my=mn,, ax>a; and for m,=mn;, ay>a;, so
that the solution must satisfies n,<m,<m,. Thus, when the prior means
are unequal, the balanced allocation is not necessarily optimal. It should
be possible to extend these results to any number of treatments. To

illustrate the situation, Table 5.1 shows the values of E max (é) of var-
ious allocations for a combination of values of p/s, and w when p=
#:=0 and n=30. Although the solution is such that n;=mn,>n; for
woy=—2 and my=m,<m,; for plo,=2, the differences in the utilities of
different allocations are extremely slight. Nevertheless, it is still dis-
cernable that the larger the value of w (the stronger the prior infor-
mation compared with that from the sample), the more sensitive is the
utility to different allocations.
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Table 5.1. Values of E max (6) for various choices of
(ni, psfoo, w) with pgi=p=0

ni=ns ns w=.5 1 2
10 10 .5603 .5463 .5216
12 6 .5617 .5495 .5275 } %:-2
13 4 .5620 .5500 .5308 ’
10 10 2.0812 2.0737 2.0609
8 14 2.0812 2.0738 2.0615 } 5‘: =2
6 18 2.0799 2.0718 2.0589

Consider now the allocation problem with respect to the ranking
criterion (8.17) with a=1. In this case the equations of the first de-
rivatives are

(5.8) (’n2+w)2= biy+bys , <na+'W>2= by +bys
n+w b12+b13 ny+w b%+b12

where

bij= (-g—”'>1/2 exp (——1—<——M— s >2>
h,;/ 2 gy
Again, it readily follows that n,=n, if and only if p,=pg;,. However,
unlike the previous case, if g <g<ps, then the solution must satisfies
n,=max (n,, ny) and if further pz—p,>p,—py, then ny=n,. To illustrate
the sensitivity of the utility to different allocations, Table 5.2 shows
the values of U(d) of various allocations for selected values of /s, and
w when g=p,=0 and »=30. As expected, the stronger the prior in-
formation, the more sensitive is the utility to different allocations.

Table 5.2. Values of —ﬁ(d) in (3.17) for various choices of
(m, #3/0'0, w) with Fl1=[.lz=0

ni=ny ns w=.5 1 2
10 10 .4829 .6672 .9033 .
11 8 .4829 .6668 .9024 By
12 6 .4933 .6794 .9189 )
13 4 .5226 .7138 .9511
10 10 2772 .3831 .5186
12 6 .2654 .3670 .4977 H_,
13 4 .2661 .3668 .4958 Go

Although too much should not be read into one or two examples,
the results in Tables 5.1 and 5.2 do lend considerable support to the use
of balanced designs in the common situation where the prior informa-
tion is weak compared with that to be expected from the experiment.
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Appendix 1. Derivation of E max (6)
We now provide a brief sketch of the derivation of the E max (6)
in (3.3). From (2.6), 6 is distributed as normal N(g, V). Thus
(A.1) E max () =.'c S 6, 0(6)dh
A A k A A A
§ p@)db+31 | G- pp(6)ab
=1 i

where D, is the region §,=max (é) and p(é) is the density of 4. Since
ﬁg p6)db=1 it follows that
D;

(4.2) S, OMb=pt S (u—p) || (6B

which, after standardization, yields the first two terms of (3.3). For
the second sum on the extreme right of (A.1), it suffices to illustrate
the term 7=k. Let

x,=(xlr' ) xk—l) ’ b,=(b1,' ] bk-l)
(A-3) 2,=0—0,+b, b=p—m, (G=L--,k-1),
xk=ék—#k »

and partition

Vz{vu V] .

Vi v 2
- 1

Since E (xklx)=(’vu1k_1-— Kk), U_lx Whel'e U= ‘Vll_lk—l I’lk_ Vklli_l‘l‘v‘;k‘
1,_,1;_, is the covariance matrix of x, it follows that

(A4) |, 6= m)p@)d6="E (@ | 0p()ix
k
=g‘{ (Vex—vi5) S: wixp(x)dx .
where w) is the jth row of U™'. Using the fact that
- v 1
w,x- 5 x’ U 'x

0x;

we find

(A.5) S: wjxp(x)dxocS: [— exp <—‘—;—x’U"x>]“ dx; ,

xj=bj
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where x; and b, are (k—2)x1 vectors obtained from x and b by delet-
ing respectively z, and b,. Expression (A.5) is thus proportional to a
k—2 dimensional normal integral. Repeating this argument for all (¢, 7)
and after some simplification and standardization, we obtain the third
term in (3.3). The case when V is of the form (5.1) has been given
by Dunnett [9].
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