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Summary

This paper is concerned with the reduction to a complete class of
decision rule in case where actions, observations and states are finite
in number. Discussions are made, first, from the viewpoint of the
distribution of random observation and, secondly, from the viewpoint
of loss function. With respect to loss function, “regret-relief ratio”
criterion and “incremental loss-gain ratio” criterion are introduced and
these usefulness are shown in 2-state of nature case.

1. Introduction

Let L(#, a) be a loss function which is caused by taking action a
when the state of nature is 4. The state of nature ¢ is unknown to
the decision-maker, but he can get some information x € X about 4 to
guess the true state of nature. For each 6, there is a corresponding
cumulative distribution function Fg(x|6), which represents the distri-
bution of X when the true state is 4. In this paper, we have assumed
only the case ©, A and X are finite, that is, 6=1{6,,---, 6,}, A={a,,
<o, a,}, X={2,,---,2,}. We define a non-randomized decision rule (a
non-randomized decision function) d € D and a randomized decision rule
d € D* as

a=d(x) , and o= é . d;

where 7,220 for all ¢ and ﬁ w;=1. The goodness of d and & would be
i=1

measured by the magnitude of risk defined by
(1.1) R(0,d)=E, L(9, d(X))=S L(9, d(z))dF(x|6)

=3 L0, d@))f (10)
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and
(1.2) R, =3 xR0, d) .

The minimax risk criterion for selecting the best decision rule re-
quires to minimize the expected risk defined by

(1.3) r5)=E,, R(6, 5)= z w,R(6,, 5)

where W=(w,,---, w,) is a weight function on 6, usually called “prior
distribution” or “degree of belief.”

If the prior distribution W is not known, a reasonable way in choos-
ing an action is to use the complete class, from which we pick up, in
some way or other, a particular decision rule. It is the reasonable set
of decision rules in the meaning of natural ordering.

DEFINITION 1 (Natural Ordering). A decision rule 6, is said to be
as good as a rule &, if R(9, ,)<R(8,d,) for all 6c6. A rule g, is said
to be better than a rule 4, if R(8, 6;)<R(8, d,) for all €6 and R(9, d,)
< R(6, 6;) for at least one #¢6.

DEFINITION 2 (Complete Class). A class C of decision rules, CC D*,
is said to be complete, if given any rule 6 € D* not in C, there exists
a rule g, € C that is better than 4.

2. Reduction to a complete class using probability distribution

Let us first define the monotone decision problem in case where
actions, observations and states are finite in number.

DEFINITION 3 (Monotone Multiple Decision Problem). A multiple
decision problem (i.e., involving more than three actions) is said to be
monotone if

L(es’ a])_L(0u aj+l)§0 (S§j)
L(0,, a;)—L(0,, a,:,)=0 (s>7) for 7=1,2,---,n—1.

DEFINITION 4 (Non-randomized Monotone Decision Rule). A non-
randomized decision rule d is said to be monotone if

dz)=a,, dx)=a, (@<
then a<<'.

Karlin and Rubin [1] show that if the distribution of random ob-
servation has monotone likelihood ratio, defined below, the class of
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non-randomized monotone decision rules is essentially complete for a
monotone multiple decision problem.

DEFINITION 5 (Monotone Likelihood Ratio). The family of distri-
bution with density f(x|0) is said to have a monotone likelihood ratio
if there is a function t(x) such that the likelihood ratio

f(=]6) ,

is monotone function of t(x).

Remark. Definitions 4 and 5 are seemingly different from than
those originally given by Karlin and Rubin themselves (see [1]). If,
however, actions, observations and states are all real numbers, which
they assume, rearrangement according to their magnitudes makes the
definition here coincide with the original definition. Thus our definition
here is more general than theirs in that it can admit actions, states
and observations which are qualitative rather than quantitative.

To emphasize the usefulness of Karlin and Rubin’s theorem, the
following theorem may be helpful.

THEOREM 1. In case that X={x,---,2,} and A={a,,---,a,}, the
number of mon-randomized monotone decision rules, K(m,n), is

@.1) K(m, n)=(”+7":—1> .

PrROOF. One non-randomized decision rule d assigns an action to
each z. Since X={z,,---,x,} and A={a,, -+, a,}, the number of ways
to assign m actions among A to possible m observations is n™. This is
the number of all possible non-randomized decision rules and also the
number of permutations of m actions taken out of all possible » actions
permitting repetitions. Now let ,H, be the number of combinations
of m actions taken out of n permitting repetitions. Then, we have

2.2) Ho=in Ca= (VT

m
For each combination, only one permutation has a monotone ordering
with respect to the suffix of actions. Hence the number of non-ran-
domized monotone decision rules is equal to the number of combinations
of m actions taken out of » permitting repetitions. Therefore, we
obtain

K(m, m)=H, = nCn= (”+Z"1) :
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Now let z(m, n) be the reduction ratio defined as follows.

Number of non-randomized monotone decision rules
Number of non-randomized decision rules
n+m—1
_ m
nm

2.3) z(m,n)=

We show z(m, n) for some m and » in Fig. 1.

7 (m,n)

A

T

1.0

0.5¢

0 1 2 3 4 5 6 7 8 9
Fig. 1 t(m,n)

This figure shows Karlin and Rubin’s theorem becomes very effec-
tive as m becomes larger.

3. Reduction to a complete class using loss function

In this section, as an opposite concept to “regret” of action a,
“pelief” of action a is defined and “regret-relief ratio” criterion and
“incremental loss-gain ratio ” criterion are introduced. Then using these
criterions, the problem of reduction to the complete class in 2-state
case is discussed with some examples.

3-1. Regret-relief ratio criterion
Let us define regret (4, a), relief I(9, a) and regret-relief ratio 7(¢, a)
of action a as follows.

DEFINITION 6 (Regret). The magnitude of regret caused by failing
to take the best action is called regret I(6, a,) of action a, and defined by

(3.1) o, a,)=L(#, ak)_miil L, a) .

DEFINITION 7 (Rerief). The magnitude of relief given by avoiding
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the worst action is called relief (9, a,) of action a, and defined by

3.2 U8, axy)= max L6, a)— L(6, ay) -

DErFINITION 8 (Regret-Relief Ratio). The regret-relief ratio 7(4, a.)
of action a, is defined by

_Ue, a4
(3.3) (0, ak)—m .

Remark. This might be infinity.

We shall now discuss the usefulness of regret-relief ratio 7(4, @) in
decision problems. The following consideration may help understand the
concept of 7(#, a). Let us suppose that the decision-maker is in doubt
whether he should take action a, or not. If [(#, a,)<l(8, a.), then he
may not take the decision rule which calls for a,, and his behavior
seems reasonable, for if he takes a, then the magnitude of regret is
greater than the magnitude of relief. In this case, regret-relief ratio
is greater than 1,

l(07 ak) >1 .

70, ax)= 1@ o

Therefore, from the preceding consideration, we can guess that regret-
relief ratio may serve as a criterion for choosing a decision rule.

Now we examine the usefulness of regret-relief ratio in 2-state
case. Let us suppose the case,

L8, a,) < L(6,, a;)< - - - < L(8y, a,) ,
L(6,, ay)> L(0y, as)> - - - > L(6,, a,) ,
which reflects the preference orderings,
if the true state is 4,, a;,>a;> -+ >a, , and
if the true state is 6,, a; <@, < -+ <a, ,

where a;>a; means that a, is preferred to a,. In other words, if the
true state is 4,, then a, is the best action and a, the worst. On the
contrary, if the true state is #,, then a, is the worst action and a, the
best. The regret and relief of action a, are

l(al ’ ak) =L(01 ’ ak)_L(al ’ a/l) ’
4(02 ’ ak) = L(02 ’ a’k) —L(ﬁz ’ a’n) ’
1(01 ’ ak) = L(ol ’ an) - L(01 ’ ak) ’
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z(02, )= L(0;, a;)— L(0:, ax)

and regret-relief ratios of action a, are

_Ub:, ax)
(3'4) 7’(01 ’ (Lk)— Z(ol , ak)

_Ubs,s ai)
®5) M0 =10, 0,)

Using regret-relief ratio, we have obtained the following theorem
and corollary.

THEOREM 2. Assume that 9={01, 02}, X= {xl,'“, xm}r Az{al""!
a,} w,>0 (s=1,2), f(z:]0)>0 (¢t=1,2,---,m; 8 €06) and

56 L(6,, a)<L(6;, a))< - -+ <L(6y,a,) , and
L(8,, a))>L(6,, a)> - - - > L(6, a,) .

For each k=2,---,n—1, the following holds. If the condition

(3.7 78, ) 7(6, az)>1

is satisfied, them any mon-randomized decision rule which takes action
a, is dominated by some randomized decision rule.

PRrROOF. Since any non-randomized decision rule d € D is defined by
assigning d(z)=a' (€ A) (1=1,2,---, m), we write a non-randomized
decision rule d in the form of an ordered m-tuple

d=(a',---,a™) .
For d=(a!,---,a™), ¢ (i=1,---,m) and a,€¢ A, we define a new non-
randomized decision rule
d(i) * ak=(al’. .., at—l, ak! ai+l,. .., am) .
1th place

That is, a non-randomized decision rule with @, in 4th place and re-
maining al,---, a*"!, a**',---, a™ unchanged from d. Then the non-ran-
domized decision rules which take a, and a, respectively in the case z;
is observed are written as follows;

do x a,=(a',- - -, @', ay, @, - -, a™)
d® *xa,=(@,- -+, @, a,, @, -+, a™) .

Note that a, is the best action in 4, and @, the best in 4,.
~ Now, we have to show, for each 7 (1=1,---, m) that some random-
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ized decision rule 6 which is the mixture of d xa, and d*° x a, dom-
inates d” x a,. First, there exists a number ¢ (0<¢<1) which satisfies
the following equation ;

(3.8) R(0,, d? x a,)=(1—q)R(0,, d¥ * a,)+qR(0;, d? * a,)
For let q be
_ R, d° *x a,)— R(6,, d° * ay)

R(6, d® x a,)—R(6;, d¥ * a)

— wif (2,6, {L(6y, a) — L6y, ar)}
wf (x:|0){L(6,, a,)— L(6,, a,)}

— L(el ’ at)_L(ol ’ al)

T L6y, a)—L(6;, ay)

(3.9) q

Then ¢ satisfies (8.8) and 0<g¢<1. Suppose 6 is the randomized deci-
sion rule of d” xa, and d® xa, in the ratio of 1—q:q. Then

(3.10) (6, 5°)=(1—q)R(6:, d° » a))+qR(B,, d * a)
=R(6,, d® x a,) ,

and

(3.11) R(f:, 5)=(1—q)R(6:, d° * &) +qR(0:, d* * a,)

= 1 - (€3] *
TR RS TR [{L(6,, a.)— L(8;, a,)} R(B;, d° * a,)

+{L(0:, @) — L(6,, @)} R(0:, d° * a,)]

Hence
(3.12) R(8,, d® * a;)— R(6;, 6©)

_ 1 B
=L, a1, a L0 a0 = L0 )

- {R(0,, d° x a,)— R(8,, d*° * a,)}
—{L(6y, a,)— L(6y, a,)} {R(8;, ¥ * a,)— R(0;, d¥ * a;)}]
— wyf (2, 65) _
- L(Hl, a,,.)——L(ﬂ,, aq) [{L(al’ ak) L(01’ al)}
- {L(6;, ax)— L(6;, a,)} — {L(6,, a,)— L(8,, a.)}
- {1402, a;)— L(6:, a,)}]
_ wof (2:165) _
“ T, a)— Lo, ay O a0 @)
- {L(6;, a;)— L(6:, ax)}]
. {L(ﬂl , ) — L(6y, ay) L(8,,a;)—L(6:,a,) 1}
L6, a,)—L(6,, a;) L(8;, a))—L(6;, a.)
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+ L(0y, a.)—L(6,, ay) ({140, @) (6,5 ax)}

- L0, @)~ L(0s, @) % Zk; % Zk; -

= wof (:162) _
= L(6,, a,)— L(6y, a,) [{L(6,, a,)—L(8,, ai)}

: {L(02 ’ a’l)_L(az ’ 0,,,)}] {7(01 ’ ak) : 7(02’ ak)_ 1} .

Since w2> 0, f(x¢l02)>0; L(01y a/n)"'L(aly al)>0’ L(ﬂl, a'n)—L(oli a’k)>0’
L(8,, a))—L(8,, a,)>0 and 7(6,, a;)-7(:, a,)>1, we get

(3.13) R(6,, d° * a;) > R(6;, 6°)

which shows, together with (3.10), that 6° dominates d° x a,.

COROLLARY 1. Assume the condition (3.6) and (3.7) of Theorem 2.
If a randomized decision rule 6 adopts with a positive probability such
a mon-randomized decision rule d that takes action a,, then it is dom-
inated by some randomized decision rule.

ProoF. By Theorem 2, we can find a randomized decision rule oé*
that dominates d, i.e.,

(3.14) R(9, 6*)<R(6, d) for all @
and
(3.15) R(6,, 0¥)< R(6,, d) for some 6,€ 6.

We represent
5*=Pd+ > Pidi
d;j#d
with
o+ P¢=1 .
di¢d
Then the risk of 6* is
(3.16) R(8, 6%)=pR(6, d)+d§d R, d;) .

Let 6 adopt d with probability = and other d,’s (#d) with probability
7; where 7r+d§]d z;=1, i.e., symbolically,
i* '

o=nd+ > =md, .

di#d

Then the risk of 4 is
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(3.17) R(0, 9)=R(0, d)+ 3 mR(©,d,) .
i*

Now define a randomized decision rule é** such that;
i) if d;#d, d, is adopted with probability =;+=p;,
ii) if d,=d, d, is adopted with probability =p

i.e., symbolically,

OF* = ("”)d+a§¢ (w,+7mp)d, .
Then
(3.18) R(6, 6**)=mpR(0, d)+d§.d (z;+mp:;)R(O, d;)
=n{pR(9, d)+d§d oR(8, d;)} +a§¢ = R0, d;)
=nR(0, 6*)+a§'¢ = R(8, 4,)
=zR(, d)+¢§'a xR0, d))
=R(, ) .
Using (3.14) and (8.15),
R, 0**)<R(9,0) for all 4,
with striet inequality when 6=4¢,, i.e.,
R(6,, 6**)'<R(0‘,, ) for some 6,€6.

3-2. Geometric interpretation :

Now we give a geometric interpretation of Theorem 2. Suppose
risks of d® xqa,, d® * a;, d® * a, are shown by Fig. 2, and let 4, denote
the slope of line segment between d® xa, and d® xa, and 4, between
d® xa, and d* xa,, that is,

R(6,,d)
1
d%% a,

d%a,

— R(6,,d)
Fig. 2
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(8.19) 4, = WS @ 0){L(6s, ay)— L(6:, a)}
wif (2| 6,){L(6y, @) — L(6;, ax)}
_ W f (%0 U0, @)
= o 0O @)
and
(3.20) 4= W f (] 0){ L0z, a.) — A8, a,)}

2w f (| 0) LA, @) —LA6:, @)}

_ _ wof (] 6:) U0, ar)
- wxf(xtiex)l_(au ) (<0).

The ratio of slopes is

Ay _ U, a0, @) _ip 0y (B
4, i(ﬂl, a’k)z(oh ) 70, @) T( 2y Q) »

(3.21)

and exactly equal to the product of regret-relief ratios in 6, and 6.
This shows if 7(6;, @) 7(6;, a;)>1, then 4,>4, is satisfied, which implies
that d® x a, is contained in the shaded region and therefore that d x a,
is dominated by some randomized decision rule of d xa, and d* *a,.

3-3. Some examples of Theorem 2 and Corollary 1

Example 1. Consider a decision problem of 2-state, 3-observation
and 3-action with a loss function and a distribution of observation given
by Tables 1 and 2, respectively. Prior probabilities assigned to 4,, 6,
are w,>0, w,>0, respectively.

Table 1. L(9, a) Table 2. f(x|6)

a [
X a a: as X Ty T2 X

o, 0 4 6 01 0.6 0.3 0.1
23 5 2 0 02 0.2 0.3 0.5

The possible non-randomized decision rules are as follows;

di=(ay, a;, a,)
dy=(as, ay, az)
dy=(a;, a1, @)
di=(ay; az, ay)
d;=(a, ay, a)
ds=(ay, az, ay)
dr=(ay, a3, a,)
dy=(as, as, a,)
dy=(ay, as, a)

dyw=(as, as, a,)
diu=(as, ay, as)
di=(as, a, as)
dis=(as, a,, @)
du=(as, a,, @)
di5=(as, as, ay)
diy=(a,, as, a,)
dp=(ay, a;, a,)
dis=(ay, a5, ay)

dw=(as, a,, a,)
dy=(as, a,, a)
du=(as, a,, @)
dy=(04, @z, @)
dy=(as, az, a,)
du=(as, a;, a)
dys=(as, as, @)
dy=(as, a;, a,)
Ay =(as, @5, 0y)
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(Note; These are put in lexicographic orders with respect to the suf-
fix of actions.) The product of regret-relief ratios of a, is

By Theorem 2 and Corollary 1, we know that a complete class is
spanned by 8 decision rules d,, d, d;, dy, dy, ds, dss, dy,. Fig. 8 shows
“risk points” (R(6,, d), R(6,, d)) of all 27 non-randomized decision rules
and also shows that minimal complete class is spanned by 4 decision
rules d,, d;, dy and dy.

R(8.,d)
d

5

Fig. 3

. Example 2. As an example which does not satisfy the condition
in Theorem 2, let us suppose that only loss function changes into Table 3.
Note that the condition,

in case of 4, a;>a;> -+ >a,
in case of 6y, ;<< -+ <a,

still holds.
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Table 3. L(4, a)

a a: as

A 0 3 6
0: 5 2 0

Then the product of regret-relief ratios of action a, is
7(61, @) 7(6s, az)=1%<1 .

Risk points (R(6;, d), R(6:,d)) of all 27 non-randomized decision rules
are shown by Fig. 4.

R(6.,d)

d

> R(6,,d)
Fig. 4

As shown by this figure, the minimal complete class is spanned by
7 non-randomized decision rules d,, d,, ds, dg, ds, dis, d and decision
rules which call for a, are contained. Thus the intermediate action, a,,
though never employed as the best one in any state of nature, becomes
actually in use, when 7(6;, a;)-r(6:, a;)<1.

3-4. The reduction in 2-state, 2-observation and m-action case

The following theorem may be useful for the reduction to a com-
plete class in 2-state, 2-observation and n-action case.



REDUCTION TO A COMPLETE CLASS 157

THEOREM 3. Suppose that 6 =1{6,, 6}, X={x,, x;}, A={a,,---, a,},
w,>0 (s=1, 2), f(x;]60)>0 (t=1,2; 6€06O) and

L6y, a) < L(6y, a))< - - - < L(6;, @,)  and
L(6,, a))> L(6,, as)> - - - > L(6:, a,) .

If the condition

(3.23) 70y, @) 7(0y, @) >1  for k=2,---,n—1

(3.22)

18 satisfied, then the minimal complete class is
1) the set C5 of all randomized decision rules of the form either

Ady+(1—2)d, (0=2=51)

1d,+1-2)d, (O<V<1)

provided f(x,60,)< f(x.:]6,), and
ii) the set C; of all randomized decision rules of the form either

2d,+(1—-2)d. (0=2=1)

rd,+Q1-2)d, (0s2=1)
provided f(x,]60,)> f(x,]6,), where
daz(a’l’ a’l) ’ db=(a1, an) ’ dcz(am al) ’ dd:‘(any a'n) .

PrOOF. By applying Theorem 2 and Corollary 1 to every a., k=
2,---,n—1 we conclude that a complete class is spanned by 4 non-
randomized decision rules d,, d,, d., d;, which call for only best actions.
We express such complete class by

Ci = {pdat 0o+ 00+ psda; patpotp.+0a=1,
0,20, 0,20, p.=0, p,=0} .

The basic idea of further reduction from C; to Cj (or C%) is as
follows :

Step 1. Since d, and d; are not dominated and either d, or d, is
dominated (this needs proof, which we omit here), we get a new com-
plete class

y={pid.+pids+pids; pitpot+oi=1, pi=0, p;=0, p;=0}
if fla|00<f(x:]6), and
Ci={pld.+pid.+pids; pi+pi+pi=1, p;=0, p.=0, p;=0}
if f(x:|0)> f(.]6) .
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Step 2. C: (or C;) can be further reduced to a smaller complete
class

b= {ad,+(1—2d,, Vd,+(1—2)d,; 05251, 01/ <1}
if f(w]0)<Sf(2:]65), and

Cs={ado+ (1A —)de, Vd,+(1—2)dy; 051=1, 0=V =<1}
if f(w]60,)> f (22 62) -

Step 3. C% (or C5 is minimal and terminates the reduction process.

If we prove C? (or C;) is complete, then the proof (Step 1) of com-
pleteness of C% (or Cj) is bypassed since C;cC; and C5CCj. There-
fore we will prove that

i) C? is complete, if f(x,|6,)<f(x:|6,), and

ii) Cj is complete, if f(x;|0,)> f(x:|62).

i) According to Definition 2, it is enough to prove that given any ran-
domized decision rule & not in C} there exists a decision rule e
that is better than &. But when & (¢ C%) is not in C;, there exists

Fig. 5

8" in C, that is better than &'. If §” € C} then the proof is over. If on
the other hand ¢"” ¢ C2, it is enough to find 6"’ € C} that is better than
8"”. This condition enables us to assume without loss of generality that
& is in C,. Let us denote &' as

5, = Puda + pbdb + Pcdc + pddd ’
and introduce randomized decision rules
b=2d,4+Q-2d,, d=2d,+A-2)d,,

where

1= PaB(01, d)+0uR(81, do)+pcR(01, do)+puR(61, do) — (6, d)
R(01 ’ da) —R(01 ’ db)
— S (22|61 (pa+p.)— f(#:161) (p. + p2) ,
S(a,]61)
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A= pF(0:, do)+p0,B(6,, dy)+p.R(8, d.)+ 0. R(8;, ds) — R(6,, ds)
R(6,, d,)—R(6,, d.)

_ @180 (0utp)+ £ (@116) (0u+p2)
f(xllol)
and &#5, #+#5. Then

(3.24) R(6:, 9")—R(6,, 5)
=p.R(61, do)+ 0, R(01, dy)+pcR(6y, d.)+p.R(0y, do)
—2R(6:, d.)—(1—2)R(6;, d,)
=0

R(0:, &)~ R(6:, 6)
=p.R(6:, d.)+ PDR(02 y dy)+ pcR(0:, do)+ de(02 » dg)
- 2R(02 ’ da) - (1 “Z)R(ﬁz ’ db)
= {L(6;, ar)— L(0:, a.)} {f(2:6:) (pa+p.)
— f(@10:) (pc+ pa) — 21 (2| 62)}

= f(@,|0;)— S (,]6,) —
S(25]6y) {L(6:, a))— L(8:, a.)}(p.+pa) »

and

(3.25) R(6,, 8")—R(6,,5)
=p.R(6,, do)+ . R(8,, do)+p.R(0,, d.)+ p.R(0,, dy)
—VR(6,, d))—(1—2)R(6,, d,)
=0
R(8,, &) — R(6,, 5)
=0, R(0,, d.)+ p, R(0:, dy)+ p.R(0;, d.)+ p. R(6:, d,)
—2R(6,, d,)—(1—2)R(6, d,)

= S (@] 0:) — f (2,0, B
= f(xl | 01) {L(02 ’ al) L(02 y a,,,)} (pa +Pc) .

159

Since f(2:]60,)—f(x:]6:)>0, f(x:]6,)>0, f(x:]6,)>0, L(6:, a;)—L(8;, a,)>0,

pa+Pc>0 and pc+Pd>0y we get

(3.26) R(0,, &')>R(6:, 5)
and
(3.27) R(0:, &)>R(6:, 5) .

Taken together (3.24), (8.25), (3.26) and (8.27), it is concluded that C%

is complete.
ii) Similarly as in i), it is concluded that C; is complete,
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Next we prove that C? (or Cj) is minimal. Let us suppose that C3
is not minimal and a minimal complete class does not contain a random-
ized decision rule 6%, for example, such that §*=p*d,+(1—p*)d, (0<p*
<1). Then in the minimal complete class, there exists 6** such that
o%* > 3% where 0%*=p**d,+(1—p**)d, or **=p**d,+(1—p**)d, and p**
#p*.

1) In case §**=p**d,+(1—p**)d, and o*=p*d,+(1—p*)d,

For all 6, the following inequality must hold

P**R(0, d,)+(1—p**)R(8, d,) < p*R(0, d.)+(1—p*)R(0, d;) .
This implies that

(3.28) if p**—p*>0 then R(9, d.)<R(6, d,) for all 4
or |
(3.29) if p**—p*<0 then R(0, d.)=R(0,d,) for all ¢.

But both (3.28) and (3.29) contradict our conditions R(6;, d.)<R(6:, d»)
and R(6,, d,)> R(6,, d;).

2) In case §**=p**d,+(1—p**)d, and 6*=p*d,+(1—p*)d,
Then the following inequality must hold

P**R(8y, do)+(L—p*¥)R(0:, d,) S0*R(0:, d) +(1—p*)R(6:, do) -
But since R(6,, d,)> R(6:, d;)>R(0:, d;), we get the contradiction

(1— p*){R(8,, do)— R(6y, du)}
S R, d)—RG, d)]

In other cases such that

¥k =p¥*d, +(1—p**)d, and o*=p*d,+(1—p*)d,
and
**=p**d,+(1—p**)d, and &*=p*d,+(1—p*)d,,

similarly as in 1) and 2), we get a contradiction.

The proof of minimality of C; can be carried out by similar way
which we used in the proof of minimality of C;. Hence we conclude
that C? (or C%) is the minimal complete class and terminate the proof.

3-5. Some example of Theorem 3

Example 3. Consider a decision problem of 2-state, 2-observation
and 5-action. A loss function and a distribution of observation are
given by Tables 4 and 5 respectively and w,>0 (s=1, 2).



Table 4. L(6, a)

REDUCTION TO A COMPLETE CLASS

Table 5. f(x|6)

a; as as as as X1 X2
0, 0 5 9 12 13 0y 0.8 0.2
[ 15 10 6 2 0 02 0.3 0.7

The possible non-randomized decision rules are

di=(a;, a,)
dy=(ay, a,)
dy=(ay, ay)
di=(as, ay)
d;=(a,, as)

dy=(a, a,)
d;=(a,, a,)
dy=(a,, @)
dy=(a, a,)
dyw=(as, as)

ay=(as, a,)
diy=(as, a,)
diy=(as, as)
du=(as, a,)
dis=(as, as)

du=(a:, @)
dp=(as, ay)
dis= (a4, @)
diy=(as, a,)
dy=(a,, as)

du=(as, a,)
dyn=(as, az)
dou=(as, as)
dy=(as, a,)
dos=(as, as) .

Products of regret-relief ratios of action a,, a; and a, are

R(6,,d)

15

10

{

d

Fig. 6
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52 _ 5
0, a)) 10y, a)=— ~=2>1,
7(01, as)-7(6y, as) S1-1°
2 3
0, ;) 7(0,, @) =— Z=2>1,
701, 3)- 7(0:, @) 43 2>
12 2 24
0,, a) 10, a)=—2 “ =42 51
701, a)-7(0:, @) 1 13 13>

and f(x]60,)< f(x,]0;). Therefore, by Theorem 3, we conclude that the
complete class is the set of all randomized decision rules of the form
either

Ad,+(1—2)ds (0=2=1)
or
Vd+(1—)dys  (0SX=1).

Fig. 6 shows “risk points”(R(6;, d), R(6,, d)) of 25 decision rules of
this problem.

3-6. Incremental loss-gain ratio criterion

For the reduction to a complete class in a multiple decision prob-
lem, “incremental loss-gain ratio” criterion, similar to regret-relief
ratio criterion, will be introduced.

Let us define incremental loss e(d, @), incremental gain e(4, @) and
incremental loss-gain ratio 7(d, a) of action a as follows.

DEFINITION 9 (Incremental Loss). If
L6y, a)) < L(8y, a))< - - - <Ly, @) » and

(3.30)
L(8,, a;)> L(6,, ag)>--- >L(6,, a,) ,

then we define incremental loss e(d, a,) of action a, to be the increment
of loss caused by taking an action a, instead of more preferred action
a,_; (when 6=6,) or a,,, (when 6=#6,). More precisely,

o0y, a)=L(6,, ax)— L(61, ax_y)
or
e(0:, a;)=L(0, a’k)_L(BZJ Qi) -
DEFINITION 10 (Incremental Gain). Under the condition (3.30) of
Definition 9, we define incremental gain e(4, a,) of action a, to be the

increment of gain given by taking an action a, instead of less preferred
action a,,, (when #=8,) or a,_, (when #=6,). More precisely,
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e(0:, ar)=L(0y, ax)—L(6y, az)
or
e(0, a’k)=L(02’ y—y) — LAO:, @) -

DEFINITION 11 (Incremental Loss-gain Ratio). The incremental loss-
gain ratio 7(4, a,) of action a, is defined by

Q(o; ak)

1 =G0 e

Based on the fact that “incremental loss-gain ratio” is very similar to
“regret-relief ratio,” we can imagine that the incremental loss-gain
ratio will be also useful as a criterion for choosing a decision rule. In
fact, the following theorem and its corollary may help demonstrate
the above consideration.

THEOREM 4. Suppose that O=1{6,, 6;}, X={x\, -+, x.}, A={a,---,
a,} w,>0 (s=1,2), f(x,|6)>0 (2=1,---,m; 6€6) and

(3.5) Ly, a,) < L(8y, a5)< - - - <Ly, a,) , and
L(0y, a1) > L(6s, ag) > - - - > L(0:, a,) .
For each k=2,---,n—1, the following holds. If the condition
7015 @) 702, ) >1

1s satisfied, them amy mon-randomized decision rule which takes action
a, 18 dominated by some randomized decision rule.

ProoF. Using the inequality that if

0, <Zy <% Y1>Y%>Ys

and
Yi—Y: < Y2—Ys
Lo— Xy Tg— Lo
then
h—Y < Yi—Ys < Y:—Ys ,
To— Xy X3— Xy L3— Ty
we have

L(8., a;)—L(8,, ax) < L(6;, ax_1)—L(8:, a:)

L(6,, ax)— L(;, a) ~ L(8,, a)— L(6y, ax_,)
L(6:, a) = L0, Qurs) L(6:, a;,)— L(6, a,) ,
L(6y, @ri1)—L(0y, ax) ~ L(6y, a,)—L(6;, ay)
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where the second inequality is by the assumption. Consequently, we get

L(6;, a,)— L(9,, a,) < L(6;, a,)— L(6,, a,)
L(oly ak)_L(al’ al) L(el’ a’n)_L(ﬂl! ak) ,

that is,
(01, @) 7(6:, @) >1 .

Thus the assumption of Theorem 2 is satisfied, which completes the
proof.

Remark. Thus, one should notice that incremental loss-gain ratio
criterion implies regret-relief ratio criterion.

COROLLARY 2. Assume the condition (3.31) of Theorem 4. If the
condition

(01, @) n(0s, a)>1 for k=2,---,n—1

18 satisfied, then the minimal complete class is
i) the set of all randomized decision rules of the form;
either

Ad,+(1—2yd, (0=21=1)

d,+(1—2)d, o=7=1)

provided f(x,]0,)< f(x:6,),
ii) the set of all randomized decision rules of the form ;
either

d,+(1—2)d, 0=2=1)
or
Ad.+(1-2)d, o=xrz1),
provided f(x,]0,)> f(x.16,), where
d.=(ay, a)), dy=(as,a,), d.=(a,, a) and d;,=(a,, a,).

Proor. Similarly as in the proof of Theorem 4, for each k=2,- .-,
n—1 we get

7(017 a'k)'T(oz’ ak)>1 .

Thus the assumptions of Theorem 3 are satisfied, which completes the
proof.
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3-7. Comparison of the results of reduction

We now compare the results of reduction when using monotone
likelihood ratio criterion with when using regret-relief ratio criterion
in the case of Example 3.

1) The case using monotone likelihood ratio criterion

By Theorem 1, we know that a complete class is spanned by 15
monotone decision rules d,, d., ds, d,, ds, d;, ds, dy, dy, dis, du, dis, dy,
dy, dos.

Ko =421 (1Y) £ i

2) The case using regret-relief ratio criterion

In this case, by Theorem 2 and Corollary 1, we know that a com-
plete class is spanned by only 4 decision rules d,, d;, dy, dy. (If we
use a relation among f(x|6), then we get a minimal complete class by
Theorem 3.)

For the problem of Example 3, regret-relief ratio criterion is very
effective in the reduction to a complete class.
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CORRECTION TO

“ON THE REDUCTION TO A COMPLETE CLASS
IN MULTIPLE DECISION PROBLEMS”

MASAKATSU MURAKAMI

In the above titled paper (this Annals 28(1976), pp. 145-165), the
following correction should be made:

On page 146, line 3:

The minimax risk criterion —— The minimum risk ecriterion.



