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1. Introduction

In the present paper, a random process on the sphere is defined
as a family of random variables indexed by the position Pe¢ S,, the
unit sphere of the three-dimensional space R?!, and by the time te Z,
the set of integers, i.e. a family of the form {X(P,?): (P,t)eS;xZ}.
This paper develops a spectral analysis for a process X(P,t) which is
homogeneous (with respect to P) and stationary (with respect to t).

The problems of filtering and sampling for a process on the sphere
have been studied in Hannan [4], [6]. For a process which is time-
independent rather than stationary (i.e. for which the realizations at
different times are mutually independent), a spectral analysis has been
developed by Jones [8]; the estimation of the covariance function has
been made by Roy [11]. Applications of random processes on the sphere
to meteorology can be found in Jones [7], Cohen and Jones [3].

In Section 2 of this paper, we consider the spherical harmonic series
expansion of X(P,t); the coefficients are stochastic processes indexed
only by time. For a homogeneous and stationary process {X(P,t):
(P,t) e S;xZ}, a spectral representation is given. This representation
allows us to develop a spectral analysis for a process on the sphere
analogous to the one described in [10] for a process on the circle. Given
a positive integer T, we suppose that complete realizations of the pro-
cess have been observed at times t=0,1,-.-,T—1. From these data,
we can compute the values of the coefficients in the spherical harmonic
series expansion at ¢=0,1,---,T—1. In Section 3, conditions are given
which allow us to apply results of Brillinger [1], [2], for vector-valued
time series to the coefficients of X(P,t). First, a theorem gives the
asymptotic distribution of the finite Fourier transform of the coefficients.
From this theorem, the asymptotic distribution of the family of period-
ograms is deduced. In Section 4, a class of consistent estimates of the
spectral densities is studied. Finally in Section 5, a sample covariance
function for the process X(P,t) is proposed and its asymptotic distri-
bution derived.
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2. Spectral representation

In this section, we consider a real-valued process {X(P,t): (P,t)¢€
S:xX Z} with finite second-order moments such that for each ¢, the pro-
cess {X(P,t): PeS,} is continuous in quadratic mean (q.m.). Thus, for
each ¢, one can expand X(P,t) in a spherical harmonic series which is
convergent in q.m. If for each n=0, {Y..(P): —n<k<mn} denotes an
orthonormal basis for the real spherical harmonics of order » (see Sansone
[12], p. 262), we can write:

2.1) X(P,)=3 3 Zul®Yu(P), PeS,
where
22) 2u0=| X(P,0Vu(PYtaP)

¢ being the Lebesgue measure on S,. The integral in (2.2) is the inte-
gral in the q.m. sense and the series (2.1) converges in q.m.

In the following, we will say that the process X(P,t) is second-
order homogeneous (with respect to P) and stationary (with respect to t)
if
(2.3) E[X(P, )]=p, E[X(P, t+8)X(P;, s)]=R(,1),

for every P,, P,€ S, and for every s, t € Z; 6 being the angular distance
between P, and P,.

Without loss of generality, we can suppose that =0, which implies
that E[Z,.(t)]=0 for every k£ and n. The following theorem gives a
spectral representation of the process X(P, t).

THEOREM 2.1. If the process on the sphere {X(P,t): (P,t) € S;XZ}
is second-order homogeneous and stationary, them

(2.4) E (Zut+8)Zun(5)1 = 0undin | _e“dF(2)

for —n=Zk=n, —m=Zh=m and n, m=0. Also,
(2.5) E [X(P,, t+8)X(P;, 9)]
=R(®, )=(4n)* 3] (2n-+1)P,(cos 6) S AT (1)

where {F ()}, 18 a sequence of real mon-decreasing functions which are
unique to an additive constant such that

(2.6) (40 3 @n+1) S AR (<o,
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and P,(-) denotes the Legendre polynomial of degree n.

The representation given here could be deduced from the general
theory of second-order stationary processes on a homogeneous space
(see Hannan [6], p. 106). A detailed proof is given in Roy [9], Chapter 1.

3. Finite Fourier transforms and periodograms

The basic tool for the construction of spectral estimates will be
the finite Fourier transform of the coefficients. In order to study its
asymptotic behavior, we must make some stronger assumptions about
the process X(P,t). In the following, we will say that the process
X(P, t) is strictly homogeneous and stationary if for any finite collection
of points (P, t),- -+, (Ps, ti), the joint distribution of X(g(P), ¢, +17),- -,
X(g(P,), tu+t) is independent of g and ¢ for all ge G the group of rota-
tions of the sphere, for all t ¢ Z and k=1, 2,---. Thus, a strictly homo-
geneous and stationary process with finite second-order moments is
second-order homogeneous and stationary and Theorem 2.1 is valid for
such a process.

AssumpTiON I. For each t, {X(P,t): P€S,} is continuous in q.m.
Also, X(P,t) is strictly homogeneous and stationary all of whose mo-
ments exist and are bounded with respect to P i.e.

|E [X(Py, t) - - X(Py, t)H S My, -+, &)
uniformly in P,---, P, for all ¢,,---,t, and k=1,2,---.

In this paper, cum {X,---, X,} will denote the joint cumulant of
order j of the random variables X;,---, X;. By an argument analogous
to the one used in Roy [10], under Assumption I, it follows that cum
{an,,l(u1+t),---,Z,,j_l,,j~l(uj_1+t), Z,3(t)} is independent of t and from
now, it will be denoted bY Cup,...,nj(Uss -« +5 Uj_1)-

The main assumption about the process X(P, t) will be the following :

~ AssumpTION II(I). For a given [=0,
ST (14w} cum {X(Py, us+t), - -,
Uy ooy Uj_=—00
X(P;j_1, uj_y+t), X(Py, )} =C;<o0
uniformly in P,,---, P,, for i=1,---,j—1 and j=2,3,---.

Under Assumption II(0), the jth order cumulant spectrum
Sgeyoeomjf(Ay s+ Aj21) of the coefficients Z, ;. (£),- -+, Znw,(t) is defined by

(3'1) fnlkl,---,njkj(llr tt %y '2/-1)



94 ROCH ROY

o j—1
=@2r)7* 3 Cappeeenp (s e+, Uy_y) €XD {-—'L > unl,.}
Upyeee,Uj_ =—00 h=1

for —co<2,<o0, h=1,---,j—1 and j=2,3,---.
For the second-order spectra, by Theorem 2.1, we have that

3.2) Joe,mn(2) = OrnmOenfo(2)

for —n=<k<n, —m=h=<m and m, n=0. Assumption II(0) garantees
us that the functions F,(2) of Theorem 2.1 are differentiable and Ja(2)
=F/(3).

Now, the estimation of the spectral densities f,(2), »=0, and of
the covariance function R(6,t) can be done in a similar way to the
estimation of the corresponding parameters for a process on the circle.
The main difference being that for a process on the sphere, f(2) is the
spectral density of 2n+1 coefficients rather than 2 in the case of a
process on the circle.

Given the values X(P, t), P€S,, t=0,1,---, T—1, the finite Fourier
transform of the coefficient Z,.(t) is defined by

(3.3) DW= Zu(t)e ™, 2¢R.

For an arbitrary subset of subscripts S={nk,,- - -, n.k.}, d{(2) de-
notes the column vector (d572,(2), - -+, dSR(2)).  Similarly, Zs(t) represents
the column vector (Z,, (¢),---, Z,x(t)) and fg(2) the matrix of second-
order spectra of the process Zs(t). Also, N,(u, X) represents a real k
vector-valued normal variable and Ny(g, 3) a complex k vector-valued
normal variable. The next theorem which gives the asymptotic distri-
bution of d{”(2) as T— oo, follows from Theorem 4.4.2 of Brillinger [2].

THEOREM 8.1. Let X(P,t) satisfy Assumptions I, 1I(1) and have
mean zero. Let di;’(2) be defined by (3.3) and suppose that 22;, 2,;+2,%0
(mod 27) for 1<j<k=J. Then, d¥(,), j=1,---,J are asymptotically
independent N:(0, 2z TF,(2;)). Also if 2=0 (mod z), dP(2) is asymptot-
ieally N0, 2z Tfs(2)) independently of the previous variables.

From (3.2) and Theorem 3.1, we see that
lim L BU4P@A=2er,),  —nsksn
and as a preliminary estimate of f,(2), we can consider
(3.4) LM)=1/{2z(2n+1)T} k;n‘._n @) |7, n=0.

The statistic I{™(2) will be called the periodogram of order m corre-
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sponding to X(P, t). From Theorem 8.1, we deduce easily the asymptotic
distribution of the family of periodograms I{™(2), n=0. In the follow-
ing theorem, X denotes a chi-square random variable with n degrees
of freedom.

THEOREM 3.2. Suppose the conditions of Theorem 3.1 are satisfied
and let IS7(2) be given by (3.4). Then for n=0, I{7(3;), j=1,---,J are
asymptotically independent [.(2;)%5uni1r/2(2n+1) respectively. For 2=0
(mod x), I™(R) 18 fu(A)Xinss/2n+1 independently of the previous variables.
Also for n#m the processes I™(2) and IST(2) are asymptotically inde-
pendent.

4. A class of consistent spectral densities estimates

Taking I™(2) as the basic statistic, a consistent estimate of the
spectral density f,(2) can be obtained by the usual technique of estima-
tion of the spectral density of a stationary time series. We choose first
a weight function H(a) (—r<a<=z) which is bounded, symmetric about

zero, has a bounded first derivative and is such that S H(a)da=1.

Given B, >0, we define H”(a)=B;'H(B7'a) and as an estimate of f,(2),
we consider for n=0

(4.1) fn‘“(l)=gx H(a)[[7(A—a)da
where I{™(2) is defined by (3.4). We see that

1 n
4.2 DA)=—— AR
(4.2) () 2n+1k§nfk(1)
with

£P@=\" HP@(@T)"|dD0—a)da,

—n<k<n. The statistic f7’(1) is the usual spectral density estimate
corresponding to the series Z,(t), t=0,1,.-.--,T—1.
In the following, the function 7(2) is defined by
1 if 2=0 (mod 2r)
77(2)={

0 otherwise .

By taking advantage of (4.2), the next theorem can be deduced from
Theorems 6.1 and 6.2 of Brillinger [1].

THEOREM 4.1. Let X(P,t) satisfy Assumptions I, II(1) and have
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mean zero. Let fi™(2), n=0, be given by (4.1). If B;—0, TB;— oo
as T— co, then

lTifn E [fiP@)]=f2)
and
(4.3) 1}3.1 TB; cov [£{7(2), f#f’(ﬂ)]’

= 2rbe =) LW | B for m,mz0.
Also, the random variables (B;T)2{f{"(4)—E[fD0)),: -+, (B T)-
(P4 —=E[f£PQA)]) are asymptotically jointly mormal with mean 0
and covariance structure given by (4.3), n; =20, j=1,---,Jand J=1,2,---

5. Estimation of the covariance function

Let m,(u), u=0, +1,--., denote the covariance function of the
coefficients Z,(t), —n=<k=n. The function m.,(u) can be estimated by

msf)(u):S" e I()da, n=0, u=0, +1,-.., where I{"() is given by
(3.4). From the definition of I{™(1), we see that

1

1 Ou)=
(6.1) mi(u)= Tt 1

mP(w)

where mS’(u) is the sample covariance function corresponding to the
series Z,(t), t=0,1,..-,T—1.
For N fixed, as an estimate of R(6, u), we consider

(5.2) R(6, w)= E (2n+1> P.(cos O)m(u) .

In order to study the asymptotic distribution of R{’(#, u), we must
introduce the following parameter:

(5'3) gnlng(lly 22! 18)_1-. 2 o2 2 fnlkl kg, n,kz n,l:z(zly 22: 23)
1= 7 kg=
where Sk gy ngkyngty (A5 42, 4) the cumulant spectrum of order four of
the coefficients Z,,; (t), Z, (1), Zpu,(2), Znp,(t) is defined by (3.1).
Using (5.1), the next theorem follows from Theorems 5.1 and 5.2
of Brillinger [1].

THEOREM 5.1. Let X(P,t) satisfy Assumptions I, 1I(1) and have
mean zero. Let R{(6, u) be given by (5.2) with N fized. Then,
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(5.4) E [RS(0, w)] = 2 (2’”+ 1) P,(cos 8)m.(u)+Ox(T™)

with the error term (a function of N) is umiform in 6, u.

(5.5) lim T cov {R$"(6:, ws), RS(6,, uy)}

T —o0

=(8n)! ZI:E) (2n+1)P,(cos 6,) P,(cos 6;) S: [exp { —da(uy+u5)}
+exp {ia(u,— u)}1 f(@)da+(8n) ™" n§=o P, (cos 6,)P,(cos 6,)
X S:x S:' exp {i(a'ul—azuz)}g"m(al , ag, —ay)dayder

and R{(0:, w), i=1,---,I are asymptotically jointly normal with the
above first and second-order moment structure; 0=6;,<=, u,=0, £1,--
1=1,---, I and I=1,2,---..

From the previous theorem, we obtain an asymptotically unbiased
estimate of R(, u) by letting N—oo.
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