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Abstract

Let {X,: t=0, =1, +2,---} be a stationary rth order autoregressive
process whose generating disturbances are independent identically dis-
tributed random variables with marginal distribution function F. Adap-
tive estimates for the parameters of {X,} are constructed from the
observed portion of a sample path. The asymptotic efficiency of these
estimates relative to the least squares estimates is greater than or
equal to one for all regular F. The nature of the adaptive estimates
encourages stable behavior for moderate sample sizes. A similar ap-
proach can be taken to estimation problems in the general linear model.

1. Introduction

A discrete stochastic process {X,: t=0, =1, +2,.--} may be called
a stationary rth order autoregressive process if it has the following
properties : the process is strictly stationary and satisfies a difference
equation of the form

(1.1) Xi—p=3 Xy~ W)+ B,
where {E,} is a sequence of independent identically distributed random

variables with mean 0 and finite variance ¢°, the parameters p, {a}
are real-valued, and the roots of the polynomial equation

(1.2) :c'=jé a;x7!
=1

all have modulus less than one. Under these assumptions, the differ-
ence equation (1.1) has a unique solution, expressible in the form

* This research was partially supported by National Science Foundation Grant GP-
31091X. American Mathematical Society 1970 subject classification. Primary 62N10; Sec-
ondary 62G35. Key words and phrases: autoregressive process, adaptive estimates, robust
estimates.

77



78 RUDOLF BERAN

(1.3) ‘ X:=#+12:}) BiE:—;

the sum on the right converging in mean square (Anderson [1] or Mann
and Wald [7]).

Stationary autoregressive processes serve as convenient parametric
models for certain time series; their prediction theory is particularly
simple. Estimation of the parameters from the observed portion (X,
X:,- -+, Xy) of a sample path is commonly carried out by writing (1.1)
in the form

(1.4) X.=at 3 X, +E,

and by applying the method of least squares. If X is the (N—r)Xx
(r+1) matrix whose ith row is (1, X,,;;, X,4i3,- -+, X;) and Y is the
(N—7)X1 vector (X,,, X,,s, -, Xy)7, the least squares estimate (LSE)
of p=(a, a;, -+, @) based upon (X;, X;,--+, X), N=2r+1, is

(1.5) py=(XTX)XTY .

The asymptotic distribution of N'(py—p) as N— oo is normal (0, ¢*I""?),
where I'=(N—r)" E(X”X) (Anderson [1] or Mann and Wald [7]).

Let F denote the marginal distribution function of E, and let (-, -)
and ||-|| denote the inner product and norm in L,(F). Under regularity
conditions (cf. Section 2), there exists an estimate py(¢;), depending on

(1.6) ¢r(x)=—f"(2)[f(x) ,

S being the density of F, such that the asymptotic distribution of
N'"py(¢r)—p) is normal (0, ||¢z]|*""). The asymptotic efficiency of
the LSE py relative to py(¢r) is less than or equal to one, with equality
if and only if F is normal. Thus, the problem arises of constructing
a practical estimate of p whose asymptotic performance will dominate
that of the LSE for all F' of interest. This paper develops one possible
answer, under mild regularity assumptions on F.

2. Llinearized estimates

Let p, denote the parameter vector of the autoregressive model
under which the data is realized. For every p=(a, a;,- -, a,)T € R,
define the residual process
@1 R(p)=X—a—XaX.,, r+l<t<N.

=1

Corresponding to any scalar-valued function ¢ defined on R!, let ¥(p)
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denote the (N—r)x1 vector (¢ R,,,(p), ¢° R, i(p),- -+, ¢ o Ry(p))*, where
¢o R(p) denotes ¢(R.(0)). Under the usual assumptions, a conditional
maximum likelihood estimate for p, must be a solution to the equation

@2.2)  XT0,(0)=0;

&, is associated with ¢, in the obvious way. Consequently an M-esti-
mate for p, may be defined (Huber [4]) as any estimate which satisfies
an equation of the form

(2.3) XTU(p)=0

for some score function ¢.
Application of Newton’s method to (2.3), with the LSE p, as start-
ing point, suggests the linearized estimate

(2.4) pr(@)=px+ D@, F)I(X"X) ' X ¥ (py) ,

where D(¢, F) is a consistent estimate of a functional D(¢, F') defined
below ; one possibility is D(¢, F))=(¢’, 1). This technique for adjusting
estimates is well-known in the literature if ¢=¢;, (for example, see
LeCam [6]). We will study the asymptotic behavior of py(¢) as a pre-
liminary to the construction of adaptive estimates.

A Dbasic result which underlies the asymptotic theory developed in
this paper is

LEMMA 2.1. If {X.} is a stationary rth order autoregressive process,
then
N2 max | X,| >0

1IStsSN
NX*X5I  nonsingular
as N—oo.

The first property follows from E X?< oo, which is implied by our
definition of X,; the second is proved in Anderson [1], for example.
The following assumptions on ¢ and F will be used:
Al. ¢=¢,—¢_, where ¢, € Ly(F') and is monotone nondecreasing ;
(¢, 1)=0.
A2, lim||¢.(x+h)—g.(x—h)||*=0, and for some >0,
h—0
sup |h|7([¢s(z+a+h)—¢.(z+a)], 1)<oo.

lalse hlse
A3. lim 2h)7([¢.(z+h) = ¢.(z—h)], )=D($., F)<co.

In applications of our results, ¢ will belong to a known, relatively small

family of functions. With this family specified in advance, assumptions

Al, A2, A3 amount to regularity assumptions on F. For the sake of
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brevity in exposition, any F satisfying Al, A2, A3 for a given family
of functions ¢ will be called regular.
For every z e R™!, let {z| denote max |z;]. Let D(¢, F)=D(¢,, F)
1 r+1

—D(¢_, F') and let ﬁ(gb, F) denote a consistent estimate of D(¢, F).

THEOREM 2.1. If Al, A2, A3 are satisfied, them for every C>0
2.6) N  sup | XT0(0)— X W(p) +(XTX)(o—p) D, F)| >0

lp—pgl SCN-1/2
in py-probability as N— co.

The proof of this theorem is deferred to Section 5. A similar result
for the general linear model has been established by Bickel [2].

THEOREM 2.2. If Al, A2, A3 are satisfied, the asymptotic distri-
bution of N (py(¢)—p) as N— oo is mormal (0, V(¢, F)I'™"), where

(2.7 Vig, F)=l|¢|’ID¥¢, F) .

PrOOF. Since N"*(py—p,) is bounded in probability asymptotically,
it follows from (2.4) and Theorem 2.1 that

(2.8) N'(py(¢)—po) = N"2[D(g, F)I (X" X)X T (o) +0,(1) -

Let A, be the s-algebra generated by (X, X;,---, X;), t=1. For every
ce R, let

(2.9) Su(c)=c" X" (o,) .

Because of Al and (1.8), {Sy(c), Ay; N=2r+1} is a martingale. Appli-
cation of a suitable central limit theorem (Brown [3], p. 60) shows that
the asymptotic distribution of N~'2Sy(¢) is normal (0, ||¢||’%c"Ic). The
theorem follows.

Suppose that F has an absolutely continuous density f and ¢,
satisfies Al, A2, A3 with D(¢r, F)=(¢%, 1)=||¢z|[*. Then the estimate
px(¢r), defined according to (2.4), achieves the minimal asymptotic co-
variance matrix |[|¢r||"2/""! mentioned earlier.

3. Adaptive estimates

Since F is usually not known, the estimate py(¢r) cannot be found
in practice. A natural idea is to estimate ¢, from the data and use
this estimate in place of ¢, in (2.4). While theoretically possible, this
approach encounters the difficulty that consistent estimates of ¢, may
converge very slowly as the sample size increases.

In estimating ¢, as in estimating densities, there is a trade-off
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between asymptotic variance and asymptotic bias. This suggests a more
modest approach that separates these two considerations: Replace ¢5
with an approximation ¢y which is easier to estimate from the data
but keeps V(gr x, F') close to V(gr, F') for a range of interesting F.
Estimate ¢, , consistently by ngSF,H and estimate p, by [;N(S?SF,H).

This program motivates the developments in this section. However,
the results will be formulated in a manner that does not involve ¢p.

A real-valued function g defined on R' will be said to satisfy con-
dition C if g=g,—g_, where g. is monotone nondecreasing, and
lgol ([g:(x+h)—g.(x—h)], 1)=0. Let {¢,: 1=<i=<k} be a family of score

functions which fulfill some or all of the following assumptions, as re-
quired.
Bl. Each ¢, satisfies A1 and A2.
B2. Each ¢,. is absolutely continuous and ¢/. satisfies condition C.
B3. Each ¢,¢, satisfies condition C.

B4. If “ jﬁ c,¢,’
=1

Note that B2 implies that A3 holds for each ¢,, with D(¢,., F)=(¢!., 1).
Let H be the subspace of L,(F') spanned by all linear combinations of
the {¢;}. Let W denote the kxk matrix whose (i, j)th element is (¢,
¢;) and let v=((¢/, 1), (¢, 1),- -, (¢%, 1))". Assumption B4 ensures that

=0 for some constants {c,}, then ¢;=0, 1=<j<k.

W is nonsingular. Define the vector a=(a, a,, -+, a;)" by a=Wv
and let
(3.1) br.u=3 a -
LEMMA 3.1. If each ¢, € L(F) and B2, B4 are satisfied, then
(3.2) Vigr.n, F)=min Vg, F) .
PROOF. If ¢ € H, there exist constants c=(ci, ¢, -+, ¢;)" such that

¢=$ ¢;;. Since v=Wa,

3.3) D(¢, F)=(¢', =c"v=c"Wa=(¢, ¢r,u) -
Hence
(3.4) Vg, iy=—l8l > 1 vy . F),

(¢, ¢r.m)* ~ |l Grull
with equality if and only if ¢ is proportional to ¢, 4.

An interesting interpretation can be given to this lemma when F
has an absolutely continuous density and ¢, € Ly(F'). In this case, (¢', 1)
=(¢, ¢5) for every ¢ € L(F') and ¢, 5 is simply the projection of ¢, into
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H. Note also that any multiple of ¢, will retain the minimizing
property (3.2).

LemMA 3.2. If Bl, B2, B3 are satisfied, then for every C>0, 1<
1, =K,

(N=r)*  sup ﬁ‘, @0 R(p)— _ﬁ JUE)| >0
(3.5) le=pgls t=r+1 t=r+1 "
W=r)" _sup | S (g0 RAOIs o R(DI— 3 (EIG,(E)| 50

wm py-probability as N— oo.
PrOOF. Let py—p=(dy, 4y,---, 4,)". For each §>0, define U,d) by

X, if |X|<oN-n
(3.6) wa)={
0 otherwise .

Without loss of generality, assume ¢’ is monotone nondecreasing. Under
B2,

@) WN-n"E[ swp |5 @(E+a+340.,0)- £ #E)]

lo—pg|SCN-1/3 | t=7+

< E[¢i(E,+CN 2 +rC3)— g E,—CN~V:—r(C8)] -0

as N— o and 6—0. Moreover, because of Lemma 2.1,

(3.8) P(U(9), Ux(9), - - -, Ux(@)# (X1, X3, - -+, Xy)]
=P[max | X,|>5N"]—-0

for every >0 as N—oo. The first line in (3.5) is implied by (3.7)
and (3.8); the second is proved analogously using BS3.

Let ¥ be the kX1 vector whose i¢th component is (N—7)! §; o

t=r+1
Ry(py) and let W be the kxk matrix whose (7, j)th element is (N—r)*-
‘%1 [¢io R (ox)][¢; o R(py)]. From the lemma above, it follows that
t=r+

5y and W-SW as N—oo. Define W~ as the inverse of W when pos-
sible and arbitrarily otherwise. Since W is nonsingular under B4,

W-1LW- and 4=W-'9>a as N—>oco. The implied estimate of ér.m 18
A k.
(3.9) ¢F,H=§1 a¢¢¢ .

By setting ¢=¢Ap,g in the linearized estimate p,(¢) and noting that

4*Wa is a consistent estimate of D(¢5,u, F)=||pr z|’=a"Wa, we arrive
at the adaptive estimate
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(3.10) pu(H)=py+(@"Wa) (X7 X)X 07 u(p) ,
where qﬁp, a(px) is the (N—7r)x 1 vector of scored residuals (ﬁp,,, o R, .1(px),
< ey Prpo RN(@N))T-

THEOREM 3.1. If Bl, B2, B3, B4 are satisfied, then as N— oo,
N"(pp(H) — pr($r,5)) 20 in pp-probability and the asymptotic distribution
of NY(py(H)—py) is mormal (0, || ¢z x| I").

PROOF. As in (2.2), let @, 5, ¥; denote (N—7)Xx 1 vectors of scored
residuals, the score functions being ¢r 4, ¢; respectively. Since

k N k
(3.11) Pralp)=3a.¥(p)  Prulp)=2 a:¥(p)
we may write
(8.12) N-“X7, #(oy)— N2 XTQp y(py)= é (@ —a,) (N2 X" ¥(py)) -

Theorem 2.1 implies that N~2X7¥(py) is bounded in probability asymp-
totically. Since also ¢->>a, the difference (3.12) converges in probability
to zero as N—oo. The theorem follows with the help of Theorem 2.2.

A desirable property possessed by the LSE p, is invariance under
rescaling of the observations in the sense that the mapping X,—cX,,
¢>0, induces the mappings &y—ca, and a;—a; for 1<i<r. For suitable
H, the adaptive estimate py(H) is also scale invariant.

DEFINITION. A subspace H of L,(F') is said to be closed under scal-
ing if ¢(-) € H implies that ¢(c-) € H for every scalar ¢>0.

THEOREM 3.2. If H 1is closed under scaling and W is nonsingular,
the adaptive estimate py(H) is scale invariant.

ProoF. Let Fy denote the empirical distribution function of the
residuals {R,(py): 7+1<t<N} and let

| #taF
([vwaro]

An argument like that for Lemma 3.1 shows that q?F,H is characterized,
up to a constant of proportionality, by the property

(3.14) Vigr.n, F)=min V(g, Fy) .

(3.13) Vi, Fy)=

The scaling X,—cX,, 1<t<N, ¢>0, induces the following mappings:
R(py)—cR(py) and Fy(-)— Fy(-/c). Consideration of (3.13), (8.14) and
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the closure of H yields

B15)  ViBral-10), Fal-[0)=cV(drx, Fx)=c* min V(g, Fr)
=min Vg, Fa(:[c)) -

Consequently, the scaling X,—cX, must map qu, #(+) into a multiple of
ﬁp, #(+/c). The theorem follows from this fact and the invariance of py.

Under the assumptions of Lemma 3.2, V(gb, Fy) is a consistent esti-
mate of V(¢, F'). Therefore, ;5”, is an element of H that minimizes,

in the obvious sense, N(X'X )“V(gb, F,), the estimated asymptotic co-
variance matrix of py(¢). This fact makes p,(H) an extended analogue
of the adaptive L-estimates for location studied by Jaeckel [5].

4. Applications

Scale invariant adaptive estimates of p can be constructed as fol-
lows. Assume F' is symmetric about the origin and take as a basis for
H the set of functions ¢ (x)=|x|"*sign (), r,>0, 1=<i<k. In this case,
H is closed under scaling and the other assumptions required by Theo-
rem 3.1 can be checked readily. Indeed, let ¢(x)=|z] sign(x), r>0.

If S |2 |*dF(x)< oo, assumption Bl holds for ¢, and if also =1, so does

B2. On the other hand, if 0<r<1, fulfillment of B2 is assured when-
ever F has a bounded density which is uniformly continuous in a neigh-
borhood of the origin. Assumption B3 holds under a moment condition
similar to that for Bl, while B4 is satisfied if F' is absolutely continu-
ous and the exponents {r;} are distinct.

Whenever the particular score function ¢(x)=2z belongs to H, the
asymptotic efficiency of py(H) relative to the LSE py is greater than
or equal to one for all regular F'; this is a consequence of Theorem 3.1
and Lemma 3.1.

The adaptive estimate py(H) can be applied to hypothesis testing.
Let C be a gx(r+1) matrix constant of rank ¢, let t=Cp and let zy=

Coy(H). To test the hypothesis H: ii‘. 72=0 versus K: é 2>0, cal-
=1 i=1
culate

(4.1) T, =[#}CI7'C") 4] [6*Wa] ,

where I’'y=N"'X7X, and reject H for values of Ty that are large rela-
tive to the asymptotic X distribution implied by Theorem 3.1. Under
a sequence of alternatives Ky: r=N""24, 4 a non-null ¢x1 vector, the
asymptotic efficiency of this test relative to the corresponding test based
on py is the same as in the estimation problem.
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The central ideas underlying the definition and properties of py(H)
carry over unchanged to the general linear model. For counterparts
of Theorems 2.1 and 2.2 in that case, see Bickel [2]. The analogues
of Theorems 3.1 and 3.2 will be evident to the reader.

Practical aspects. The following practical suggestions are made on
partly heuristic grounds and need further investigation.

1. For samples from a moderately contaminated normal distribu-
tion, try ¢y(x)=|x|"*sign(x), ¢(x)=2 as a basis for H. If F is normal,
ox(H) is still fully efficient asymptotically. If F is actually double ex-

ponential, gﬁF,H(m) will converge in probability to ¢ x(x)=1.90¢(x)—
[16¢(x), and therefore py(H) will discount outlying residuals in large
samples. Note that ¢, becomes negative-valued only far out in the
tails of the double exponential distribution. With F' double exponen-
tial, the asymptotic efficiency of py(H) relative to the best estimate is
(1/2)[1+=/(82—9x)] =.92. The efficiency of py in this case is only .50
and the efficiency of py(¢y) is .79.

2. If more serious departures from normality are anticipated,
bring into H selected functions of the form ¢(x)=|z| sign(x), with
0<r<1 for heavier tailed F and r>1 for lighter tailed F. In some
cases it will be necessary to replace py with a more robust estimate,
such as the M-estimate corresponding to the score function ¢(x)=sign ().

3. If the sample size N is large, some experimentation with the

choice of H may be worthwhile. Plot ¢,,~ z(x) and note changes that
occur as functions are added to or removed from the basis of H. The
aim is to discover, at least qualitatively, the shape of ¢r. Keep K
small relative to N.

Numerical example. To check the numerical practicality of the
adaptive estimator, a pseudo-random sample of size 50 was generated
from the autoregressive process X,=.5+.5X, ,+FE,, where E, has a
double-exponential distribution with scale parameter .75. The first col-
umn of Table 1 records the sample values. For this data, the LSE of
o=(ay, ;)" =(.5, .5)" is py=(.457692, .534041)" and the least squares re-
siduals R,(py)=X,—a&—a,X,_, are given by the second column of Table 1.

The basis for the subspace H consists of two functions: ¢(z)=
|z | sgn (x) and ¢(x)=2. The estimates of W and a are

(4.2) W=<'714230 .784176> ’ a ( 1.51483) )

784176 .959636 ~\—.19579

The actual values of W and a under the double-exponential model that
generated the sample are
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Table 1
Auoregressive esdual e,
1.13639 .524676 .99453
1.58924 .866306 1.24032
2.17272 — .375636 — .854877
1.24238 — .403473 — .883213
L7177 1.28047 1.46344
2.12145 .71641 1.1419
2.30704 .416844 .896409
2.10659 —2.3101 —1.85008
— 727401 .239953 .695056
.309182 — .130794 — .522236
.492013 2.8828 2.00756
3.60325 — .437629 — .916427
1.94435 1.92483 1.72477
3.42088 2.42519 1.88421
4.70978 — .70798 —1.13598
2.26493 .65645E—2 .121448
1.67382 —1.1386 —1.39347
.212983 1.49821 1.56083
2.06964 .815332E—-1 .41658
1.6445 —1.77403 —1.67029
— .438107 — 731375 —1.15229
— .507651 .261263 .723134
.447848 — .955391 —1.29359
— .25853 — .473251 — .949439
— .153625 — .396044 — .875769
— .020395 — .805794E—1 — .41423
. 36622 —1.6481 —1.62202
— .994836 .820102E-1 .41775
.841844E—2 .109264 .479334
.571451 .464126 .94113
1.227 — .811606E—1 — .415664
1.0318 — .722722 —1.1463
.285992 —1.18925 —1.41911
— .578829 1.18348 1.41623
1.33206 — .904759E—1 — .437934
1.07859 .337221 .813645
1.37092 —1.50854 —1.56519
— .318721 — .340982 — .817801
— .535011E—1 — 773312 —1.1807
— .344192 — .217533 — .663931
.563454E —1 .163325 .580217
.651107 — .313339 — .786601
.49207 .524206 .99413
1.24468 .116964 .495169
1.23937 .51387 .985287
1.63344 — .30782 — .78018
1.02219 — .39051 — .870168
.613075 .472668 .948911
1.25777 .406439 .886163

1.53583
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(4.3) W=<‘750000 .863432) ’ =< 2.92981) )

.863432 1.125000 —1.35972

Although & differs markedly from a, the components of @ have the
correct signs. Hence, scoring the residuals according to a has the de-
sired effect of discounting the larger residual values. The scored re-

sidual vector dsy, a(px) is listed in the third column of Table 1.

The adaptive estimate py(H) is (.451717, .487241)7. Comparison with
the LSE and the actual parameter values shows that the adaptive esti-
mate of « is slightly worse than the LSE of «,, but the situation is
reversed for «; and the gain in accuracy outweighs the loss.

5. Proof of Theorem 2.1

The random vector X'¥(p) may be written out as

(2, 9°R0), 2 XdoRlo) - 3 XgoRio)) -

t=r+1

Corresponding to these components, define

Tu(@)=N"" 3 [$Rip)—E (9= R(o)| 4]
(5.1) R
Tylo)=N"" z=§+1 X, ¢ o R(p)—E (¢ Ro)|A,_1)], 1=i=sr.

The method of expansion adopted in this section uses ideas from Bickel
[2].

LEMMA 5.1. If Al, A2 are satisfied, then for every C>0
(5.2) sup | Twi(0) — Tl 00) l_’;’o , 0sisr

lo—pglSCN-1/3
m py-probability as N— oo.

Proor. Without loss of generality, assume that 71=1 and ¢ is
monotone nondecreasing. We begin by showing that if |p—p,|SCN 2,

(5.3) Twip) — Twi(oo) >0
as N—oo. Indeed, let py—p=(4, 4,,- -+, 4,)7 and let

RAo)=E.+ 4+ jz, 4,U,_(5)
(5.4) N'
Ti(p)=N""* 5} X..[¢°Rip)—E (¢ Rio)| A,

where the {U;(6)} are defined as in (8.6). Because of (3.8),
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(5.5) P[Tyilp) # Tridp)] =0

as N—oo.
(5:6)  EITilo)— Tulodl
=N 3 E{X2[po Rio)—¢° Rilo)
—E(¢° Ri(p)—¢° Ra)| A )T}
<NE 3 X2 [o(a+a+ 5 40.,0)) - o) 4P )

t=r+1
N

<NTE 3 X2 | Wa+h)—g—WIdF@) ,
where h=CN~':4rCs. Now (5.3) follows because of A2 and (5.5).

Decompose the r+1 dimensional cube B={p: |o—p|<CN~"?} into
sub-cubes whose vertices are at the points py+(5,eN72 f,eN7Y2,. ..,
Jr+1eN7Y2), where ¢>0 is chosen to give an even division of B into sub-
cubes and j5;,=0, +1,---, £ M(e). For each pe B, let V(o) denote the
vertex nearest p, of the sub-cube containing p (or one of them, in case
of ties). Then for each >0, from (5.3)
(5.7) sup | Tyi(oo) — Ti° Vip)| >0

le—pglsCN-1/2

as N— oo,

Suppose that p € B*, a particular sub-cube of B, and let p*=V(p).
Then

(5.8) ?B}g [ Twi0) — Twio V(o) |

N
<sup [N 3} X, (¢ Rlo)—¢Rio*) I
N
+§BIB N t:én X, E(¢oRip)— ¢ Ri(p*)| Az—l)l

=D1+.D2 .

By an argument like that for (5.3),

(65.9) Di=N7'"" ,é‘h | Xe—i| E[H(Ri(0*)+eS:) — P(R(0*) —eS,) | Aii]+-0,(1)

where S,;=N “/2<1 +j$ |X,_,|). Hence
(6.10) sup | Ti(e) = Teo V()|

CSEN S (X, | BIUR()+e8) — HBAoY) —eS) | s
+o,(1)
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<oN- 33 |X,i| | [9(a+ Uit oS) — 9o+ Ui—eS)JAF )

+o,1) ,
where |U,|<CS,. In view of this, A2, and Lemma 2.1,
(5.11) fgl; | Tvi(0) — Twie Vip) |=04)

as N—co. The lemma follows from (5.11) and (5.7).

PrOOF OF THEOREM 2.1. Note that

(.12) N 5 X E(@oRlo)—¢°Rip)| A

=N 3} X, VeVt | @+ Vo—g@dF @)

t=r+1
where V,:Ao—i—j% 4,X,_;. As N— oo, the difference between (5.12) and
=1

N '“2< %1 X,_1V,>D(¢f, F) converges in probability to zero because of A3
t=r+

and Lemma 2.1. The theorem follows from Lemma 5.1.
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