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Summary

Based on a random sample from the normal cumulative distribution
function &(z; g, ¢) with unknown parameters g and ¢, one-sided con-
fidence contours for &(x; g, ), —oo<x< oo, and simultaneous confidence
intervals for &(y; g, 0)—9(z; p, 0), —oo<x<y< oo, are constructed using
the method outlined in [3]. Small sample and asymptotic distributions
of the relevant statistics are provided so that the construction could
be completely carried out in any practical situation.

1. Introduction

Let z;, ., -+, %, be a random sample of size » from a normal
cumulative distribution function (c.d.f.) @(x; g, 0) with mean g (—oco<
p<oo) and variance ¢* both of which are unknown. Let Z and s* de-
note respectively the sample mean and the sample variance with divisor
n—1.

For a given a€(0, 1), in Section 2 of this paper, we construct an
upper confidence contour for &(x; p, ¢) with confidence level a based on
our random sample. More specifically, a random function U(z; %, s),
—oo< < oo, is given with the property that

1.1) Pr{®(x; p, 0)SU(x; @, 8), —co<awx<oo}=a.

Small sample as well as asymptotic cases are considered. The methods
employed in our construction have already been outlined in [3] and [8]
where a two-sided confidence band for &(x; g, ¢) is developed. Refer-
ence may also be made to [7] where similar results are given for the
exponential c¢.d.f., and [6] which is concerned with the Weibull c.d.f.
Section 2 also contains an analogous lower confidence contour for &(x;
¢, @), that is, a random function L(x; %, s), with the property that

(1.2) Pr{o(z; p,0)=L(2; %,8), —o<zx<o}=a.
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In Section 3 a set of simultaneous confidence intervals for the in-
terval probabilities of @(x; p, ) with confidence level a is constructed.
Using an analogue of Kuiper’s statistic [4], two random interval func-
tions K[(z, y); %, s] and K,[(x, ¥); T, s] are given such that

(1.3)  Pr{Kl(x, v); %, s]<0(y; g, 0)—B(x; p, 0) < K,[(2, ¥); %, 8],
oLr=y<o}l=a.

Both small sample and asymptotic results are provided as in Section 2.

2. One-sided confidence contours for &(x; g, o)

Basic to our construction of an upper confidence contour for &(x;
#, o) is the statistic

(2.1) L:=_§gg” [O(x; pt, 0)—O(x; 2, 5)] .

By transforming the original observations z,’s to z;,’s by means of the
standardizing transformation, x=o0z4p, it is readily seen that

(2.2) L= Sg}g [@(z;0,1)—D(z; Z, 8,)],

where z and s, are respectively the sample mean and standard devia-
tion of the z,’s. It follows that the distribution of L; does not depend
on the unknown parameters # and ¢. In deriving the distribution of
L} we can therefore assume that we are sampling from a standard
normal population, that is, #=0 and ¢=1. Thus L; would stand for
its standardized form (2.2) throughout the rest of this section.

For a€ (0, 1), if I is the a-quantile of L,

(2.3) Pr{L}=l!}=«a,

an upper confidence contour for &(x; g, 6) with confidence level « is
immediately provided by taking, in (1.1).

2.4) U(x; @, s)=min {&(x; x, s)+1i, 1} .

The derivation of the distribution of L} is now in order. We shall
first do this, and then show that the resulting confidence region is
‘full” in the sense to be explicitly defined later.

Using certain results of [3] it is possible to obtain a simple ex-
pression for L} which is much more manageable than (2.2). For this
purpose consider the funetion

(2.5) W5ty ey 01, 0)=0(x; 1, 61)—D(x; s, 03) ,
where g, t, ,>0 and ¢,>0 are fixed. It is proved in [3] that, when-



FURTHER RESULTS ON SIMULTANEOUS CONFIDENCE INTERVALS 27

ever ¢,<g,, we have

(2.6) max W=UW(Tpms ths Mzs 01y G2) »
and

2.7 mzin w=u(T,; th, tha 61, G2) »
where

(2.8) ., 2,=(?— ) oi—aiy F o102 (s — o)’ + (01 —3) In {(01/2)*}] .

Applying this result to (2.2) with (0, 1) and (%, s,) playing the roles of
(4, 0;) and (y, 0;) interchangeably, and keeping in mind that Pr {s,=1}
=0, we get that

(2.9) Pr{L:=w(z,:0,% 1,8)} =1,
where
(2.10) z,=(1—8)7'[z2—s,¥Z—2(1—8?) Ins,] .

The distribution of L; can now be obtained from (2.9) and (2.10)
via Monte Carlo methods using repeated samples of size » of standard

Table 1 Quantiles, /; of Ly=Sup [&(x; p, 0)—P(x; %, s)]
z

Confidence level a=Pr {L} <!}

ngple

size n 0.80 0.85 0.90 0.95 0.99
5 0.20 0.24 0.29 0.35 0.48
6 0.18 0.21 0.25 0.31 0.43
7 0.17 0.20 0.23 0.29 0.39
8 0.16 0.18 0.21 0.27 0.37
9 0.14 0.17 0.20 0.25 0.34
10 0.14 0.16 0.19 0.24 0.33
1 0.13 0.15 0.18 0.22 0.31
12 0.12 0.14 0.17 0.21 0.30
13 0.12 0.14 0.16 0.20 0.29
14 0.11 0.13 0.16 0.20 0.28
15 0.11 0.13 0.15 0.19 0.26
16 0.11 0.12 0.15 0.18 0.25
17 0.10 0.12 0.14 0.18 0.24
18 0.10 0.12 0.14 0.17 0.24
19 0.10 0.11 0.13 0.17 0.23
20 0.09 S0l 0.13 0.16 0.23
21 0.09 0.11 0.13 0.16 0.22
22 0.09 0.10 0.12 0.15 0.21
23 0.09 0.10 0.12 0.15 0.21
24 0.09 0.10 0.12 0.15 0.20
25 0.08 0.10 0.12 0.15 0.20
26 0.08 0.10 0.1 0.14 0.20
27 0.08 0.09 0.11 0.14 0.19
28 0.08 0.09 0.11 0.14 0.19
29 0.08 0.09 0.11 0.13 0.19
30 0.08 0.09 0.11 0.13 0.18
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normal deviates. This has been done with a Monte Carlo sample size
of 10,000 in each case for n=5(1)30. The resulting a-quantiles I of
L;, defined in (2.3), are presented in Table 1 for several commonly
used values of a; the entries are believed to be accurate to two deci-
mal places.

We shall now derive the asymptotic distribution of 7 L}, and show
that this can be used to obtain quite accurate estimates of the quantiles
of L} for n>30. Our derivation depends heavily on the results of [8]
to which the reader is referred for the details. It is shown there that
the stochastic process

(2.11) vrwu;z0,s,1), —ocolu<o,

converges weakly, as n— oo, to the Gaussian process X,, —oo<u< oo,
specified by

2.12) E{X}=0, —oco<u<oo
and
(2.13) E{X,,X,,}=¢(u)¢(v)<1+l‘2ﬁ) ,  —oo<u, v<o,

where ¢(w)=(1/+/2z)e™”? is the standard normal density. Applying the
continuous mapping theorem ([1], Theorem 5.1) to this result, we see
that the limit distribution of 4% L;} is identical with that of the ran-
dom variable

(2.14) Xo=—Inf{X,, —co<u<o}.
In order to get the distribution of X, we note that a representation

for the Gaussian process is given by

(2.15) X=gu)(z+22)

V2
where Z, and Z, are independent standard normal random variables.
Thus, for 2¢€[0, o), we have

_°°<u<°° ’

_ uZy, . A
(2.16)  Pr{X,<a}=Pr {zl+_ﬁg ol
The right-hand side of (2.16) is simply the planar measure of all straight
lines which lie entirely above the convex curve y=—2/¢(u), where the
measure referred to is the one corresponding to the joint e.d.f. of Z,
and Z,/v 2. Exploiting the obvious symmetry involved in the problem,
that is, considering only lines with positive slope, and employing the
transformation Z,=+'2 -AW/¢(W), that is, sweeping through parallel

—oo<u<oo} .
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lines, we get
@17) limPr{vaLi=i}=2vZ 2 S” (1 +w)B(AVZr(1 —whev™; 0, 1)
- exp i——%z-@l’ze"”—l)}dw .

Table 2 gives the 1,’s corresponding to several values of a in the
equation

(2.18) limPr{vnL{<il}=a.

n—oo

Table 2° Quantiles of the limit distribution of y# L}

a 0.80 0.85 0.90 0.95 0.99
2 0.427 0.496 0.584 0.718 0.967

In order to get a rough idea of the speed of convergence of v/ L
to its limit distribution we have computed the empirical a-quantiles of
L for n=40(20)100 for various values of a based on a Monte Carlo
sample size of 10,000 in each case. These are presented in Table 3
along with the corresponding values obtained from (2.17) through Table
2. The results clearly indicate that for »>30, we are quite safe in ap-
proximating the exact quantiles of L; from its limit distribution.

Let us now turn our attention to an important question concerning
the upper confidence contour (2.4) derived through L. Denote the
planar region determined by y=U(x; %, s) and y=0 by Cy, so that

(2.19) y={(x, ¥): —co<z<Lo0, 0SYy=U(z; 7, s)} .
Let &(y, 6) denote the graph of the c.d.f. &(x; g, 0):
(2.20) Oy, o)={(,y): —o<x<00, y=0(z; p, 0)} .

With this notation we can rewrite (1.1) as
(2.21) Pr{o(y, o)cCyl=a.

Does C, contain any superfluous areas that can be removed from it
without affecting the confidence statement associated with it? We shall
answer this question in the following paragraph in the negative by show-
ing that Cy is ‘full’ in the sense that, given any (x,, %) € Cy, there
exists a normal c.d.f. &(x; ), s,) passing through (=, %) such that
(1, ) Cy. We mention in passing that C, differs markedly in this
respect from the two-sided band B, developed in [3] which was not
full and was considerably whittled down.

In our proof that C, is full we assume, without loss, that =0
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Table 3 Comparison of the ‘exact’ and asymptotic quantiles of L}

n\\a 0.80 0.85 0.90 0.95 0.9
0 0.067 0.080 0.093 0.115 0.156
0.068 0.079 0.092 0.114 0.153
60 0.054 0.065 0.076 0.093 0.124
0.055 0.064 0.075 0.003 0.125
8 0.047 0.055 0.066 0.082 0.109
0.048 0.055 0.065 0.080 0.108
100 0.043 0.050 0.059 0.072 0.096
0.043 0.050 0.058 0.072 0.097

Note: For each #, the top row gives the Monte Carlo quantiles, and
the bottom the values obtained using Table 2.

and s=1; only slight modifications are needed in the general case.
Consider the function f,(x) defined on the interval (—oo, ¢;_:;x] by the
equation

(2.22) (fx); 0, 1)—0(x; 0, )=,

where ¢, denotes the g-quantile of @(x;0,1). It is not difficult to see
that @(g, 6)cCy if and only if (x—p)/o<f.(x) for z € (—oco, ¢:-:x). The
problem of proving that there exists a c.d.f. &(x; y, a,) through (z,, %,)
satisfying @(y, 0,))CCy thus reduces to that of showing that there ex-
ists a line y=(x—sm)/o, through the point (x,, %) and lying entirely
below the curve y=f,(x). Now it can be shown that the planar region
F defined by

(2.23) F={(x,9): —o<z=Zq,, y=fAx)}

is closed and convex, and therefore, given any point (x*, f.(x*)) on its
boundary, there exists, by Minkowski’s theorem [9], a line through this
point so that F lies entirely in one of the half-planes determined by
this line. It follows that the line through (w,, %) parallel to the Min-
kowski line through (w, f.(z)) satisfies our requirements, thus proving
that Cy is full.

Our construction of a lower confidence contour for &(x; g, ¢) paral-
lels that of upper contour. Analogous to (2.1), define the statistic
(2.24) L;= Slu: [D(x; z, 8)—D(x; 1, 0)] .

The distribution of L, is also independent of x and ¢ and a standardized
version of L; analogous to (2.2) can be seen to hold. If I is the a-
quantile of L;, then our level-w lower contour is provided by

(2.25) L(x; %, s)=max {&(z; Z, 8)—I, 0}
satisfying (1.2). The resulting region is full, and this can be established
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quite easily. Finally, concerning the distribution of L;, we shall now
show that it is identical with that of L;. To see this, simply apply
(2.6) and (2.7) to the standardized L; to get, similar to (2.9),

(2.26) Pr {L;—_—W(—‘Zu; -z, 0’ S 1)} =1 ’

where z, is given by (2.10). In deriving (2.26) we have made use of
the fact that (z, s,) and (—%, s,) are identically jointly distributed. Since
#(x) is symmetric about 0, the desired result follows from (2.9) and
(2.26).

3. Simultaneous confidence intervals for the interval probabilities of
D(x; p, 0)

Let & denote the class of all intervals (z,y¥), —co<z<y<oo. Let
P denote the probability measure on the Borel subsets of the real line

corresponding to the c.d.f. &(x; g, ), and P the measure corresponding
to @(x; x,s). Consider the statistic V, defined by

(8.1) V.,=Sup | P(I)—PI)| .
Ie @

Since the class & remains invariant under the linear transformation
x=0z+p, it is seen that (3.1) can be rewritten in the following stand-
ardized form

3.2 V,.=Sup | P(I)—P(I)]| ,
Ieg

where P, and P, correspond respectively to @(x; 0, 1) and &(x; Z, s,) with
Zz and s, defined as in Section 2. The distribution of V, is thus inde-
pendent of x and ¢. If v, is the a-quantile of V,, then it is clear from
(3.1) that a set of simultaneous confidence intervals at level a for the
interval probabilities of @(x; p, o) is given by

(3.3) Kil(z,y); %, s]=P(y; %, s)—D(x; %, 8)— .,
and
3.4) Kl(z, y); %, s]=9(y; %, s)—D(x; &, 8)+ . ,

so that (1.3) is satisfied.
The distribution of V, is easily derived once we note that it can
be equivalently expressed as

(8.5) V,= Sup [0(z;0,1)—(z;2,5,)]— Inf [D(2;0,1)—-0(z;%,5)] .

(See [2] and [15] where a distribution-free version of V,, is considered),
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Table 4 Quantiles, v, of Vp= ?u% |P(I)—B(I)|
€

Confidence level a=Pr {V,<v,}

Sample

size » 0.80 0.85 0.90 0.95 0.99
5 0.32 0.36 0.40 0.47 0.61
6 0.28 0.31 0.35 0.42 0.55
7 0.26 0.28 0.32 0.38 0.50
8 0.24 0.26 0.30 0.35 0.45
9 0.22 0.25 0.28 0.32 0.41
10 0.21 0.23 0.26 0.30 0.40
11 0.20 0.22 0.25 0.29 0.37
12 0.19 0.21 0.23 0.27 0.36
13 0.18 0.20 0.22 0.26 0.35
14 0.18 0.20 0.22 0.25 0.33
15 0.17 0.19 0.21 0.24 0.31
16 0.17 0.18 0.20 0.23 0.29
17 0.16 0.18 0.19 0.22 0.28
18 0.16 0.17 0.19 0.22 0.28
19 0.15 0.16 0.18 0.21 0.27
20 0.15 0.16 0.18 0.21 0.27
21 0.14 0.16 0.17 0.20 0.26
22 0.14 0.15 0.17 0.19 0.25
23 0.14 0.15 0.16 0.19 0.24
24 0.13 0.15 0.16 0.19 0.24
25 0.13 0.14 0.16 0.18 0.23
26 0.13 0.14 0.16 0.18 0.23
27 0.13 0.14 0.15 0.18 0.23
28 0.12 0.14 0.15 0.17 0.22
29 0.12 0.13 0.15 0.17 0.21
30 0.12 0.13 0.14 0.17 0.21

that is, V,=L}+L,. Table 4 presents the Monte Carlo quantiles of
V. for n=>5(1)30. To get the limit distribution of 7 V, we see, as in
the case of L}, from the weak convergence of the process +7 w(u;z,
0, s,, 1) to the Gaussian process X, and the continuous mapping theorem,
that it is identical with the distribution of the random variable

_ W.Z, W, Z,
(3.6) W= | z+ 2| gowo| 2.+ T2 |
where
— —'Zl +« Z12‘{“2Z22
(3'7) VVI’ WZ_ ﬁZz ’

and Z;, and Z, are independent standard normal random variables. The
quantiles of W are given in Table 5.

As in the previous section, we have compared the Monte Carlo
quantiles of V, with those obtained using Table 5 for various values

Table 5 Quantiles of the limit distribution of 7 Va

a 0.80 0.85 0.90 0.95 0.99
w, 0.651 0.706 0.776 0.888 1.095
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Table 6 Comparison of the ‘exact’ and asymptotic quantiles of V,

n\\a 0.80 0.85 0.90 0.95 0.99
10 0.102 0.113 0.125 0.142 0.178
0.102 0.112 0.123 0.140 0.173
60 0.084 0.091 0.101 0.116 0.144
0.084 0.091 0.100 0.115 0.141
% 0.073 0.080 0.088 0.101 0.124
0.073 0.080 0.087 0.099 0.122
100 0.065 0.071 0.078 0.089 0.113
0.065 0.071 0.078 0.089 0.109

Note: For each #, the top row gives the Monte Carlo quantiles, and
the bottom the values obtained using Table 5.

of n. The results, given in Table 6, suggest that Table 5 provides
sufficiently accurate approximations for »>30.

The problem of determining whether or not the region in 3-space
generated by V, is full remains unsolved.

All the Monte Carlo results reported in this paper were obtained
in the CDC 6400 computer at Temple University using the methods
given in Knuth, D. E., Semi Numerical Algorithms, Reading, Mass:
Addison-Wesley, 1969. The results are believed to be accurate to at
least two decimal places.
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