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1. Introduction

A Monte Carlo sampling method is a very attractive one to evalu-
ate an integral 0=S f(x)dx where D denotes a region in d-dimensional
D

Euclidian space. A simple (crude) Monte Carlo sampling procedure is
executed as follows: let x;,--:, x5 be points chosen at random from
the region D and calculate function values at these points. Then the
unbiased estimator # is obtained by

(1.1) 6,=|p| L)+ 2 +f(xx)

in which | D| denotes the volume of D. It is well-known that a variance
of the above estimator is asymptotically O(N™!), so if one desires to
estimate more accurately, say one decimal place more, he must increase
his sample size hundred times or more. This is an unsatisfactory mat-
ter, and many considerations have been done to reduce a sample size
or to estimate more accurately.

Haber [1] considered from the point of view of the numerical inte-
gration that (let D be a unit hypercube for simplicity) dividing D into

congruent subcubes, one can estimate § more accurate than 6, if one
chooses points at random from each these subcubes one by one, not
from D. However, this method, like many formulae in numerical inte-
grations, will be infeasible when d becomes high; let each length of
side of subcubes be K~!, then a number of congruent subcubes becomes
K¢, i.e. the quantity of computation increases exponentially as d in-
creases linearly. From the idea that the more uniformly one takes
sample points from the region, the more accurately one can estimate,
we consider in this paper a new technique called orthogonal mesh sam-
pling method. Using this method, the amount of computation increases
linearly as d increases, and yet, we can estimate # more accurately
than the crude Monte Carlo method.
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Now we explain the outline of this method in the following. Let

D be a unit hypercube in d-dimensional Euclidian space, i.e. D=[0, 1]°.
We divide D into congruent subcubes. All these subcubes, the number
of which is, say K¢ have one to one correspondence to d-tuples (a;,
<oy a) (,=0,1,---, K—1; i¢=1,---,d) in a natural manner. Then we
choose K subcubes out of these K° subcubes so that they are distrib-
uted uniformly in D. Let (ai,:, @), -+, (aF, -+, a¥) be K d-tuples cor-
responding to these selected subcubes. Requirement for uniformity of
these K points in D means that each point (a,: - -, a¥) (¢=1,---, d) must
be distributed uniformly in {0, 1,-.., K—1}. This will be satlsfactorily

realized by choosing (ai,:- -, af) (1=1,---,d) as a random permutation
of {0,1,---, K—1}. Next, we choose a point at random from each
selected K subcubes and using these K points {x,,---, xx}, calculate

function values f(x,),---, f(xx) and take their average. Repeating this
experiment as we desire, we estimate § by taking an average of whole
individual values.

We define the new estimator of ¢ and derive a variance of this
estimator in the next section and in Section 3 some numerical examples
are given.

2. The estimator and its variance

The estimator of this method is given as follows:

51 & (a"+~$" a.’i+$3i>
2.1 e., 2151
@-1) g K Z‘"f K K
where {al,---,af} (1=1,2,---,d), same as in Section 1, denotes a ran-

dom permutation of {0,1,---, K—1} (without loss of generality, let af
=k—1 for all k), &”s are random variables which are distributed uni-
formly in [0, 1] and suffix j is omitted.

That the estimator éx is unbiased is proved below.
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In order to compare this method with that of the crude Monte
Carlo, we calculate a variance of 6.
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where we adopted the abbreviation a* and &* as (af,---,af) and (&,
-+ -, &5, respectively. Now,
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accordingly, the first term in (2.3) becomes
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On the other hand,
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where C,,.... denotes the region [(k—1)/K,k/K]x[(—1)/K,/K]X ---
X[(m—1)/K, m/K]. Next,
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Using two equations just above, the second term in (2.3) becomes

1/ K\
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where (k)#(j) means that kij, for all i and Cr=U -+ U Curoom-
2
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Let Ay..n. be Sc f(x)dx then the last term in (2.4) becomes
Kloeom
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where ¢ —S fHx)dx—6*. The first term in (2.5) equals to Var (00) for

the sample size N=nK, so Var (f,) is smaller than Var (dc) if and only
if the reminder of the right-hand side of (2.5) is negative. Now the
second and the third terms are transformed as follows:

1 K \¢1! a1

2.6) ——( ) Vit Vik oo+ Ve Vig— - -+ H(= 1) W)
n\K—1

where V,=3 AL..i... —6K, V=3 Al —@/K* etc. and they

are all non-negatlve This transformatlon suggests that (2.6) will be
negative if f(x) is non-negative in D and Var (0}) will be smaller than
Var (8,), but this is not verified yet.
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3. Numerical examples

The last description in the previous section is not accurate but
more discussion is not made analytically at present. Making up for
analytical difficulties we calculate variances numerically for a few func-
tions in this section.

Ezxample 1. f(x,, -+, x;)=exp (—x;,— -+ —2,)

For large d, the value of this function changes severely in D, and
the estimation of the integral by Monte Carlo method is quite difficult.
It goes without saying that the integral of this function can be cal-
culated analytically but this is chosen only because the integral value

and the variance of 6 can be expressed explicitly and we can calculate
these values exactly for any K and d, e.g.

Var (éx)zd_z\zr“L KJ?/'I {< KI£1 )"_1}(1_6_1)24
) B¢ ameye

N
K v
. {E (e—(t—n/x_e—t/x)z}
=1

where az=s fHx)dx— <S f(.vc)dx)z and N=nK denotes a sample size.
D D

For various d and K, ratios of Var (dx) to Var (65) (=a*/N) are tabu-
lated in Table 3.1 together with the ratio of a variance of the anti-
thetic variate method (A.V.M., see Hammersley et al. [2]), where 1—x

is taken as the antithetic variate of x, to Var (éc). Generally speaking,

Table 3.1 Variance ratios in Example 1

3 4 5 6 7 8 9 10

0.318| 0.365| 0.408 | 0.449 | 0.487 | 0.522 | 0.556 | 0.586 | 0.615
0.171 | 0.218 | 0.263 | 0.306 | 0.346 | 0.384 | 0.421 | 0.455| 0.487
0.116 | 0.162 | 0.206 | 0.248 | 0.288 | 0.327 | 0.363 | 0.398 | 0.431
0.090 | 0.135| 0.178 | 0.219 | 0.259 | 0.297 | 0.333 | 0.368 | 0.401
0.061 | 0.104 | 0.145 | 0.185| 0.223 | 0.260 | 0.295 | 0.329 | 0.362
10 0.054 | 0.096 | 0.136 | 0.175| 0.213 | 0.249 | 0.284 | 0.318 | 0.350
20 0.044 | 0.084 | 0.123 | 0.161 | 0.197 | 0.232 | 0.266 | 0.299 | 0.331
50 0.041 | 0.080 | 0.118 | 0.154 | 0.190 | 0.224 | 0.258 | 0.290 | 0.322
100 0.040 | 0.079 | 0.116 | 0.153 | 0.188 | 0.222 | 0.255 | 0.288 | 0.319
1000 0.039 | 0.078 | 0.115| 0.151 | 0.186 | 0.220 | 0.253 | 0.285 | 0.316

Dy

L]
ook w N R
0o

A.V.M. 0.107 | 0.176 | 0.240 | 0.300 | 0.353 | 0.403 | 0.449 | 0.492 | 0.531
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the antithetic variate method is not much superior to the crude Monte
Carlo method, but because of the monotonicity of the function of this
example makes this method effctive. According to this table we con-
clude that the orthogonal mesh sampling method is superior to the crude
Monte Carlo method for any K and d, and also is superior to the anti-
thetic variate method for K greater than 4 and for any d.

Example 2. f(x,---, xd)z;lj; (‘/2—70—1 exp <_%f_>

This is a well-known normal density with an identity matrix as a

covariance matrix. As we cannot calculate Var (0}) exactly, simulation
experiment is undertaken with a sample size nK=10‘. For various d

and K, ratios of Var(fx) to Var(d,) and the variance of the A.V.M.

estimator to Var ((50) are tabulated in Table 3.2. Each experimental
result in the table is the average of seven measurements. This method
is superior to the crude Monte Carlo method for any d and K, and is
also superior to the A.V.M. for any d and for any K greater than 4.

Table 3.2 Variance ratios in Example 2

d
. 2 4 6 8 10
0K:K

2 0.273 0.300 0.325 0.353 0.368
5 0.055 0.077 0.101 0.120 0.146
10 0.022 0.043 0.063 0.084 0.105
20 0.013 0.034 0.054 0.072 0.094
40 0.011 0.030 0.048 0.071 0.087
50
00

0.011 0.031 0.051 0.069 0.088

1 0.010 0.029 0.051 0.065 0.090

A V.M. 0.096 0.128 0.159 0.193 0.226

Example 3. f(z,- -+, 2)=(3 )1+ 2}~

This function is chosen because it is indecomposable into simple
integrals. Results of Monte Carlo simulation experiments are given in

Table 3.3 Variance ratios in Example 3

d
2 4 6 8 10
K

2 0.292 0.358 0.373 0.370 0.380
5 0.095 0.147 0.161 0.156 0.158
10 0.063 0.110 | 0.120 0.123 0.116
20 0.054 0.102 0.105 0.110 0.102

50 0.050 0.095 0.099 0.106 0.100
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Table 8.3. Each figure in the table represents the ratio of Var (éx) to

Var (éc) for given d and K. Our method is again superior to the crude
Monte Carlo method for any d and K.

4. Conclusion

There are many unknown behaviours in the orthogonal mesh sam-
pling method presented here. It is necessary to show the family of
functions useful for this method and the quantity of variance of the
estimator or the variance ratio to the crude Monte Carlo method in
order that our method is effective for general use. It is our regret
however that we can only say that the variance of the estimator can
be reduced about one tenth if the function value changes moderately
such as Example 2 in the previous section.

Acknowledgement

The author wishes to thank the referee for his valuable sugges-
tions and is indebted to him for the revision of Section 3.

THE INSTITUTE OF STATISTICAL MATHEMATICS

REFERENCES

[1] Haber, S. (1969). Stochastic quadrature formulas, Math. Comp. 23, 751-764.
[2] Hammersley, J. M. et al. (1964). Monte Carlo Method, Methuen.



