NOTE ON AN INEQUALITY FOR TACTICAL CONFIGURATIONS

SANPEL KAGEYAMA¹⁾

(Received July 20, 1974; revised May 21, 1975)

Introduction and summary

Raghavarao [3] proved that if b is the number of blocks in a t-(v, k, λ_t) design with $k \neq v-1$, then $b \geq (t-1)(v-t+2)$. Furthermore, Dey and Saha [1] has recently shown that for a t-(v, k, λ_t) design with $v \geq k+t-1$, an inequality $b \geq 2^{t-2}(v-t+2)$ holds. Moreover, they stated that for t>3, whenever $v \geq k+t-1^2$, Dey and Saha's inequality is an improvement of Raghavarao's one, and that when v < k+t-1, Raghavarao's inequality appears to be the best.

In this note we enlighten the existence of a more stringent inequality than Dey and Saha's one in almost all cases, and make a comparison of these inequalities from a combinatorial point of view of a design.

2. Statement

Wilson and Ray-Chaudhuri [4] demonstrated that for a t- (v, k, λ_t) design with t=2s and $v \ge k+s$, an inequality $b \ge \binom{v}{s}$ holds. Furthermore, it is easily seen (cf. [2]) that for a t- (v, k, λ_t) design with t=2s+1 and $v \ge k+s$, an inequality $b \ge (v-s)\binom{v}{s}/k$ holds. Then we can prove the following:

Theorem. For a t-(v, k, λ_t) design with $v \ge k+t-1$, if t=2s, then

$$b \! \geq \! \left(\begin{smallmatrix} v \\ s \end{smallmatrix} \right) \! \geq \! 2^{\scriptscriptstyle 2(s-1)} \! (v \! - \! 2s \! + \! 2) \; ,$$

and if t=2s+1, then

$$(2) b \ge \max\left\{\frac{v-s}{k}\binom{v}{s}, 2^{2s-1}(v-2s+1)\right\}.$$

¹⁾ Now at Hiroshima University, Shinnome, Hiroshima, Japan.

²⁾ In the paper of Dey and Saha [1], the equality sign of $v \ge k + t - 1$ is carelessly omitted.

Consider $\binom{v}{s}-2^{2(s-1)}(v-2s+2)=\{v(v-1)\cdots(v-s+1)-2^{2(s-1)}(v-2s+2)s!\}/s!$. Some combinatorial calculations lead to $\{v(v-1)\cdots(v-s+1)-2^{2(s-1)}(v-2s+2)s!\}\geq 0$. Since $v\geq k+t-1\geq k+s$, (1) follows from Wilson and Ray-Chaudhuri's inequality [4]. As examples of (2), take a 3-(10, 6, 5) design [2] and a 3-(17, 5, 1) design [2]. The inequalities, $b\geq (v-s)\cdot\binom{v}{s}/k$ and $b\geq 2^{2s-1}(v-2s+1)$ become $30\geq 15$ and $30\geq 18$, respectively, for the former design, and $68\geq 54.5$ and $68\geq 32$, respectively, for the latter design. A 3-(20, 10, 4) design [2] attains the same value for the both bounds of (2). Note that the relation $b\geq (v-s)\binom{v}{s}/k\geq 2^{2s-1}(v-2s+1)$ holds for almost all (2s+1)- (v,k,λ_{2s+1}) designs.

Thus, for a 2s-design, Wilson and Ray-Chaudhuri's inequality is more stringent than Dey and Saha's one. Furthermore, in the statement, "when v < k+t-1, Raghavarao's inequality appears to be the best" ([1]), the condition v < k+t-1 should be changed into $k+2 \le v < k+s$, since when $v \ge k+s$ for t=2s or t=2s+1, Wilson and Ray-Chaudhuri's inequality is more stringent than Raghavarao's one [2]. Note that since no non-trivial t-designs are known for $t \ge 6$, the range, $k+2 \le v < k+s$, may be essentially meaningless as yet. Further note that when $k+s \le v < k+t-1$, Wilson and Ray-Chaudhuri's bound is the most stringent among the inequalities described above.

For a t- (v, k, λ_t) design, when there exists the divisibility between v and k, or when there exists one block which appears many times, or when $\lambda_t=1$, we can have further improvements on the above inequalities. However, when there are no restrictions described above, we believe the inequalities given in Theorem to be the best for $t \ge 3$. Furthermore, similar discussions for t=2 will appear in a later paper.

OSAKA UNIVERSITY

REFERENCES

- Dey, A. and Saha, G. M. (1974). An inequality for tactical configurations, Ann. Inst. Statist. Math., 26, 171-173.
- [2] Kageyama, S. (1974). On μ -resolvable and affine μ -resolvable t-designs, to appear in Essays in Probability and Statistics, Birthday Volume in honor of Prof. J. Ogawa (S. Ikeda et al., ed.).
- [3] Raghavarao, D. (1970). Some results on tactical configurations and non-existence of difference set solutions for certain symmetrical PBIB designs, Ann. Inst. Statist. Math., 22, 501-506.
- [4] Wilson, R. M. and Ray-Chaudhuri, D. K. (1971). Generalization of Fisher's inequality to t-designs, Notices Amer. Math. Soc., 18, 805.