NOTE ON A TUKEY TEST FOR ORDERED ALTERNATIVES

WALTER R. PIRIE AND MYLES HOLLANDER

(Received Oct. 30, 1972; revised Aug. 15, 1973)

Summary

In this note we consider a method proposed by Tukey [6], for detecting ordered alternatives among k treatments in a randomized block design. A rank test obtained by this method is shown to be equivalent to a generalized sign test. The test is easily motivated and is quick and simple to compute, however its efficiency properties make it unattractive except for relatively small k.

1. Introduction

Consider a randomized block model where X_{ij} , $i=1,\cdots,n$, $j=1,\cdots,k$ are independent and $P\{X_{ij} \leq x\} = F_j(x-a_i)$, with F_j continuous and a_i represents the nuisance effect (fixed or random) of block i. To test $H_0: F_1 = F_2 = \cdots = F_k$ against ordered alternatives of the form $F_1 \geq F_2 \geq \cdots \geq F_k$ (where at least one of the inequalities is strict), Tukey [6] suggested the following approach: Compute a measure S_i (say) of the differences between treatment responses for each block; Let R_i be the rank of S_i in the ranking from least to greatest of $\{S_1, \cdots, S_n\}$ and reject H_0 for large values of $J_n = \sum_{i=1}^n R_i \eta_i$, where $\eta_i = 1$ if $X_{i1} \leq X_{i2} \leq \cdots \leq X_{ik}$, and 0 otherwise. For the measure S_i , Tukey settles on the "least differences between responses to adjacent treatments" within each block. If one interprets the italicized phrase to mean the least absolute differences, then for k=2, J_n is the Wilcoxon signed rank statistic. For k>2, however, the properties of this test are intractable. If the word absolute is not intended, but instead S_i is defined as

(1)
$$S_i = \min \{X_{i,j+1} - X_{ij}; 1 \le j \le k-1\}$$

then we have

THEOREM. With S_i defined by (1), the J_n test is equivalent to the test which rejects for large values of $K_n = \sum_{i=1}^n \eta_i$.

PROOF. Let d_i be the index of the block with rank i (i.e., $R_{d_i}=i$). Then $J_n=\sum\limits_{i=1}^n i\eta_{d_i}$. If $K_n=m$, then $\eta_{d_1}=\eta_{d_2}=\cdots=\eta_{d_{n-m}}=0$, $\eta_{d_{n-m+1}}=\cdots=\eta_{d_n}=1$, and $J_n=\sum\limits_{i=n-m+1}^n i=K_n(2n+1-K_n)/2$. It follows easily that within the range of possible values, J_n is a strictly increasing function of K_n and the theorem follows.

Thus, with S_i defined by (1), J_n can be viewed as a generalized sign test. Note that K_n has the binomial distribution with parameters n and $p=P\{X_{11} \leq X_{12} \leq \cdots \leq X_{1k}\}$ and, under H_0 , $p=(k!)^{-1}$. Although this generalized sign test is distribution-free under H_0 , and is particularly easy to compute, we show in Section 2 that (as one would expect) as k increases its asymptotic efficiency $(n \to \infty)$ decreases drastically, making it unattractive for large k.

2. Asymptotic relative efficiency of the generalized sign test

Consider the ordered location alternatives

(2)
$$X_{ij} = a_i + c\{j - [(k+1)/2]\}\theta + e_{ij}, \quad c > 0, \theta > 0,$$

where the e's are independent and identically distributed according to F which is assumed to have a square integrable density f. For this model we compute the efficacy, $e_n(K) = \{\mu'_{K_n}(0)\}^2/\text{var}_0 K_n$, of the generalized sign test, where $\mu_{K_n}(\theta) = \mathbb{E}_{\theta} K_n$ and $\mu'_{K_n}(0) = (d/d\theta)\mu_{K_n}(\theta)|_{\theta=0}$. We have $\mathbb{E}_{\theta} K_n = n \ \mathbb{P}_{\theta}(A)$ where $A = \{e_{11} < e_{12} + c\theta < e_{13} + 2c\theta < \cdots < e_{1k} + (k-1)c\theta\}$. It follows that

(3)
$$\mu_{K_n}'(0) = nc \sum_{i=1}^{k-1} \int \cdots \int f(x_i) \prod_{j=1}^{k-1} dF(x_j) = nc \{(k-2)!\}^{-1} \int f^2,$$

where $A^* = \{x_1 < x_2 < \cdots < x_{k-1}\}$. Since $\operatorname{var}_0 K_n = n(k!-1)(k!)^{-2}$, the efficacy is

(4)
$$e_n(K) = nc^2 \{ (k!-1)^{-1} \} k^2 (k-1)^2 \left[\int f^2 \right]^2.$$

For comparison, we consider Page's [2] test, a standard distribution-free test for the problem, which rejects H_0 for large values of $L_n = \sum_{i=1}^n \sum_{j=1}^k j R_{ij}$, where R_{ij} is the rank of X_{ij} in the ranking least to greatest of $\{X_{i1}, \dots, X_{ik}\}$. (This test is equivalent to rejection for large values of $\sum_{i=1}^n \rho_i$ where ρ_i is Spearman's rank correlation coefficient between postulated order and observed order in block i.) From Hollander [1], the efficacy $e_n(L)$ of the Page test for model 2, is found to be

(5)
$$e_n(L) = nc^2k^2(k-1)\left[\int f^2\right]^2$$
.

The definition of the Pitman asymptotic relative efficiency e_{KL} of the generalized sign test with respect to Page's test for model (2) with θ replaced by $\theta n^{-1/2}$ is $e_{KL} = \lim_{n \to \infty} e_n(K)/e_n(L)$ and we obtain from (4) and (5)

(6)
$$e_{KL} = (k-1)\{k!-1\}^{-1}$$
.

Note that e_{KL} does not depend on f for these particular alternatives. (This is not true in general.)

For k=2, $e_{KL}=1$ as both procedures are equivalent to the sign test; for k=3, $e_{KL}=.400$, for k=4, $e_{KL}=.130$, and $\lim_{k\to\infty}e_{KL}=0$. From these efficiency values, it is clear that K_n is useful only for small k, as an easily motivated test which is very quick and easy to implement.

Hollander's paper [1] contains references to several earlier proposals of parametric and nonparametric tests for this problem; for more recent developments, consult [3], [4] and [5].

Pitman asymptotic relative efficiencies of K_n with respect to other competing tests are readily obtained by the usual relationship $e_{T_1,T_3}=e_{T_1,T_2}\cdot e_{T_2,T_3}$ where e_{T_i,T_j} is the relative efficiency of two competing sequences of tests, $\{T_{in}, n=1,\cdots\}$ and $\{T_{jn}, n=1,\cdots\}$. Efficiency formulas for other tests are contained in the cited papers.

Acknowledgement

This work was supported in part by the U.S. Office of Naval Research (contract number NONR-988(08)NR 042-004) and in part by a training grant (5 TOI GM 00913) of the U.S. National Institute of General Medical Sciences.

VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY FLORIDA STATE UNIVERSITY

REFERENCES

- [1] Hollander, M. (1967). Rank tests for randomized blocks when the alternatives have an a priori ordering, Ann. Math. Statist., 38, 867-877.
- [2] Page, E. B. (1963). Ordered hypotheses for multiple treatments: a significance test for linear ranks, J. Amer. Statist. Ass., 58, 216-230.
- [3] Pirie, W. R. (1974). Comparing rank tests for ordered alternatives in randomized blocks, Ann. Statist., 2, 374-382.
- [4] Pirie, W. R. and Hollander, M. (1972). A distribution-free normal scores test for ordered alternatives in the randomized block design, J. Amer. Statist. Ass., 67, 855-857.
- [5] Puri, M. L. and Sen, P. K. (1968). On Chernoff-Savage tests for ordered alternatives in randomized blocks, Ann. Math. Statist., 39, 967-972.
- [6] Tukey, J. W. (1957). Sums of random partitions of ranks, Ann. Math. Statist., 28, 987-992.