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Summary

Some types of local limit theorems for independent random variables
are shown and the results obtained are applied to have generalizations
of Blackwell’s renewal theorem.

1. Introduction

Let {X,, i=1,2,---} be a sequence of independent, nonlattice ran-
dom variables with finite means E X;=y, and finite variances Var X,=q}.

Let us consider the renewal process generated by {X;}. Set S,,=§‘_, X,
- i=1

n=1. The purpose of this paper is to discuss the sufficient conditions
under which Blackwell’s renewal theorem holds:

1.1) lim 3} Pr {x—l”-<s,.§x+i}=l‘_ (h>0),
r—oo n=1 2 2 ﬂ
provided that
p=lim L 31,
n—o N, =1 '

exists and is positive.

In the ordinary form of Blackwell’s theorem, it is used to assume
that {X,} is a sequence of independent and identically distributed random
variables. The case in which X,, 1=1, 2, are not necessarily identi-
cally distributed did not draw much attension except in a few papers
[1], [2], where some sufficient conditions for the validity of (1.1) were
given but they do not seem very satisfactory.

In the present paper, we are also going to study such sufficient
conditions, but taking an approach quite different from those used in
the papers cited above.

On the other hand, Cox and Smith [3] have shown the suggestive
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result that some local limit theorems for densities imply the renewal
density theorem under some restrictions. In this connection, we shall
first point out (Theorem 1) that, by the reasoning just same as in the
proof of Cox and Smith, Blackwell’s theorem follows from other type
of local limit theorems. Therefore we shall, in this paper, give such
a kind of local limit theorems (Theorems 2 and 3), and this would be
the main part of the proof of Blackwell’s renewal theorem for non-
identically distributed case. In the last section, we shall give Blackwell’s
theorem for a sequence of independent random variables each of whose
distribution functions is one of a finite number of distinct distribution
functions.

2. Local limit theorems and Blackwell’s renewal theorem

Let {X;, ©=1,2,---} be a sequence of independent random variables
with finite means g, and finite variances ¢?. Write S,,:i} X, A,=
i=1

ES,, Bi=VarS,, G.x)=Pr{S.<z}, for h>0 L=(—h/2, h/2], 2+I,=
(x—h/2, x+h/2], G(rx+IL)=Pr{z—h/2<S,<z+h/2}, and p(x)=(2x)"'".
exp (—#’/2), and denote the characteristic function of (S,—A4,)/B, by
0,(2)-

THEOREM 1. Suppose that lim (n+1)~! LS;? pi=p>0 uniformly for 1=

1,2,..-, and that Bi~Cm for n— oo, C, being a positive constant. Fix
h>0 arbitrarily. If

2.1) lim sup ]Zn 2" Go(@B,+ An+ L) —a™p(x) | = 0

hold for m=0, 2, then we have Blackwell’s renewal theorem,
lim i G+ I)=hlp .

The proof can be carried over in exactly the same way as Cox and
Smith [3] derived the renewal density theorem from the local limit
theorems for densities.

In order to have the sufficient conditions under which Blackwell’s
theorem holds, it suffices, in view of Theorem 1, to study the conditions
for the local limit theorems (2.1). In the sequel, we assume that E X,
=0 without loss of generality when the local limit theorems are con-
sidered, and investigate

2.2)  limsup %x"‘G,.(xB,,—i—I,,)—x’"p(:v) =0 (m=0,2),
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instead of (2.1).

For m=0, we have:

THEOREM 2. Let {X,} be a sequence of independent random variables
with E X,=0 and finite variances o, and let f(t) be the characteristic
function of X,. Suppose that:

(1) {X.} satisfies the Lindeberg condition,

(II) B:~Cin as n— oo, C; being some positive constant, and

(III)  for some >0, there exists a positive number c=c(e)<1 in such
a way that | fit)|<c for |t|=e. Then we have

(2.3) lim sup I;L n

w(@But+1)—p(x)| =0 .

This type of local limit theorem has first taken by Stone [4], [5]
for the sequence of independent, identically distributed random variables.
He actually has studied the case in which the random variables are
multi-dimensional and p(x) is the density of a stable law.

For the proof of Theorem 2, we note that {X;} admits the central
limit theorem since X,, 4=1,2,--. are independent random variables
with the condition (I). Therefore, we can prove Theorem 2 in exactly
the same way as Stone has shown his local limit theorems, by using
the following lemma.

LEMMA 1. Under the conditions (II) and (III), we have:
(i) |6.@)|<exp{—ait?} for |t|<eB, and n=N;, and
(i) [6.(t)|<exp{—am} for |t|=eB,,
where a, and ay are some positive constants, and N, is a positive integer.

PROOF. We use a well-known inequality relation due to Cramér
([6], p. 26): If f(t) is a characteristic function such that | f(t)|<xc<1
for all |t|=R, then for |t|<R,

1—4?

YeE t.

lf@l=1—

Since the condition (III) is no more than the condition of Cramér’s re-
lation, we have, for |t|<e,

_p
@4) f@Is1-2E esexp (1),

where y=(1—c?/8s*. Hence, for |t|<eB,,

-2

0.01=T1 | (&

B,
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Taking account of the condition (II), we have (i). On the other hand,
we can rewrite the condition (III) by

(2.5) - [ fi®)|<exp {—as}

for some positive constant a; and for |t|=¢, from which (ii) is easily
given. The lemma is completed.

For m=2 in (2.2), we have:

THEOREM 3. In addition to the conditions in Theorem 2, we suppose
that :
Iv) X., ©=1,2,--- have the finite third moments. Then we have

(2.6) lim su % #G(xB,+ L) —a'p(x)| =0 .
3. Proof of Theorem 3

Before proving Theorem 3, we shall show some lemmas.

LEMMA 2. Under the single condition (IV),

hZ
3B;

S‘” % @G(¢B,+L)dz=1+

for all n.

Proor. By the definition,

oo

Sl%xz ,.(wB,.+Ih)dx=S %wz[G,.<xB,,+ h)—G,,(q;B,,_%)]dm )

2

—o0

~ Integrating by parts and noting that X;, i=1,2,--- have the finite
third moments, we have that the last one is

B, [S: xsdG,,<wB,,+ h ) — S: x“dGn<xBn—%>]

"~ 3h 2
__ ;5;: [_ 5’;: S:, #dG,(xB,)— g’ S: dG,.(xB,.)]
1P
3B

The lemma is proved.

We put

éa(t) = S: e‘"’% #Go(xB,+I)dx



LOCAL LIMIT THEOREMS AND BLACKWELL'S RENEWAL THEOREM 511
and
giS(t):Si° e'xlp(x)dx .
The existence of ¢,(¢) is assured by Lemma 2.
LEMMA 3. Under the conditions (I), (II), (III) and (IV), we have
lim sup | 4,(t)—¢(t)|=0
ProoF. For any >0, there exists an R such that

SR a*p(x)de>1—L ,
—-R 2

and it follows from Theorem 2 that there exists an integer Ny(») such
that

B,.

(Bt I)=2(0)| 3
for n=N,. Then

3.1) S:%xZG,.(wB,,+Ih)dac>S () — 1

R
iR S 2dx>1—y .

We have from Lemma 2 that for any >0, there exists an Ny(3) such
that

3.2) S“’ 1;" 2Go(@B,+ L)dw <147

—oo

for n=N;. From (3.1) and (3.2), for n=N,=max (N;, N;),

Bn 2
Smm e 246, (2B, + L) <2

Thus,

15.0)-901s||”, 2 Br Gu(wB+ 1) - (o) s

Smm % x? n(an+Ih)dac| + ‘ Sm” o*p(x)dx

37

< 4R}

B 1
S w'dx+2n+—9=3y .
_r 2

The lemma is completed.

LEMMA 4. We have
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C Cih C.
< /7 3 1g/ e
|8.8) | =Cs|67() |+ I '”"(t)'+< T

where C,, C;, C, and C; are positive constants independent of m, t and h.

Jis.o1

ProOr. Repeating the integration by parts, we have
é.(t)= Sm eir % 2*G,(xB,+ I,)dx
=g ) e |d6(oBot ) —dG.(aB.— 3
p e Y 2*|dG,|xB,+ 5 dG, zB, 2

) 4 B ) e (e )
Gy L 90 ey e eB )

= _l [ —_ ﬂe‘“"’”n(l _eith/Bn)ﬂzf(t)
it h

+ _l_ @ itMBn(] g/ Bn)g! () __h_ g ith/2Bn(] eun/an)on(t):l
1 4B

2
+al

% e—ith/ZBn(l —_ e“h/B")ﬂ,',(t) —_ _;_ e—ith/ZBn(l + eith/Bn)on(t)]

+ 25’2, e~ H#h2Ba(] —gi/Ba)g (1) .
4

Therefore, noticing that

1 —gith/By

ith|B, |=

we have the required conclusion.

LEMMA 5. Under the conditions (II) and (III), we have:

(i) |6i®)]=|t|exp{—ait’} for |t|<eB, and n=Nj,

(ii) |0/ =1+t exp{—at’} for |t|<eB, and n=N;,

(iii) [0:(t)|=n'"exp{—(n—1)a} for |t|zeB,, and

(iv) [6/@®)|=(1+n)exp{—(n—2)x} for |t|2¢B,,
where a; and a, are some positive constants, N; and N, are some positive
integers, and o, is the one determined in (2.5).

Proor. We have

(3.) oty =—377(-L) TTA(L)
" LY »
a0 wo=gl 2ol TAE) ARG
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Slg) 1)

and

lf7(¢)|=ai,

Therefore we have

-
S——

|oact) <1 max 1T |£i(
1575n i1 B

and

10@) | <(1+t) max T |f( L)
1sj,ksn 1;?34 B,

It follows from Cramér’s relation (2.4) that for |t|<eB,,

|6.(t) | <|t| exp {—L’L—%)Tf_}

and

|0(t) | < (1+¢%) exp {__(_n_—gzit_} ,

where 7 is the one determined in (2.4). By the condition (II), we have
(i) and (ii).

Further, noticing that If,-’(-)lég |m|dF,(w)§<S mzdFi(x)>1/2§ai, and
that (2 a¢>2§nB?, we have from (3.3) and (3.4) that
i=1

|04ty < max T | £,(-L-)

1sjsn i=
4 i B,

1
J

and

167(t)|=(1+n) max
1Sj,ksn i

itTtR
It follows from (2.5) that for [t|=¢B,,
[6.t) | =n'? exp { —(n—1)a}

%)

and
|67 | =(1+n) exp {—(n—2)as} ,

where «; is the one determined in (2.5). The lemma is thus proved.
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LEMMA 6. Under the conditions (II) and (IIL), we have:

(1) |gau(t)| ts dominated by a mnonnegative function Q(t) with
SMZIQ(t)dt<oo for |t|<eB, and m=N,, where N, is some positive inm-
teger, and

(i) |gu(t)|=0(B.") uniformly for |t|=eB, as n— oo.

PrOOF. Put N;,=max (N;, N;, N;), where N, and (i, N;) are the
ones determined in Lemma 1 and Lemma 5, respectively. From Lemma
1 (i), Lemma 4 and Lemma 5 (i), (ii), we have

G

| $u(t) | S Co(1+-1%) exp { —ait?} +ml t| exp {—at’}
Ch_ .\ Co\ e g
+<|t|B,. +”t7)ex”{ o’}

for |t|<eB, and n=N;. The right-hand side on the last inequality
satisfies the requirements on Q(t). We thus have (i).

When |t|=¢B,, we have (ii) from Lemma 1 (ii), Lemma 4 and
Lemma 5 (iii), (iv). This completes the lemma.

We now define

K= ()

1-j¢, if [t=1,
k(t)={
0, if [t[>1,
and further, for any a>0,
Ku(a:)z-l—K<£> k() =H(at) .
a a :

Then we see that

| K@da=1, [ eroz=i)

and

Sww K (x)dz=1, S‘; K (n)de =k(t) .

For any >0, k>0 and a>0, we put

B,

3 ¥'G.(yB,+L)dy

Y

W, &, a)=S _Kus,(®—1)
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B,

5 (x—y)G.(x—v)B,+ L)y ,

= S‘jm Ka/Bn(y)
which is well-defided under the condition (IV) by Lemma 2. Noticing
that

Kuya @)= |__ehys, (00,

we have

W.(z, b, a)=2i S“’
T

—oo

S“’ e—i(z-v)tkamn(t)%yz ' (yB,+L)dtdy

= |7 e heun, (00t -

T 2r

Since k5, (t) has the bounded support,

W, b, a)=—-

2r SltlgB /a e “/Bn(t)¢n(t)dt .

We now have the following lemma.

LEMMA 7. Under the conditions (1), (II), (III) and (IV), we have
that for any fixed finite number M >0,

lim | W, (2, h, a)—z'p(x)|=0

uniformly for x and M '<h<M.
ProoF. We note that
ka5, (B)|=1 .
For a suitably fixed A>0, we put

J1=S < ]k“/Bn(t)¢n(t)—¢(t)ldt ,

1¢]

Je

[.(t) 1 dt

SA<I$I<-Bn

| gt dt

¢B,<|t|SB/a

Js

and

J= lgwldt.

1¢]

Then we have
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|Wo(x, b, @) —z*p(x)| ST+ o+ i+, .
For Ji,

J=\ Vs, @119 =918+ s, O—1119(0) s

Izl lel

By Lemma 3, the integrand in the first term tends to zero when n— oo

uniformly for |t|<A. Making use of the fact that |ka/5,(£)—1|=0(1) as

n— oo uniformly for |¢|<A, we see that the second term tends to zero

when n— oo, because of the integrability of ¢(t). Hence J,—0 as n—oo.
We now consider J;. By (i) in Lemma 6, it follows that for n=N;,

J<| ava<|  amat .

A<|t|<eB,

Choosing A sufficiently large, we can make J, as small as we desire,
since Q(t) is integrable on the interval with |{|=1.
Next, we have, taking account of (ii) in Lemma 6,

JiSo(Br) | dt<o(B:)B,Ja .

B, S|tISBy/a

It follows that J;—0 as n— 0. _

Finally, we can make J, as small as we desire, by choosing A suf-
ficiently large, because of the integrability of ¢(t).

Hence the proof of the lemma is completed.

We now turn to the proof of Theorem 3.

PROOF OF THEOREM 3. Let A>0 be fixed and 0<do<1l. If [y|=
oh/2B,, then

(x—y)B,+ Ly_»SxB,+ LS (x—¥)B,+ Lass »
and consequently

(3.5) G.((x—Y)B.+ La—») <G (B, + L)< G.(x —y) B+ Liass) -

Since SK(y)dy=1, for any >0, there exists a 6=0d()>0 such that

(0 KO) <1

and

(3.6) Ky)dy<y .

S|11|>h/3

We suppose that M'<h(1—0) and h(1+6)=<M without loss of generality.
Now, by (3.5),
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Wa(x, k(1+9), 5°/2)

> PRy ;

- Slyl.s_an/za /28y, (y) h(l +5) ( y) G,.((a: y)Bn+Ih(l+ >)dy
B, 2 L

=i te) @Bt S.MW,,KM%(?/)W yydy .

Noting that K, (y) is the nonnegative even function for y, we have

K5, (y) (x'— 22y +y')dy

Ko, (0) @ —)dy=|
ly|Sdn/2B,,

Slylsah/w,,

K5, (y) (@ +yN)dy

Slvl sor/aB,

=3 Kivns, (4)dy .

lylson/2B,,

Change of variables gives us that

Vs, Konn@y={ Ky .
lylsén/2B, lylsn/s

Hence

3 B
W@, M1+9), 6*/2)= )

On the other hand, it follows by Lemma 7 that for any >0, there
exists an Ny(p, ()= Ny(n) such that

Wz, h(1+0), */2)<="p(x)+7

for n=N;. Therefore

#C@BAL) | Ky .

67 LerGeBARsA+@p@)+n(|  Kedy)
<(+0)@p(a)+7) (1-+7) <a'pla)+Cor+Cd

because of max x’p(x)<oo.

We next estimate
W.(x, h(1—3), 6*/2)

32128, (¥) (z—y)'G.(x—y) B, + Ly _»)dy

Slwsan/w h(l 5)

%28, (v) (@ —y)'Gu((x —y)B.+ Lia_»)dy

+Slul>ah/23 h(l 5)
=L+L,, (say).

For L,, we have by (8.7) that for n=N;,
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L< S
y1>n/2B,,

=C

=18
Shll)ﬁh/an

K5, () [(x—y)'p(z—y)+Cinp+ Cioldy
KJ?/an(y)dy < Cs77 ,

because of (3.6). For L,, by using (3.5), we have

B, )2
T h(1—9) G@B,t 1) Slvlsan/mn Ky, (y)(x—y)dy
h(lB 0) Gu(#Ba+11) Smsah/za Kﬂ/wn(y) (w2+y2)dy
Bn 2 B 5 h
g h(l—(‘i) n(xB +Ih)+ h(l 5) 4B2 Sw[gah/an K;Z/“;n(y)dy
B, . C,
=5 (xB,+1, )

Since B,— oo as m—oo, for any x>0, there exists an N, such that
Cy/B, <7 for n=N,. Hence, if n=N,=max (N;, N;), then

W(z, h(1—3), #/2)< h(lB" 5 #Gu @Bt L)+ Cuy

By Lemma 7, it follows that for n=N;,
Wo(z, h(1—0), 6*/2)=a*p(x)—7 ,

and consequently for n=N,,
3.8) Be 6, B+ 1 20*p(@)~ Cuy—Cud

Since 7 and & can be chosen arbitrarily small, the estimations (3.7) and
(3.8) conclude the theorem. :

We finally obtain the following generalization of Blackwell’s renewal
theorem for independent random variables.

COROLLARY 1. Let {X;} be a sequence of independent random vari-
ables with finite means p; and finite variances o;. Suppose that lim (n+1)""

l+n Lt

Y p=p>0 uniformly for 1=1,2,---. Then, under the conditions (I),
i=1
D), (II) and (IV), we have Blackwell’s renewal theorem (1.1).

4. The case of finitely distinct distribution functions

In this section, we shall give some results for a sequence of inde-
pendent random variables each of whose distribution functions is one
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of a finite number of distinet distribution functions.

THEOREM 4. Let {X,} be a sequence of independent random variables
with E X;=0 and finite variances ¢:>0. Suppose that each of X;, 1=1,
2,--+ has one of the r possible nonlattice distribution functions {F(x),
1<k<r}. Then we have (2.3). If we add the condition (IV) that X,
1=1,2,--- have the finite third moments, then we have (2.6).

ProOF. In this case, it is clear that the central limit theorem
holds, and that B:~Cyn. Denote the characteristic function of Fi(x)
by ¢.(t), k=1,2,---,r. We can easily see that for a sufficiently small
sk:>0,

(4.1) |g(t)| <exp (—aitd}  for |t|<e,,

and that for any ¢>0 and T >, there exists a positive constant ¢ (e, T')
such that

(4.2) |gu(t) | <exp{—ci}  for eZ[t|ST,
since X, is nonlattice.

Put e=min ¢ (>0) and 62=I£1in gt (>0). By (4.1), we have
1sks7r

1Sks7r

4.3) [¢u(t) | Sexp {—at}/4} for |t|<e.
Put ¢=min ¢, (>0). It follows from (4.2) that

15ksr
4.4) [gu(t)|sexp{—c}  for e<|t|<T.

Making use of (4.3) and (4.4), we conclude the required result in ex-
actly the same manner as we have proved Theorem 3.

Blackwell’s renewal theorem is given in the following form.

COROLLARY 2. Suppose that a sequence {X;} of independent random
variables with finite means p, satisfies the conditions in Theorem 4 ex-
cept the condition that E X;=0. If lim (n+1)“l§ w=p>0 uniformly

n—oo i=1
for 1=1,2,---, then we have Blackwell’s renewal theorem (1.1).
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