BAYES EQUIVARIANT ESTIMATORS IN A CROSSED
CLASSIFICATION RANDOM EFFECTS MODEL

HARDEO SAHAI

(Received Nov. 13, 1972; revised June 17, 1974)

Summary

The Bayes equivariant estimators of the variance components in
the two-way crossed classification random effects model with K (K=1)
observations per cell are characterized under the usual assumptions of
normality and independence of the random effects. An illustrative
example of non-trivial Bayes equivariant estimators derived using a
special prior distribution is provided. It is pointed out that for the
squared error loss function every Bayes equivariant estimator of the
residual variance component is inadmissible.

1. Introduction

Consider a two-way crossed classification random effects model with
K observations per cell given by

(1) Yip=p+a;+b,+t;+e
(G=1,--+,I; j=1,--+,J; k=1,---, K),

where —oco<pu<oo is a constant, and a;, b;, ¢;; are random effects and
e,;; are random errors. We further assume that a,, b;, t;;, and ¢,,, are
all independent and have normal distribution with zero means and re-
spective variances o2, o3, o}, and ¢ (0=¢2, 0}, 0%, 62<o0). The param-
eters o2, oi, o}, and o are called the variance components. In this
paper we characterize all the Bayes estimators of !, o3, o, and o}
which are translation invariant and scale preserving, i.e., if f(Yi,,---,
Y:;x) is an estimator of any one of the variance components and if
the observations are subjected to any real affine group

G= {yvtjk_)ﬁ(Ytjk'i'a)y ,8>0’ — 0 <a< 00}

then f(Yu,-+) Yrox)— B (Yus,-++» Yrsx). These estimators are called
Bayes equivariant estimators (b.e.e.) (see, e.g., Zacks [10]) and similar
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characterizations of b.e.e. for variance components have recently been
obtained in the two and higher stage nested random effects models by
Zacks [9] and Sahai [5].

The minimal sufficient statistic for (g, ¢, i, 01, 62) with independent

coordinates is given by (Y..,S?, S, S2,S?) where Y.. is the grand
mean and S2, S, S?, and S? are the sums of squares corresponding to
the random effects a;, b,, t;;, and the random errors e¢;; (see, e.g.,
Box and Tiao [1], pp. 329-331).

Let v =IJ(K—1), vn=(I-1)(J-1), v=J-1, y=I-1, v=IJK—1;
p=0ila:, p=ailo}, p=aifol; o=14+Kp, w;=w+IKp,, woy=wo,+JKp,;
n=S}/S:, »=S8i/S:, and »,=S?/S:. Then it is known and can be shown
that »=(p, 7, 73) is a maximal invariant statistic and S;~aiX’[v], Si~
i v,], Si~alwX[vs], and S:~slw X [v,] (see, e.g., Box and Tiao [1], p.
331). Further using the conditional distribution theory similar to Zacks
[9], it can also be proved that S:|p~(ci/)X’[v], Si|p~n(ai/HX*[v], S;|
p~na/N)X], and Si|p~nyai/AHX*[v], where =1+ i+ o'+t and
X|Y denotes that X for given Y is distributed as Z.

2. Bayes equivariant estimators

Using a squared error loss function and following the Blackwell-
Rao Lehmann-Scheffé’s theorem [3] and Stein’s sufficiency invariance
theorem (see, e.g., Zacks [10], p. 79), we consider equivariant estimators
that are functions of the minimal sufficient statistic. These estimators
are called sufficiently equivariant. If the variance ratios are known
then, as in Zacks [9], there exist best equivariant estimators of vari-
ance components; namely ¢;=(S:+Sior'+Siwi'+Sie:!)/(v+2), i=p0;,
oy=p0:, and ¢;=p,0;. When variance ratios are unknown, the uniform-
ly minimum mean squared error equivariant estimators do not exist.
Subjecting Y;;, to a transformation in G, the minimal sufficient statis-
tic is transformed to {8(Y...+a), §°S%, B*S?, S, §'S2}. Thus all suf-
ficiently translation invariant estimators of the variance components
are functions only of (S?, Si, Si, S?) and all sufficiently equivariant esti-
mators of ¢}, g, 05, and ¢; can be written in the form ¢:=8S:fi(y), a;=
S:fun), ai=8if(n), and a?=S:fi(y). We choose the functions f,’s so that
the estimators are Bayes against some prior distribution of (¢, o1, 0, 05)-
It should be noted that the Bayes equivariant estimators are not neces-
sarily Bayes in the general sense (in which one minimizes the prior
risk among all estimators). Further, it can be seen that the prior dis-
tribution of ¢ does not play any role in the determination of the Bayes
equivariant estimators.

Let & represent the trivariate distribution law of (o, ps, 0;). Then
using the distribution results of Section 1 and following the methods
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given in Zacks [9], it is readily derived that the b.e.e. of ¢} is given by

(2) S: EX*[{l+per+per'+ner'} ,
(v+2) E*[{14por'+per'+90:'} 77

where E*[-] designates the posterior expectation of the quantity in
the brackets, given » and the prior distribution ¢ of p’s. Similarly
the b.e.e. of ¢ is given by

(3) S:  E*[p {1+ nor+ner' +pei'l 7]
o+2)  E* [{1+ g0 7000 7505 ]

and the expressions of the b.e.e. for ¢} and ¢2 are obtained by replac-
ing p, in (3) by p, and p, respectively.

Finally using the distribution results of Section 1 and the method-
ology similar to Klotz et al. [2], Stein [7], and Zacks [9], it can be
proved that given any b.e.e. of ¢, one can construct a non-equivariant
estimator which has uniformly smaller mean squared error. This shows
that all b.e.e. are inadmissible in the general class of all estimators of 2.

3. An illustrative example

Now we derive explicit expressions for some non-trivial Bayes equiv-
ariant estimators. For simplicity we consider the special case of
the model (1) with one observation per cell. In this case there are
only three components of variance, namely 2, o, and ¢:. Redefine
n=I-1)(JJ-1), v,=J—1, vy=I-1, v=IJ—1; p=0ifo;, pp=0ifo}; wo,=1+
Io,, w,=1+Jp;; 7n=S;/S:, and 7,=S8;/S;. Then we note that (3, 7))~
(0.U,, 0,Uy), where (U;, U;) has a bivariate inverted Dirichlet distribu-
tion (see, e.g., Tiao and Guttman [8]) given by

D5 Up) ¢ w?* gy (1w + 'Mrz)_"/‘2 ’

for 0<u,, u;<oo and zero elsewhere. Thus the joint density function
of (71, 72) given (i, py) is

(4) P(n1, 2l o1y 02) <m0 i (1 oy ey )

for 0=y, 73,<oco and zero elsewhere. Let ¢,=ow;', g;=w;' and assume
that (41, ¢;) has a prior density function &(é;, ¢;). Also 0=p,, p<oo
implies that 0<¢,, ¢,<1. The posterior distribution of (¢,, ) can now
be obtained by combining (4) with &(¢;, ¢;) and is given by

E(Pys Pal 1y m2) by s Bo)r 23 (L4 iy +1280) ™2

for 0<¢,, ¢,<1, and zero elsewhere, and where we have omitted fac-
tors which are constant or depend on the data and play no role on the
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analysis that follows. Now, for mathematical simplicity, we let the
prior distribution &(é;, ¢;) be uniform. Then the posterior distribution
is given by

&(P1s Balm1s m2) PV (14 iy + ) ™2 .

Now, to obtain the b.e.e. of 42, we have to evaluate the ratio of
the posterior expectations of (1+7,4,+7:4:)~" and (1+47¢+9.¢:)2. The
required ratio is readily obtained by noting that for p>0, ¢>0, t—p—
¢>0, ¢>0, and d>0

(5) Sl S‘ %dmdyz IO (@QrE—p—q) 5

[ ’ yt'— - ’
oV ez -tdgy AT 4P, ¢, t—p—q)

where D, ., m, n) represents the cumulative distribution funection of
the bivariate inverted Dirichlet distribution (Tiao and Guttman [8]), and
I'(r) is the usual complete gamma function. Thus the b.e.e. of o2
against the chosen prior is given by

( 6 ) S: Dvl,ﬂz(u2/2+1y ”8/2+1y ”1/2_1)
(»—2) Dvl,vg(”2/2+1y v3/2+1, v,/2)

To obtain the b.e.e. of ¢}, one further needs to evaluate the ratio of
the posterior expectations of (1496 +7:8:)~" = {7 (1 + i+ 7ups) ' —
A4y +n:8) " HI and 1476+ 7:6,)"2. The required ratio is again ob-
tained by using the integral identity (5) and then the b.e.e. of ¢} is
given by

(7) _l_[ﬁ_ Dvl,n,(vz/z’ vs[2+1, 1,/2)
ILy, D,,, /241, 1/2+1, v/2)
S D, ,,(»/241, v/241, v,/2—-1) ]
(1—2) D, (n/24+1, w/2+1,/2) 1

Similarly the b.e.e. of o2 is given by

(8) 1 [ S: Dyn(af2+1, 52, 0/2)
Ty D241, w/2+1, »/2)
S: D, (241, w/2+1, u/2—1) ]
(1—2) - D, (n/2+1, /211, wf2)

There is some resemblance in the forms of the b.e.e. (8), (7), and
(8) and some of the formal Bayes estimators derived in Sahai and
Ramirez-Martinez [6]. Further, since D, ,(-, -, -)—1 as p— o0, p— o0,
we obtain that

s~ S: P | [ S; S: :|
limgi=—"2¢_, limai==|20 — _Pe |
P— 4 v —2 oo 1 v y—2

ng—e0 g0
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and

o~ 1
lim Z:-[
Vf“”a J

7900

S_ S ],

Vg vl—-2

Thus for large values of v, these estimators are essentially equivalent
to the analysis of variance estimators. The mean squared error prop-
erties of these and some other classical and Bayesian estimators have
been studied in Sahai [5]. Numerical comparison of their mean squared
error functions show that these estimators compare favorably with the
analysis of variance estimators.
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