SOME NONPARAMETRIC TESTS AND SELECTION PROCEDURES
FOR MAIN EFFECTS IN TWO-WAY LAYOUTS

A. P. GORE

(Received Nov. 6, 1972; revised Sept. 10, 1973)

Summary

In this paper a new distribution-free test based on U-statistics is
offered for the hypothesis of “row effect.” Asymptotic distribution of
the test statistic is obtained under the null hypothesis and under trans-
lation alternatives. Asymptotic efficiency of this test relative to the
classical analysis of variance test is the same as the asymptotic efficien-
cy of Mann-Whitney test relative to the t-test. A selection procedure
to choose the row with the highest “yield,” based on the above test
is developed.

1. Introduction

Literature on nonparametric tests for one-way layouts is quite
extensive (e.g. [3], [14], [15], [19]). For the problem of main effect in
two-way layout there is the well known Friedman’s test which has a
rather low asymptotic efficiency. It is applicable for the case of one
observation per cell only. The test discussed below is useful for the
case of multiple observations per cell and has a higher asymptotic effi-
ciency than the Friedman’s test. Consider the linear model

(1-1) Xuk=ll+a¢+,3;+€uk
where 4 is the general mean, «; (1=1,---, 7) effect of ith row, 8, (=
1,---,¢) effect of jth column and e (k=1,---, ny, n;=1) is a random

error component. We assume that ¢, (for all 4, j, k) are independent,
identically distributed random variables with a common continuous dis-
tribution function F' with median zero. Without loss of generality we

can assume that Zr‘,ai=1é B,=0. Under this set up we wish to test
i=1 =1

the null hypothesis

1.2) H: aq=-+-=a,,
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i.e. the hypothesis of no “row effect.”

2. The test statistics

Let ¢(t)=1 if t>0, =1/2 if t=0 and =0 otherwise. Define

’Ili nl

(2.1) U, 1—2 2 A Xije— Xoj)[Mime;

Note that due to the assumption about continuity of F, ties occur only
with zero probability and can be ignored. Let

c
2 2,1, ¢

M‘\

2.2)

E

%’
i

1HI

For the case n;;== for all © and j, we propose the following statistic
for testing H,:

(2.3) S,= 12"

—(r—1)c/2) .

More generally, if the number of observations per cell is not the same,
let n;;=Np;;, 0<p;<1, X p;=1. (Clearly when n,=n p;=1/rc.)
7

Further let q,;=p;} and
(2.4 E Py 0.=20, =X

The statistic proposed for this set-up is

@5) Si=22| S (U—r—Dep2la.— |3} (Ui— (= DeiVa. | [a2]

when N=3)3> n,;. The test based on S, (S;) consists of rejecting H,
i

J
at a level of significance « if S; (S;) exceeds a predetermined constant
St (S:). We claim that S,, and S,, are free of F under H, and hence
the tests are distribution-free; for briefly

P(Sz=sz)=§ P(U;=a,, i=1,---,7)

where * denotes the sum over all distinct vectors a=(a,,---, a,) such
that U,=a,vi=S;=s,. Also

P(Uf,;:ai, izl,"', T)
=X P(lji,i’,jzai,i',j; 7:,:1y”’, r, 7:,:/:’59 j=1s'°', c, 7;=11"'v’r)
%ok

where *x denotes the sum over all distinct sets of values a,, ; such
that U, . ;=a:s; V14,1, 7=>U;=a;vi. Finally,
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P(U,v;=0a:;¥7% 7, 7)
=*§* P(HXsju—Xijp) =i 00 5,085 vi, v, J, a=1,---, Nijy

,lev' ) ni’j) )

where xxx denotes the sum over all distinct sets of values a,, ; ., such
that ¢(Xi;e—Xiss) =00, 5.0s¥ % 1, 3y &, B=Ui v ;=01 ,; V14,1, j. However
this is nothing but a complete or partial ordering of the observations
in each block. And when H, is true, all orderings within a block are
equally likely. Hence when H, is true S, (and S;) takes on different
values with probabilities that are free of F. In the next section it is
shown that both S, and S, have asymptotically, as N— o, a chi-square
distribution with r—1 degrees of freedom. Thus a large sample ap-
proximation for S,, and S,, is provided by the upper a-point of the chi-
square distribution with »—1 degrees of freedom. For the special case
r=2 the use of S; (S;) would be equivalent to applying normal approxi-
mation to van Elteren [8] statistic for comparison of two treatments.
In this sense S; (S;) could be considered as extensions of van Elteren’s
approach for the case of several treatments.

3. The asymptotic distribution under H,
It can be easily seen that
E, l]i,i’,j:]‘/z ’
Vo U, i 5=+ 1m0+ 1)/120,m05
Covy (U;p,5, Uin,)=1/12m ,
EU=(r—1)c/2,

2 r
VU= 5 [ 5 (L L))
12 J=1 Ny #1 \Nyy NifMyy

and

Cowi (U, )= 5| 3 =D _(r=8) _mutnetl],
12 j=1 Lvzie myy Ty Ny M4 5Ty

The computations involved are routine (see e.g. [18], [19]) and hence
all details are omitted. Now we shall prove the assertion regarding
the asymptotic distributions of S, and S, by invoking the properties of
U-statistics. Note that U, , ; for each 7, ¢ and j is a two-sample gen-
eralized U-statistics (see Sukhatmé [20]) corresponding to ¢. Therefore
as N—oo, NY(U,; ;—1/2)V 1,1, j (¢ +1) have a limiting joint »(r—1)c-
variate normal distribution with null mean vector and appropriate co-
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variance matrix (Lemma 3.1 of [3]). Since U,’s are linear combinations
of U, s, N (U—((r—1)c/2)J), where U=(U,---,U,) and J is a col-
umn vector of unit elements, has a limiting r-variate normal distribu-
tion with null mean vector and covariance matrix ¥ =[s,.], where

1 [
3.1) G'it=—1-2— E {("'_1)2‘111 +‘§‘ QW}
~and for i#k
1 c
(3.2) a‘kzﬁfg {g.;—7r(gq:;+aes)} -

It is easily seen that rows of ¥ add up to zero. This is as expected
since there is a linear constraint on U,’s, namely

é U,=r(r—1)/2 .

Let a denote NV (U—(r—1)(c/2)J) and let a’'=(a;, a,). Let ¥, denote
the limiting covariance matrix of a,. Then using the notation in (2.4),
2, can be expressed as

123 =7Dy—r(I1oJ{ + JIT1) +q..JoJ!

where D,=Diagonal (g,., 1=1,---,r—1) and II}=(q.,*", ¢,—1.) Which
can be inverted following [3]. After some simplification and using the
fact that Xi}ai=0, we get

r r 2
asz'.;‘ao=1—“:‘{2 ailq.—q* "(Z‘. at/qt.) } .
ré li=t i=1

The right-hand side is precisely the statistic S;, which is thus seen to
have a limiting chi-square distribution with (r—1) degrees of freedom.

If nj;=mn, vi,J, then p,;=1/re, q,.=rc’, q.=r’* and the limiting
covariance matrix of a, is given by

1220 = rzcz[’rI(r—l) - JGJO,]
so that

25t =22 Lt I

and a;2;'a, reduces to the statistic S,. We have thus proved the fol-
lowing theorem.

THEOREM 3.1. If i'n the model (1.1), ap=-**=a, a’nd n‘j=Npu,
where 0<p;; <1 and izj‘, p,;=1, then both the statistics S, and S,, defined
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by (2.3) and (2.5) respectively, have the limiting chi-square distribution
with r—1 degrees of freedom, as N— co.

4. Asymptotic distribution under translation alternatives

DEFINITION. A distribution function F satisfies “Assumption A” if
it possesses a continuous derivative f and there exists a function g
such that for almost all x(F) and for all sufficiently small &,

[(f(x+h)—f(x)/h|<g(x)

and

| s@f@ds<eo .
THEOREM 4.1. Consider a sequence of Pitman alternatives given by
(41) HN M Xijk=ﬂ+N_1/21¢+ﬁj+5um v ’I:, j, k

where, not all 2’s are equal and &’s behave as in (1.1). Also assume
without loss of generality that 33 2,=0. Then as N— oo, S, has the limit-
i

ing moncentral chi-square distribution with (r—1) degrees of freedom and
the noncentrality parameter

“2) 126 F )5 2g. — (3] adac) a2
where $(F)= S:e fia)dz.

ProoF.

Ey (U.v,1) =Py (Xin>Xi1)
=P (eiut+ N2 — ) >ep1)

=" Fa+Na—1)dF )
- g [F(x)+N"23,—2,)f (z+)]dF (x)

(for |h|<N-2|2,—2:])
=1/24+ N4, —2,) S:o SfHx)dx

e f@th)—f(@)
+2 -2 I S ar @) .

Hence, in view of assumption A,

Ey (Use,)=1/2+ N7 (2= 2)(F)+O(N™) .
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It follows that
(4.3) Ey (U)=(r—1)c/24+ N~"rcap(F)+O(N™) .
Similarly, under assumption A,

EN {¢(Xiﬂc_Xi’fl)¢(Xijk'—Xi’jl')}

=1/24+O(N%) if k=K' and I=V'

=1/3+O0O(N"'7) if k=k' or I=I' but not both

=1/44+O(N~17?) if k+k' and I#0'.
As a consequence, as N—oo, NVy(U,.,,) and N Covy (U, ,;, U, ;) con-
verge to the corresponding values under H, (see Section 8) when N— co.
Consequently the covariance matrix of a converges to the matrix ¥
given by (3.1) and (3.2). Thus it follows that a has the r-variate limit-
ing normal distribution with mean vector re¢(F)(4,---, 2,) and covar-
iance matrix ¥ and a/X;'a, has the limiting noncentral chi-square distri-
bution with (r—1) degrees of freedom and the noncentrality parameter

(4.4) T HEF) 2 4

under the sequence of alternatives {Hy}, where '=(X}, 2,)=(4, -, 4,).
The expression (4.4) reduces to (4.2) as in Section 3.

COROLLARY 4.1. Under {Hy}, S, has the limiting moncentral chi-
square distribution with (r—1) degrees of freedom anmd the noncentrality
parameter

r

(4.5) 12(p(F)) iZ Zfr .
=1
PROOF. Notice that ¢,,.=»c* when n,;=nv1i, j. Also 334,=0. The
%

simplification follows immediately as in Section 3.

5. Asymptotic relative efficiency

Case 1. Let m;;=nv1,j. In the classical ANOVA the procedure
used for testing equality of row effects is to reject H, for large values of

é (;..—z...[r)e[nce

where dots denote totals and ¢* is the error mean-square. Under {H,},
this statistic has the limiting noncentral chi-square distribution with
(r—1) degrees of freedom and the noncentrality parameter

r
>3 Aifret,
=1
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where ¢ is the variance of the distribution F. It follows that the
asymptotic efficiency of S;-test relative to this parametric test (P) is

(%.1) es,r=120"(H(F)) .

This is precisely the asymptotic efficiency of the Wilcoxon-Mann-Whitney
test relative to the t-test. It is well known (see Hodges and Lehmann
[12]), e.g., that it is bounded below (for all continuous distributions ¥
with finite variance) by 0.864, but that there is no upper bound. This
expression, we note, is free of r and ¢, and equals 3/r when f is the
density of a normal variate.

Case 2. More generally if the number of observations in the (7, j)-th
cell is m,;, the classical (least squares) test statistic has the limiting
noncentral chi-square distribution with (r—1) degrees of freedom and
the noncentrality parameter (see Graybill [11], p. 298),

L g

under the same sequence of alternatives {Hy}. As is immediately ob-
vious, here the ratio of the two noncentrality parameters is not free
of 2, i=1,---,r. This makes the expression for asymptotic efficiency
virtually impossible to interpret since it depends on the particular se-
quence of alternatives {Hy: a,=N""2,, i=1,---,r}. Hence as an alter-
native we consider the test proposed by Yates [21] (see also Bancroft

[1], p. 24). Here, consider the vector Y'=(¥;,Y,) where ¥,=Xx*—X*,
X 2 <§ Xijk/'"ftj)/ and X*:é )_{i*/r .
J=1 i=1
It is easy to check that

V(Y) =g [(r"—2r)gi. +4q.]

N22

and

COV(Y“ K') [ ,r(q‘l +qz )+q ]

N 2 2
Notice that the elements of the covariance matrix of Y (say B(s%)
differ from elements of the covariance matrix of U (see (3.1) and (3.2))
only by a constant multiple. Consider a procedure which rejects H, if
NY'B*-Y is too large, where B*= B(&2) and ¢* is the error mean
square or any consistent estimator of ¢*. This statistic simplifies to

(6.2)

-~ (5 Yilg.)lg"] -
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It is easy to see that the “sum of squares” for rows given in Bancroft
([11, p. 25), is identical to the numerator of (5.2) and thus Yates’ sta-
tistic is asymptotically equivalent to it. This statistic has in the limit
the chi-square distribution with (r—1) degrees of freedom. The dis-
tribution is central under H, and noncentral under the sequence of
alternatives {Hy}, with the noncentrality parameter

%:[; 2a.~(53 2ilg.la*] -

Hence it follows that the asymptotic efficiency of the test based on S,
relative to the Yates’ test (Y) is

(5.3) esz,y_=1202(¢(F))’ .

6. Discussion

For the case with equal number of observations (say n) per cell,
Lehmann [16] has proposed a test for the hypothesis of no row effect in
two-way layouts. He has shown that the asymptotic efficiency of this
test (say L-test) relative to the F-test is 12¢6%¢(F'))*? which is precisely
the efficiency of Si-test relative to the F-test. It follows that asymp-
totic efficiency of S;-test relative to L-test is

esl’L=1 B

However, while L-test is only asymptotically distribution-free, S;-test
is exactly distribution-free.

On the other hand asymptotic efficiency of Friedman’s test relative
to F-test is 126%(¢(F))r/(r+1), which is rather low, particularly for
small values of ». One obvious way of improving this efficiency is to
have more than one observation per cell. Consider the following gen-
eralization of Friedman’s test for the case of » observations per cell
(n=1). Let U, i=1,---, r be as defined in (2.2). The test rejects the
null hypothesis of no row effect if

_ 12n? r 2

s—m E (Ui—(r—1)c/2)
is too large. Notice that for n=1, S, reduces to the Friedman’s sta-
tistic. It can be shown, using central limit theorem, that as ¢— oo,
for fixed m, S; has a limiting central chi-square distribution with (r—1)
degrees of freedom when the null hypothesis is true. Conover ([6], p.
273) has recently proposed another generalization which is equivalent
to S; and which he has arrived at from the “mean rank” approach.
It can be shown, after some computations similar to those in Sections
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4 and 5 that the asymptotic efficiency of S; relative to F-test is
1264 p(F))mnr/(L+nr) ,

for a sequence of alternatives {H,} given by H,: a;=c"4, 1=1,-+, 7.
When the underlying distribution is normal this expression reduces to
8nr/z(1+mnr). The following table gives values of this expression for
some specific values of n and r. Note that the case n=1 gives the
values for Friedman’s test and entries corresponding to increasing values
of » show the improvement due to S;. The entries are symmetric with
respect to #» and r in view of the form of es, ».

Table 1 A.R.E. of the generalized Friedman test relative to F-test
when the underlying distribution is normal

N 1 2 3 4 5 10
2 637 | .764 819 .849 .868 .910
3 .716 819 .859 .881 .895 .924
4 764 .849 881 .899 .910 .932
5 .796 .868 .895 .910 918 .936
10 .868 .910 924 .932 .936 945

Hodges and Lehmann [13] have remarked that the fact that Fried-
man’s test only uses intrablock ranking and throws away any potential
information in interblock comparisons (after adjustment for the block
effect) may be responsible for the relatively low efficiency. Indeed sub-
stancial improvement in asymptotic efficiency is achieved (3/z for normal
distribution) by using their aligned rank tests. And this is without
increasing the sampling cost, which initially seems remarkable. How-
ever, it has to be noted that the distribution-free property of the sta-
tistic is lost even though it is preserved asymptotically.

It is worth noting at this point that for many nonparametric pro-
cedures there is a fair agreement between the exact and asymptotic signi-
ficance points even for very small sample sizes. Deshpandé [7], Bhapkar
and Deshpandé [4] have demonstrated that for their c¢-sample location
and scale procedures 3 to 4 observations per sample are enough to as-
sure reasonable accuracy of the asymptotic approximations. Sukhatmé
[20] in an earlier work found out that for his two-sample tests n=3 was
“large enough.” An inspection of the small sample significance points
of Kruskal-Wallis test and Friedman’s test reveals a similar phenomenon.

Finally notice that Friedman’s test, Hodges-Lehmann’s aligned rank
test, Sy-test ete. assume that the number of columns, ¢, is large. We
know from the results of the last section that use of tests based on
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S; and S; results in high asymptotic efficiency, for any number of col-
umns, provided of course that the number of observations in each cell
is sufficiently large. In the light of what has been said in the earlier
paragraph, it is expected that this number would have to be only mod-
erately large for the approximations to be valid.

7. Selection problem

Consider the model
(7.1) Xuk:ﬂ'l‘ai‘f'ﬁj'l'eiﬂc

with the usual assumptions. Our problem is to decide which of the
a’s, 1=1,---,r, is the largest. Alternatively, let a,;<:--<a;,, be the
ordered values of a;, 9=1,---,7. Then we wish to identify the row
associated with a;,; (the problem concerning a;; is analogous). In the
“indifference zone” approach due to Bechhofer [2] it is assumed that

(7.2) X —a-n=0 ,

where ¢ is the threshold value prespecified by the experimentor such that
when the above difference is less than 4, he is indifferent to the choice
between the rows associated with a;,; or a;,_,;. The problem is to find
the smallest number of observations in each row necessary so that for
a given decision (selection) procedure

(7.3) P (correct selection)>7r,

where 1/r<y<1 and 7 is prespecified. Correct selection of course means
that we select the row s and a,=a;+0 i#s. Commonly, the statistic
employed for testing the null hypothesis, that all the parameters of
interest (a’s in our case) are equal, is used for developing a selection
procedure. Bechhofer [2], for instance, considered the set-up of K nor-
mal populations with common known variance. Towards identifying
the population with the largest mean he proposed that we select that
population which produced the largest sample mean. In such a one-
way layout, Lehmann [17] pointed out that it is possible to use non-
parametric test statistics in this fashion provided we require that the
guarantee (7.3) need only be satisfied asymptotically in a certain sense.
However, even with this weaker requirement, the procedures are not
necessarily nonparametric, in the sense that the smallest number of
observations from each group necessary to satisfy this requirement still
depends on the underlying density. We shall propose two procedures
in a two-way experimental layout based on nonparametric tests and
compare them with their parametric counterparts.
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8. Two procedures based on nonparametric tests

Suppose we have one observation per cell. Let ¢,, , equal 1 (1/2)
if in the jth column, the ith row element (i.e. observation) is greater
than (equal to) the element in the 4'th row, and equal zero otherwise.
Let

®.1) U=3 3 gorsle .
t#F1 j=1

The U’s form the basis of Friedman’s test since c¢(U;+1) gives the
sum of ranks of observations in the ith row, when ranked within col-
umns. (Because of the assumption of continuity ties occur only with
zero probability.) We propose the following procedure related to these
statistics.

8.2) Select sth row if U,=m?.x U, .

More generally, suppose now that we have n,, observations in the (7, j)-
th cell. Let ¢, ,:, equal 1 if X,,,>X,;, equal 1/2 if X,;,=X;;, and
equal zero otherwise. Let

ngj nyg

i = ,‘2_1 ,21 Pi,v, 1,1/ Mi Moy
Further, define

(8-3) Ui=2 Sc‘_x Bier,g -

’
i#t j=1

These U,’s form the basis of the statistics S, and S, discussed in Sec-
tions 1-6. The selection procedure based on these, offered now, is also
the same as in (8.2), viz.

(8.4) Select sth row if U,=m?xU¢ .

The »probability of correct selection for these procedures is given by
(8.5) P(U>U,Vi#s|a,=a;+dVi+#s) .

As a competitor, the following ‘parametric’ procedure naturally
suggests itself, for the case of one observation per cell.

Select sth row if X,=max X,
i

where X,, i=1,---, r, are means of all (say c*) observations in the re-
spective rows. In this case after manipulations similar to [5] we get
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. c* T 2
Lim PRy 126%(p(F))* .

Hence, the asymptotic efficiency of the procedure (8.2) relative to
the parametric procedure based on row means, is the same as the
asymptotic efficiency of Friedman’s test relative to the ANOVA test
for the hypothesis of no row effect against location alternatives. Thus,
the technique of comparison of two procedures proposed by Lehmann [17]
for the one-way layout extends directly to the case of two-way layouts.
The parametric procedure for the case of n* observations per cell (N*
=ren*) is

Select sth row if X,:m?,x}?,

there the corresponding result is

Lim %: 126 ((F))?

which is precisely the asymptotic efficiency of the S;-test relative to
the ANOVA F-test. (See 5.1)

9. Problem of unequal samples

It was pointed out in Bhapkar and Goré [5] that the assumption
of equal sample sizes in different groups is not necessary for comparing
the performance of two selection procedures in one-way layout. In the
particular case studied, it was demonstrated that the expression for
asymptotic efficiency remains the same provided the frequencies in cor-
responding groups are in equal proportions.

Here, with the two-way layouts, let n,=Np,;, and consider the
selection procedure (8.4).

At first, it seems natural to consider a parametric procedure based
on means of all observations in a row, as a competitor. However, that
it is not a reasonable procedure, if n} are not equal, is seen from the
following.

E( 2 3 X[ 508 =ptat Snsfy[SImsy,
J=1k=1 j=1 J 7
so that the differences in the row means do not reflect differences in
a’s alone. This difficulty can be eliminated by using unweighted means
of cell means. Consider

Xu = Zk} Xijen

and define
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Xi*=21 Xt j/c .
i=

Notice that E (Xi*)=zj] E (X,,)/c=p+a;, under the usual assumption that

; B;=0. We therefore use the procedure based on X*’s.
9.1) Select sth row if )_(,*=max Xx.

Again it can be easily verified that efficiency of the procedure (8.4)
relative to the one given by (9.1) is

. N* _ 2
leT—IZa’(gb(F)) ,

which is precisely the same as the asymptotic efficiency of the S,-test
relative to Yates’ test. (See 5.3). One may again recall here the re-
marks made in Section 5 regarding the above asymptotic relative effi-
ciency.
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