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Abstract

In this paper we study the problem of optimal allocation when the
model for generation of observations in a particular stratum permits
for auto-correlations. The object of the study is assumed to be the
estimation of the population mean as precisely as possible.

0. Introducﬁon(

This paper is a continuation of the papers of Draper and Guttman
[1] and Guttman and Palit [5] and discusses the two phase allocation
problem for situations in which auto-correlations exist in within stratum
samples. By a “two phase design,” we mean a design in which two
independent samples are selected at two different points in time from
each of the strata of the (statified) population under study. In addi-
tion to the assumed independence between phases, we also assume in-
dependence between strata. Our model for the generation of the ob-
servations, which permits for auto-correlations, is further described in
Section 1 below. The results of the first phase samples are used to
arrive at an optimal design for the second sample. By optimal, we
mean a second phase design which minimizes the future expectation
of the two-sample (i.e., first and second phase samples) posterior vari-
ance—for further discussion, see Draper and Guttman [1] and Guttman
and Palit [5].

1. The within stratum model

Let x,; be the jth observation from the ith stratum, where 1=1,
..., H and j=1,---,n,. Denoting the stratum mean E (x,,) as p;, we
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assume that the model for z;; is
1.1) Tiyy=ptey,

where the error term e;; is assumed to be generated by a first order
auto-regressive process with parameter p;, i.e.,

(1.2) €y =0:€ 7 11+&

where the ¢;; are independent and normally distributed with mean zero
and variance ¢}, for each i=1,--., H, and with —co<p,<co. (A dis-
cussion of such models is given by Kendall and Stuart ([7], Vol. 3, pp.
416-421).)

1.1. The within stratum posterior distributions

The subscript “4” is used to denote the stratum from which the
sample is drawn. When we discuss the distribution theory for a single
stratum, we will drop the subseript “:.” Later, when we discuss more
than one stratum, we will replace the subscript “4.”

(i) The first phase posteriors

For convenience then, we now drop the subscript “:¢” and derive
the within stratum likelihood function for the first phase, following
the approach used by Zellner and Tiao [10], and Tiao and Tan [9].

Consider the transformation given by
(1.3) 2=, 2, =%—px,, t=1,2,-.--,n—1=7,,

where 7 is the number of first phase observations drawn from the
stratum.
The expectations of these transformed variables may be written as
+m,, t=0
(1.4) E (2|0, #, m))=
T, 1<ty

where t=(1—p)y, and m, is a level adjustment parameter introduced to
take account of the fact that the process was at an unknown level
when we began observing it. Now for t=1,..., »,=n—1, we have that

(1.5) 2=y 41— P, .
Using (1.1), we can rewrite (1.5) as
(1.52) z=p+e...—plpt+e)=p(l—p)+e...—pe, .

Using the relationships given in (1.2), we substitute (pe,+¢..,) for e,
in (1.5a) to obtain

(1-6) z,=T+6H_1 ) t=1,"', 'vln
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Hence, the 2z, can be considered as independent normal random variables
with mean r and variance ¢®. Using this result, we can write the likeli-
hood function as

1.7 Ug p, o, M| X)0ca™ 1" exp {"z‘l,zT[(Zo—r—mx)%é, (z,—r)”]}

where —oo<m,;<oo, —oo<p<loo, —ow<p<Loo, ¢>0, and r=(1—p)pu.
Thus if the prior knowledge about the parameters g, m,, ¢ and p can
be represented by independent priors p(g), p(m,), p(s), and p(p) then
the posterior distribution of g, m,, ¢, and p can be written as:

(1.8) (g, 0, 0, mi|X)=lim|p, g, 3, X)s(p, 11, 7| X)D(0)D(2)P(m,)P(0)

where

(1.8a) l(m,|p, p, 0, X)oca™" exp {:—(z";‘;——m‘)z}
and

- :‘i (z.—2)
(1.8b) o, olx)oca™s exp | —| .

Expressing our ignorance of m, by taking as the prior for m;
p(m,) cconstant ,

and integrating (1.8) over m,, we arrive at the posterior distribution
for p, ¢, and p which can be written as

(1'9) p(ﬂ, a, Plx)=l2(l‘, ag, Plx)p(ﬂ)P(U)p(P) .

If in addition we choose the priors for g, ¢, and p to be locally uniform
in g, log ¢ and p, except* that p(p) is equal to zero in the interval 1+4
for 6>0, then (1.9) above reduces to

(1.10) (g, o, p|X)oca™1*P exp {;1— > (Z:—T)’} ’
2% i=1
from which we obtain the joint posterior distribution of g and p as

2! —v,/2
1.11) p(g, plx)cc {;:31 (z,—é)’}

?1

2 (=)A= EIL—p) |5 e ) o
o =
-1

* This is equivalent to assuming that our prior knowledge is such that p is known
not to lie in the interval (1—4, 1+44), for some known 4.
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where 2:% z;/v;. Integrating (1.11) with respect to p yields the mar-
ginal post:;ior distribution of p as '
RS |

1=pl’

where p ¢ (1—6,1+6). The reader should bear in mind that the z’s are
functions of p, besides being functions of the appropriate x’s.

Using (1.12) and (1.11), we have that the conditional posterior of
u#, given p, is such that

(1.12) Pol2)oc | 5 (2]

v (A= B =)~ 4[5 @~ | o
(v;—1) }
for p¢(1—4d,1+44), so that, conditional on p,

(L18)  plule, ) {1+

(1.133) (e —p) [ 2B DO

is distributed as a Student-t variable with (v,—1) degrees of freedom.
From the above result it is easy to see that

(1.14) E(zlo, x)= 1_2_‘0 = n"iil (n— 1)6x_n_p)

and that

(1.15)  V(zlp, X)=3 (2. —2)'/(1 - pf'vi(v,—3) =Sz, p)/(n—1)(n—4)
where

(1.152) S¥z, 0)=3 (2 — 2 /(1—p) .

(ii) The second phase posteriors

Continuing to suppress the stratum subseript “'I, ” we turn our
attention to the distribution theory after the second phase. We shall
use the letter y to denote the second phase observations, and we shall
use the first phase posterior as the second phase prior.

As in the first phase the likelihood function for the second phase
sample is

(L16) U pr o mal oo~ exp [~ L (Zime—mip+ 3 z—ey]}
t=
where
v,+1=N=the number of second phase observations drawn from
the stratum
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y;=the jth observation in the second phase sample in the

stratum
my=the second phase level adjustment parameter

(1.16a) Zy=
(1.16b) Z¢=y¢+1—ﬁyz ’ t=1v 2" ey Uy

Again, we assume that the prior information for m, can be repre-
sented by the non-informative prior

p(m,)=constant

and as with the first phase, integrate out m, from the joint posterior
distribution of g, ¢, p, and m; leaving

(1.17) (g, o, ply)=b(w, o, o|l)D(1; o) a) .

In this second phase however, we use as the prior for g, ¢, and p the
posterior distribution for these parameters which result from the first
phase as given in (1.10), so that (1.17) may be written as

(1.18) (g, o, ply, X)=UL(x, p, o|y)D(s 0, 7| X) ,

where of course, the function I, has the same functional form as (1.8b),
with »’s and Z’s replacing z’s and z’s respectively and v, replacing v.
Rewriting (1.18), then, we have

(1.182) p(y, o, ply, X) oco™r**P
- ex {———1 [i‘ (G—cf+ 32 (Z —1)2:“ |
P 252 Lim " v :

After some straightforward integration, and performing some algebra,
we find that

(L19)  plelo X y)oe S (0 =2+ 3 (Z— 2+ -G Z)
v+

} —(vy+vp)/2

+(v4v,) (r—R)
where

(1.19)  z=Xafv,, Z=%Z/v, and R=2Et%Z
! L v+,

Setting

(1.20) SS(o, z, Z)= 3 (2= 2+ 3 (Z— 2) + (v (0, +v9) G—Z)
d—p ’
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it is clear, from (1.19) and the fact that r=(1—p)g, that

(1.21) \/ <v1+vz>(v1+vz—1>(y—%)2/ssm 2, Z)

has a Student-¢ distribution with (v;+v,—1) degrees of freedom.
Using (1.21) it follows that

__ R _nx+Ny _ v(r—px.)+ vy — 0Y»)
1.22 E , X, Y)= = —
(1.22) (#lp, %, y) TP —— A—p) (@0

and that

SS(pz, Z)

(1.23) Viele, x, y)= T

We now return to the consideration of the case where H strata
are used, and re-introduce the subseript “4.” That is, the stratum
mean is now denoted by p,, the within stratum variance by ¢!, the
within stratum auto-correlation parameter by p;, and the first and
second phase samples from stratum 7 by x; and y,, respectively. We
further let X=(x,,---,x5) and Y=(y,, -+, yx) denote the entire first
and second phase samples, respectively.

The overall population mean is again denoted by x and is defined

H
as p=>) m;yp;, where z; is the known proportion of the population in the
i=1

1th stratum. Since the stratum means p;, are independent (in virtue
of the assumption that sampling between strata is done independently),
the second phase posterior variance of y is

_ SS (Pi’ Zi Zi)
1.24) V X, Y, = A% Xy Yir 0:)= i .
( ) V (z] )=V (ul|xi, y:, p)=> = (O +-02) (Vns+ 0 —B)

where p=(p,," -, pn)'.
(iii) p assumed known

Now suppose we have observed X, but have not as yet observed
Y=, -+, Yu), where y, is (N;x1). Then (1.24) is a random variable,
and so to arrive at an optimum choice of N;, we perform a preposterior
analysis (see Raiffa and Schlaifer [8]) and minimize

] E [Ssi(PiaZi’zi)IZvP]
1.25 E: [V (¢ X, Y, p)| X, pl=3 n} =& T
( ) ALV (e 2 o (15 +v2) (V15 + 2, —3)
where the operation E; is expectation with respect to the future or
predictive distribution of ¥, given X, p (or, equivalently, of Z, given
z, p etc.). The minimization of (1.25) over N, is subject to a cost re-
striction. Suppose C (in some monetory units) was available for the
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entire two-phase investigation, and that it was agreed to expend aC
for the first phase, that is, denoting the cost per observation in stratum
1 by ¢;, we have that

M

]
-

(1.26) cin=aC .

K3

Hence, the N; are subject to the restriction
(1.27) e Ni=1—a)C=C".

Now using known results of predictive distributions (see for example,
Section 11.7 of Raiffa and Schlaifer [8]), it is easy to see that

1.28 E:V (z:|x:, ¥., X, 0] = S (2ie—Z)
( ) #LV (ze| X405 Yis )| eil (Ot 02) (01— 3)

which, since p,=7,/(1—p,), yields

) — 2 (za _Et)z/(l —pi)2
(1.28a) Er[V (x5 yi, p) %4, pi] Wt o) (0—3)

Thus, on substituting (1.28a) in (1.24) we find that the predicted vari-
ance of g, given the first phase sample, when p is known, is

. : H 7Sz, p)
=1 (vy;+vy) (vli —3)

where, as in (1.15a), we have let
(1.29a) SHz:, p)=2 (2 —2)[(1—p.) .
Minimizing (1.29) subject to (1.27) yields the solution

H
— 1 WV € —2
(1.30) Ne= [ — 2= | e (n-2)
where
(1.30a) ui=8Uz;, p:)/(vi;—3) .

The solution (1.30) can yield negative values for N,. As in Draper
and Guttman [1] and Guttman and Palit [56], we interpret such an event
to mean that (for the given budget) the ith stratum was over-sampled
in the first phase and no further observations should be taken from
that stratum. Consequently, for the strata that have N,<0, we set
the N; equal to zero, and recompute the allocations for the remaining
strata by minimizing (1.29) over the corresponding N,’s.

This does not yet complete the procedure, for the restriction on
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the N, for the model (1.1)-(1.2) considered here, must be extended so
that if we do not select at least two observations from a stratum in
the second phase, we do not select any. The reason for this is as
follows :

Suppose for the ith stratum, N,=1, then for the ith stratum the
second phase posterior for g, p, and o, is exactly the same as the first
phase posterior. This is easily seen from the following. We recall
from (1.18) that

p(;tn Dis «nlyu xi)=lz(#i, Pi>s cnlyt)p(#i, Oi> Uilxt)
where from (1.8b)

Ni-1
Lps, pir 00| ys) ocor V™0 exp 1_L[ 2 (Z“—"'t)z]} )
20}

t=1
It is easy to see that when N;=1, then
L(gi, pis 04| Ys) occonstant
and hence for the case N;=1,

p(,lln [ Utlyu x¢)=p([1u (D) 0'¢|xt) .

Since the selection of only one observation from a stratum in the
second phase adds nothing to the precision of our estimator, it would
be pointless to select it. For this reason we adopt the rule that if N;
is such that

0<N;<1.5

then we set N, equal to zero and recompute the allocations for the
other strata with the original budget, and without considering the stra- -
tum for which we have set N,=0. If more than one stratum has an
N, such that 0<N;<1.5, then we set equal to zero only the lowest N,
and drop only that stratum from the system for which allocations are
recomputed. If one or more strata still have their N; such that 0<
N,<1.5, we again remove the stratum with the lowest N; and recom-
pute. We continue to do this until all the N, are acceptable. Finally,
we round up or down to arrive at the final integer allocation.
(iv) p unknown

In the previous sub-section we obtained an optimal allocation (for-
mula (1.30)) for selecting within stratum sample sizes for the second
phase, given that in each stratum we are dealing with a first order
auto-regressive process whose parameter p, is known, and in fact, known
not to lie in some neighbourhood of one. We now suppose that the p;
are unknown, but that it is known that p, does not lie in a small in-
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terval about 1. We will see that the optimal allocation arrived at by
a preposterior analysis involves the computation of H, N;-dimensional
integrals, where N, is the second phase sample size for the ith stratum,
and ¢=1,.--, H. Even with the aid of high speed computer, this is a
cumbersome procedure (the N, are to be determined, so for each trial
set, H multiple integrals of dimension (N,,---, Ny) must be evaluated
etc.), so that after discussing the preposterior analysis in this subsec-
tion, we will propose some alternative procedures in Section 2.

But let us first discuss and illustrate the problems mentioned in
‘the last paragraph. From (1.18a), it is easy to see that

v1¢ Voi —
(L81) B, pul%, g oc || 3 @B +o0ulBi—pull— ) + 2] (Zu— 2"
— =(vy;+09:)/2
+vu(Z;— pi(1 _Pt))z] I’ .
Now, the expression in the square brackets in (1.31) may be written as

_B\', o _B
o RIS

where
(1.322)  A=S:, ,+S, , +oups—Z0 ) + 00— Fe)*
(1./32b) Bi = CSzi + CSyi + 'Uu([li - Ei,;“) (.Ui - Zéi,t) + '"zt(llt - 17i,t+1) (Fi - '.l_lz t)

(1.832¢) C;=S8: . +S;

i,0+1 Yi,t+1

it

+ v _Ei,t+l)z+v2i(ﬂi —’!_It,t+1)2

with
Vai _ _ Vai
(1.32d) S?’i t__-z (y“—ym)z ’ Yi o =—— E Yie
’ t=1 Vy; t=1
Vg _ _ Vi
(1.32¢) S:i t+1=2 Wiee1—Yie1) Yirs1=— 23 Yi, 11
’ t=1 Vg t=1

v and the obvious similar definitions for S?

200t 2, 0 i and %,,.,, with

(1.32f) ’Uli='ni-—1 y ’02¢=Ni_1

and where

?1¢
C’S’,,i=t§1 (xn—5i,z)(xi,t+1—53t,t+l) ’
(1.32g) .
V2i
CSW:E (yit_gi,t)(yi,t+1—gi,t+1) .

Integrating (1.31) over the range of p,, and assuming that (1—d;, 14+4,)
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is a very small interval, (that is, assuming that p, does “not equal 17),
we find that

(1.33) (| X:, Yi) < A7V C,— B At |

Recalling the definitions of A;, B, and C; given in (1.82a, b and ¢), this
implies that the two phase posterior variance of p; is a function of
CS,,, CS;,,» Sy, .1 ¥ and Y.y, that is, once x; is observed, and y;
is as yet unobserved the posterior variance of g, is a random variable.
To find its future distribution, we need a closed form for the joint
distribution of the five quantities mentioned above, given p;, p;, and 3.
In principle, however,

(1.34) E;[Var (¢ [x:, y:)|x.]

can be found directly by integrating the product of the second phase
posterior variance and the joint future distribution of y, over the range
of y,, i.e. by evaluating

(1.35) |- oo\ Var Gulx., yop x)dy.

an N;-dimensional integral, where

@38)  wlelx)=| | | b o alwdpn, oo ol x)dpndodp

The difficulties involved here are many—for one, note that the N, are
as yet unknown—a trial set would have to be used, (1.36) and (1.35)
computed, and then, using these results, the corresponding value of

(1.37) iZ‘.: Er[Var (| x:, y.) | x:]

computed. A search procedure would then be instituted—another set of
N, would be closen appropriately (eg, a Gauss-Newton procedure could
be employed) and the set {N;} that minimizes (1.37) could be found by
an appropriate iterative procedure. But this is indeed combersome and
time consuming, and so in the next section we propose three alterna-
tive procedures which are of greater practical value in determining an
“optimal ” set of N;. The third of these procedures has been utilized
in Guttman and Palit [4].

2. Alternatives and approximations

The difficulties encountered in the evaluation of E [Var (u|x;, y:)|
x;] and hence in the evaluation of the future expectation of the two
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phase posterior variance of the population mean p, which is given by
H
(2.1) 2 mBEp[Var (u]x., yi) | %] ,

lead to the consideration of alternative and approximate procedures for
optimizing designs. Three alternative procedures are considered in this
section.

Two of these procedures consist of substituting estimates for the
p:, appearing in E.[Var (u|x., Y., p:)|X:, p;]- One of the estimators for
i, is called p;, and is of a familiar form (see for example Jenkins and
Watts [6], p. 180), viz.

Cs,,

= —2
S“it

(2.2) 2

where CS,, and S, are defined in (1.32). Another estimator for p,
which we shall discuss is the first phase posterior expectation for p,,
given x;, that is

(2.3) p.=E (o:|x.) .

The third procedure attempts to make use of more of the informa-
tion about p, which is contained in the sample x;. In this procedure,
the future expectation of the posterior variance of yp;, given (x;, y:, o),
that is the future expectation of
(2.4)  V(ulxi, yir p)= S_w [ —E (e %0, yoy 0P| %55 yis o)
is averaged over the posterior distribution of p, after the first phase,
i.e., over p(p;|x;). A similar process was used in Sections 3 and 4 of
Guttman and Palit [4].

Since this last alternative makes “greater use” of the sample in-
formation about p;, we might expect the results to be superior to the
first two procedures. An empirical investigation reveals that this is
generally the case. Before discussing the results of this investigation,
we present the computational algorithms associated with each of the
three procedures mentioned above. The restrictions regarding admis-

sible values for the N; which apply to (1.30), and discussed below (1.30),
continue to apply here.

2.1. The computational algorithms
(i) Substitution of p, for p,

The procedure in which p, is substituted for p, in (1.30) produces
the algorithm
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. [0—25%] e
(2.5) Ni(p)= . SETRN —-(n;—2),
where
(2.5a) wi =84z, p,)/(vi;—3)

and where S¥(z;, p;) is as defined in (1.29a).

We have found (2.5) by minimizing ‘_2 (#:Si(z,, p.))/(v—3) (v, — 1+ N,))
(see (1.29)-(1.29a)).
(ii) Substitution of p; for p,

The procedure in which E (p;|x;)=p; is substituted for p; produces
the algorithm

a [(j-_.z éa ci] ﬂ}iii~/:;7
(2'6) M(p£)= ¢ E n'i'ﬁix/—t—:i— —(ni—z)
with
(2.6a) w=SUz:, p.)/(vi—3) .

We have found (2.6) by minimizing fi (=S¥ z;, p.)/ (v —3)(vu— 1+ Ny))

(see (1.29)-(1.29a)). Hence for the above procedure, we need E (o;|x.).
The reader will recall that

T A |

@.7) Dlo:| x:) o { ?1; (zu—-Z,)z} T=pl

Since z,=%; ,.1—p%;, it is easily seen that
vy ! 2

(2.8) X (zu—7z)= Siu [Pi - (2 ai,c+1b¢c/Sa2cu>] + Saz:i 1 (= ai,t+lbit)2ls.3:i¢]
t=1 t=1 )

where

(2.82) @i o41= (L0, 001— i e41) b, = (2 — )

with Z; .1, %, Sim and S;LH as defined in (1.32). This mean that we

may rewrite (2.7) as

1

(0. — D)) ~0y—D2
(2.9) p(ptlx‘)ocl l_pi|—1{1+ Lz(pi Dt) } 1
v—2

where

(2.9a) D= E @400/ S, Li=(v,—2)(S2)/IS:, ,,,— S, D .

i, t+1
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Using (2.9) we have that

@10)  El-plx)=K| 1—Pf|{1+Li<Pf—D¢>*

} —cvu—n/zd
2 ’ 1-— 0 v —2

where £, is the union of the two regions (—o0,1—4;) and (1+4;, ).
The constant K, is the normalizing constant for (2.9) and is such that

~(v; =12
} dp; .

— 2
(2.11) i—lzgg |1_pi|-1{1 n Lif)pi ;li)
¢ i

Now we may write

K.K! —D.— WL,
m{P[tig(l D,—6,)v' L]

—-P [tig(]-_Dt‘{’ai)‘/fi]}

(2.12) E(1—plx)=

where K/ is such that

(2.12a) (K{)“:F( he ’1 ) /r( ”“;2 >ﬁ(‘a,——2) .

Hence, if 5, small, we may write

(2.13) E(l—pf)szf' 2Pt =vI;(1-D)]—1)
1
so that, for small §,,
(2.14) b=E(plx)=1-E2 2P 1tV 1-Dol-1)
(3

where P (t;<t,) is the cumulative distribution of the Student-t with
(v;;—2) degrees of freedom.
(iii) Integrating over the first phase posterior for p;

The third procedure is as follows. Acting as if we know the N,
we find the form of the posterior of p;, given x;, y; and p; as in (1.21).
We then find the variance of this posterior distribution of u;, as in
(1.23). Hence, we may find the posterior of p=3)my;, which is given
in (1.24). Note that this is a function of X=(x,, -, Xx), p=(o1,- "+, px)’
and the as yet unobserved Y=(y, -+, Yyus). We proceed to find the
future expectation of the posterior variance of g, and this result has
been given in (1.29)-(1.29a), and we repeat it here, that is, we have

miSH 2., 01)

(2.15) ExV (ulx g, o) 1% Pl=2 550 T TNy

Finally, instead of proceeding as in (i) and (ii), we minimize



456 IRWIN GUTTMAN AND CHARLES D. PALIT

@18 [ [ BV @iz 1% o006l )0
=3 it (z; Nx.)do.
A G B w1+ N) S Stz pIploi| %),

where Si(z;, p,-)=§ (2:—2:)'/(1—p,)* and p(p;|x;) is given in (2.7). Now
from (2.8) and (2.9a), it is easily seen that

2 — 1 2 Q2 Li(pi_Di)z}
(2.17) Sier p)= gy 155, DISE) i LoD

so that we may rewrite (2.16) as

51T mg

2.18 Nalenaliid): VR
( ) f?‘ (vu—1+N,))
where
K[S: .. —DiS:,)] do; Lpi—D,)*) ~cwy-or2
2.18a 2= i, t+1 it S {1_‘_ } .
( ) @ (v—3) 9, |1—p;f vy —2

Minimizing (2.18), subject to > ¢,N;=C'=(1—a)C, we find

Tfiqt’\/—c? —(n,—2) .

2.19 N;
( ) > MM/E

c—233c,
eEY

C;

3. A Monte Carlo study of the procedures

In this section, a Monte Carlo study is made to compare the pro-
cedures discussed in the previous sections. This study involves six
strata, and for each of the six strata, we generate a different sample
using a first order auto-regressive process with known parameters g,
0:» 0;, 1=1,---,6. The stratified sample so obtained is used as a first
phase sample in the allocation procedures of Section 2 to produce the
second phase allocations N(p), N(p), and N* of algorithms (2.5), (2.6)
and (2.19) respectively.

In addition, we use the sample with the algorithm in (1.30) to
compute the second phase allocations, given the true value of the p,,
that is, the value of the p, used to produce the first phase sample.
We call this allocation set N(p).

The cost of sampling within each stratum is taken as one unit and
the second phase budget is set at 600 units. For each set of 18 pop-
ulation parameters, (g, pi, 01, -, iy Pis Giy* * +, sy 05y 05), 14 first phase
samples of n,=m observations each are generated and used to produce
second phase allocations. In this study, we let m take the values 5(5)25.
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The results for n,=5 and 15 are displayed in Tables 3.1 and 3.2, re-
spectively. (The results for »,=10, 20 and 25 are given in Guttman
and Palit [5]: copies available on request.)

Now the reader will recall from (1.29), that the future expectation
of the posterior variance (given X and p) is

_< SNz, p)
3.1 E.[V X, Y, p, N)| X, p]= .
3.1) [Var (¢ o N)IX, p] E[Vlt+1\§—1][v“—3]

To help us evaluate the efficiency of an allocation method, we also
tabulate in Tables 3.1-8.2, the value of (3.1) when N of (3.1) is set
equal to each of the allocations N(p), N(p), N* and N(p). The vector
p is the vector used in generating the samples X. We also tabulate
in the tables the measure of efficiency for any allocation set, say N**,
given by

1 — E [Var(le, Y’ P N(p))IX’ P]
3.2 Effi f N¥x=_—"F .
©.2) cleney o E:[Var (4| X, Y, p, N*¥)| X, p]

The first six lines of each of the two tables show the parameters
used to generate the first phase samples. The second phase allocations
are shown in succeeding lines. The legends used for the parameters
in the first six lines are, respectively :

¢ is the cost of taking an observation in the stratum. (We take

this to be one always)

x is m, the proportion of the population in the ¢th stratum

Var is the variance of ¢; in (1.2)

U is the stratum mean g

o is the auto-regressive parameter p,, and

N is the first phase size n,.

The rest of the table is divided into 14 groups of four lines each.
Each of these groups contains the four allocation sets which are pro-
duced from the same first phase sample using the four allocation pro-
cedures previously discussed, the predicted variance for the allocation
as defined in (3.1) and the efficiency ratio defined in (3.2). The legends
used are as follows:

(i) The first line in every group is labelled NN. This line con-
tains the allocation set for the p, known procedure in (1.30), and its
predicted variance.

(ii) The second line of the group labelled ENN contains the allo-
cation set for the procedure in (2.6), in which p, is substituted for p;,
its associated predicted variance, and its efficiency.

(ili) The third line labelled CNN contains the procedure in (2.5),
where p, is substituted for p;.

(iv) The fourth line labelled ANN contains the equivalent results for
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Table 3.1 Summary of Monte Carlo results for n;=5
Budget=600 6 strata considered

Stratum No. 1) (2) 3) 4) (5) (6)
c 1.000 1.000 1.000 1.000 1.000 1.000
T 0.150 0.200 0.100 0.150 0.250 0.150
Var 1.000 2.000 4.000 16.000 25.000 36.000
U 5.000 6.000 7.000 8.000 9.000 10.000

P 0.000 0.100 —0.200 0.500 0.600 0.300
N 5 5 5 5 5 5
NN 27.923 27.544 19.068 96.843 369.551 59.072 0.04128 1.00000
ENN 37.899 13.566 20.580 66.471 438.050 23.433 0.04705 0.87748
CNN 44.260 13.418 22.308 78.025 418.535 23.453 0.04637 0.89019
ANN 57.230 52.200 57.927 94.775 262.138 75.731 0.04777 0.86416
NN 15.153 29.381 15.189 210.247 127.293 202.736 0.07591 1.00000
ENN 41.191 63.828 16.984 73.326 250.640 154.032 0.11938 0.63582
CNN 36.751 73.580 7.726 53.292 307.668 120.983 0.15436 0.49176
ANN 33.858 33.077 21.401 160.853 108.849 241.962 0.08029 0.94544
NN 2.100 28.567 18.967 58.329 362.922 129.116 0.09129 1.00000
ENN 1.922 74.287 69.267 25.299 292.506 136.719 0.10869 0.83989
CNN 0.000 79.568 78.516 21.033 294.011 126.873 0.11350 0.80429
ANN 1.723 59.959 40.272 41.294 275.757 180.995 0.10231 0.89228
NN 5.605 48.197 5.628 70.700 364.761 105.108 0.11506 1.00000
ENN 8.365 82.456  5.130 25.265 324.956 153.828 0.13506 0.85190
CNN 7.857 79.021 3.428 21.320 317.270 171.104 0.14208 0.80983
ANN 16.697 85.938 18.530 51.827 272.760 154.248 0.13042 0.88218
NN 14.523 32.956 22.994 180.676 175.648 173.203 0.07703 1.00000
ENN 12.239 29.807 24.319 51.103 401.996 80.535 0.14437 0.53353
CNN 9.445 25.227 19.376 39.419 442.855 63.678 0.17863 0.43120
ANN 32.172 61.252 59.035 138.549 103.111 205.881 0.09067 0.84949
NN 7.808 36.267 27.719 37.325 392.545 98.336 0.09209 1.00000
ENN 12.336 38.813 57.193 44.084 383.111 64.463 0.09718 0.94766
CNN 10.963 33.752 52.266 47.208 411.086 44.726 0.10323 0.89206
ANN 20.187 62.819 86.822 39.683 321.602 68.886 0.10459 0.88045
NN 13.461 44.075 20.695 235.001 177.062 109.706 0.05263 1.00000
ENN 16.758 67.532 41.301 159.344 198.685 116.380 0.05739 0.91707
CNN 14.683 65.027 38.306 153.004 217.244 111.737 0.05812 0.90548
ANN 26.572 78.002 54.161 185.876 120.128 135.260 0.05974 0.88104
NN 11.143 30.680 19.093 70.243 314.617 154.225 0.10547 1.00000
ENN 17.931 105.585 111.415 47.825 216.847 100.397 0.14127 0.74659
CNN 16.034 118.084 118.073 44.398 218.052 85.359 0.14903 0.70773
ANN 27.963 52.841 39.525 64.421 230.547 184.702 0.11630 0.90687
NN 4.725 55.543  9.802 56.736 368.040 105.153 0.06886 1.00000
ENN 10.102 118.282 49.577 107.578 98.493 215.968 0.16469 0.41811
CNN 3.015 116.891 55.401 121.580 75.343 227.769 0.20924 0.32909
ANN 4.864 132.466 33.656 70.012 170.426 188.576 0.10486 0.65666
NN 15.964 38.740 19.083 95.143 197.600 233.469 0.06142 1.00000
ENN 33.961 53.879 18.148 113.590 166.845 213.577 0.06372 0.96389
CNN 33.778 55.835 14.151 130.815 165.351 200.070 0.06502 0.94467
ANN 24.583 61.889 46.017 76.590 120.683 270.239 0.06965 0.88178
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Table 3.1 (Continued)

NN 5.249 18.603 17.335 145.275 326.240 87.298 0.15011 1.00000
ENN 5.697 50.969 51.436 78.329 197.813 215.756 0.21167 0.70915
CNN 3.396 53.315 49.908 68.302 188.891 236.187 0.22688 0.66162
ANN 9.341 42.544 58.977 113.710 238.663 136.765 0.17432 0.86108
NN 8.851 42.973 20.509 136.803 281.933 108.931 0.02893 1.00000
ENN 11.254 73.821 44.349 126.374 303.982 40.220 0.03532 0.81913
CNN 9.122 69.392 36.876 122.393 338.610 23.607 0.04302 0.67244
ANN 21.663 84.536 67.233 132.457 231.033 63.077 0.03363 0.86012
NN 10.770 21.831 15.035 143.078 310.306 98.979 0.05234 1.00000
ENN 23.111 44.733 25.357 97.378 239.630 169.791 0.06004 0.87166 .
CNN 22.326 44.102 21.925 92.048 240.477 179.122 0.06084 0.86025
ANN 27.193 41.596 42.798 122.682 221.373 144.358 0.05971 0.87653
NN 7.913 27.643 12.217 100.951 332.999 118.278 0.13858 1.00000
ENN 5.880 246.509 21.517 41.753 184.576 99.766 0.22717 0.61003
CNN 4.376 255.226 19.727 37.664 188.083 94.924 0.23247 0.59611
ANN 17.729 37.216 42.070 82.225 250.804 169.956 0.15492 0.89451
Table 3.2 Summary of Monte Carlo results for n;=15

Budget=600 6 strata considered
Stratum No. (¢))] 2) 3) (4) (5) (6)
c 1.000 1.000 1.000 1.000 1.000 1.000
T 0.150 0.200 0.100 0.150 0.250 0.150
Var 1.000 2.000 4.000 16.000 25.000 36.000
u 5.000 6.000 7.000 8.000 9.000 10.000
I 0.000 0.100 —0.200 0.500 0.600  0.300
n 15 15 15 15 15 15
NN 0.000 34.290 10.517 98.875 381.695 74.623 0.04323 1.00000
ENN 0.000 112.460 13.437 145.017 260.343 68.742 0.05065 0.85343
CNN 3.161 100.076 20.167 131.562 259.902 85.133 0.04985 0.86718
ANN 14.038 62.887 42.252 97.096 279.401 104.326 0.04822 0.89646
NN 6.354 17.995 12.670 157.862 279.554 125.564 0.04640 1.00000
ENN 14.802 42.605 39.318 226.844 155.167 121.264 0.05592 0.82985
CNN 17.582 41.753 40.926 199.634 165.710 134.395 0.05397 0.85987
ANN 23.801 40.224 43.238 148.002 182.332 162.403 0.05262 0.88178
NN 0.000 20.601 2.846 196.490 252.211 127.851 0.06409 1.00000
ENN 0.000 8.789 4.592 282.488 208.525 95.606 0.06879 0.93172
CNN 3.723 15.251 8.244 252.335 199.141 121.306 0.06676 0.96011
ANN 12.496 40.169 21.821 179.572 179.855 166.087 0.06973 0.91920
NN 4.498 25.312 3.236 111.895 319.481 135.578 0.07146 1.00000
ENN 7.402 72.745 34.495 52.842 373.215 59.301 0.09129 0.78279
CNN 11.901 68.394 31.967 66.997 337.723 83.018 0.08182 0.87339
ANN 22.276 58.885 24.176 94.363 255.618 144.683 0.07726 0.92496
NN 10.708 18.025 0.000 81.058 384.651 105.558 0.05683 1.00000
ENN 5.360 8.377 0.000 40.414 512.552 33.297 0.07191 0.79020
CNN 11.434 15.231 0.000 49.180 469.450 54.706 0.06265 0.90708
ANN 33.470 41.828 20.302 77.443 290.320 136.637 0.06251 0.90909
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NN 9.480 21.498  0.000 89.528 363.165 116.329 0.06090 1.00000
ENN 23.988 53.196  3.694 132.604 275.402 111.115 0.06636 0.91763
CNN 25.432 49.856  7.216 116.654 278.807 122.036 0.06553 0.92927
ANN 29.721 45.557 18.662 85.418 262.954 157.689 0.06772 0.89927
ENN 0.000 27.021 0.000 100.913 376.088 95.977 0.06174 0.97210
CNN 3.063 31.491 4.753 104.600 335.023 121.071 0.06064 0.98983
ANN 9.225 42.657 18.505 100.674 253.825 175.115 0.06542 0.91740
NN 1.800 21.839  4.441 65.602 393.529 112.699 0.07388 1.00000
ENN 3.163 14.959  0.000 37.136 437.072 107.669 0.07649 0.96596
CNN 6.798 22.485  4.633 42.734 398.293 125.057 0.07517 0.98293
ANN 15.664 46.204 25.700 59.058 297.165 156.209 0.08152 0.90636
NN 0.000 15.040  0.000 126.228 305.510 153.222 0.06408 1.00000
ENN 10.684  5.369 5.128 184.434 259.590 134.796 0.06762 0.94758
CNN 12.633 10.500  9.101 163.643 249.224 154.900 0.06690 0.95776
ANN 14.919 28.131 14.850 120.959 221.387 199.753 0.06971 0.91914
NN 0.000 21.720 1.841 119.989 320.330 136.121 0.08306 1.00000
ENN 0.000 0.000 0.000 184.412 242.110 173.478 0.09399 0.88376
CNN 1.683 7.150  3.353 158.705 253.898 175.211 0.08851 0.93849
ANN 10.754 35.584 20.572 111.374 236.426 185.289 0.09052 0.91763
NN 1.800 25.870  3.895 102.011 363.896 102.529 0.07975 1.00000
ENN 0.000 25.623  5.476 166.269 284.241 118.391 0.08524 0.93559
CNN 0.000 31.216 10.026 154.122 283.132 121.504 0.08487 0.93973
ANN 13.436  54.009 25.723 96.453 267.717 142.661 0.08832 0.90301
NN 3.056 23.106  4.159 146.042 311.340 112.296 0.05534 1.00000
ENN 11.393  49.441 8.029 221.507 228.633 80.996 0.06168 0.89720
CNN 12.912  49.858 12.459 199.514 227.654 97.604 0.06043 0.91579
ANN 17.588 48.188 26.220 138.865 223.683 145.456 0.06100 0.90722
NN 8.486 14.544  0.000 162.363 316.222 98.384 0.06305 1.00000
ENN 0.000 0.000 0.000 54.851 523.458 21.690 0.10412 0.60555
CNN 2.541 3.717  0.000 66.434 490.904 36.404 0.08754 0.72022
ANN 29.876 36.445 17.830 156.838 228.051 130.960 0.06959 0.90599
NN 2.146 21.090 0.000 76.054 366.259 134.450 0.09635 1.00000
ENN 0.000 15.599  7.070 64.553 431.297 81.481 0.10253 0.93974
CNN 4.626 22.687 11.516 73.529 381.121 106.521 0.09797 0.98344
ANN 15.060 42.375 22.731 71.701 292.180 155.953 0.10306 0.93485

the procedure in (2.19) in which the second phase posterior variance is

expected over p(p;|x;), i=1,---, 6.

4. Discussion

Inspection of Tables 3.1 and 3.2 will reveal that though the pro-
cedures ENN and CNN often produce results which have greater ef-
ficiency than ANN, the results of the procedure labelled ANN are more
consistent than the other two procedures. (This holds true for the other
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cases n,=10, 20 and 25, tabled in Guttman and Palit [5].) Figure 3.1
shows a plot of the efficiencies of the procedures ENN, CNN, and ANN
for five first phase sample sizes investigated, that is, the cases given
here (n,=5 and 15) and the other cases (n,=10, 20 and 25) given in
Guttman and Palit [5].

From Fig. 3.1, we observe that as a rule the distribution of the
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Fig. 3.1 Plot of the empirical distribution of efficiencies of the three allocation
procedures for p unknown and for first phase samples of 5, 10, 15, 20, and 25.
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efficiencies for the ANN procedure is not as spread out as the distri-
butions for the CNN and ENN procedures. In fact the distribution
for the ANN procedure when the first phase within stratum sample
sizes are n,=5, 1=1,..., 6, appears to be at least as tight as the dis-
tribution of efficiencies for the CNN or ENN procedures where the first
phase within stratum sample sizes are n,=25, 1=1,-..,6. It follows
then that even though the use of the ANN procedure may occasionally
lead to slightly lower efficiencies, its generally greater reliability makes
it the preferred procedure when p, are unknown.

We observe also that the efficiency of the ANN procedure is sur-
prisingly good, even for small first phase samples. For example the
smallest usuable first phase sample in each stratum, i.e., n,=5, i=1,
2,-+-,6 have efficiencies that tend to cluster between 859 and 912;.
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