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1. Introduction

Let X, X,,--- be independent and identically distributed (i.i.d.)
random vectors in the p-dimensional space Euclidean R? with the dis-
tribution P, indexed by a parameter vector #€ 8. Let the parameter
space @ be a subset of R*. Let f(x, ) be a Radon-Nikodym derivative
of P, with respect to a o-finite measure u:

f(x, 0)=dP,/dy .
Denote the likelihood ratio statistic by

(L.1) Zy=[1 {#(Xe 0+ J=) 1K 0]

for 6, and 6,+h/s/n €O, where 6, is the true parameter (which is any
one of @ but fixed). We shall regard h=Z.(h) as a random fields of
h, (6,+h/yn €6) and call it the likelihood ratio random fields. In this
paper we shall study asymptotic behaviors of the likelihood ratio sta-
tistic and its related statistics from the viewpoint of weak convergence
of the likelihood ratio random fields and its functionals.

In the case of one-dimensional parameter, LeCam [12] and Ibragi-
mov and Khas’minskii [7] successfully investigate those, but LeCam
remarks there “Some of the arguments about continuity of sample
paths do not directly extend to more than one dimension.” But those
studies in the multi-dimensional case seem to have more applications
than in the one-dimensional case as we shall see below.

Our aim of this paper is to prove the weak convergence of the
likelihood ratio random fields under usual assumptions which are sim-
ilar to those of Huber [6] and Inagaki [9] but different from those in
LeCam [12] and Ibragimov and Khas’minskii [7] in essential parts. In
Sections 4 and 5 we shall mention interesting applications with respect
to the AIC estimators (see Akaike [1]) and the C, statistic (see Mallows
[13]) which are reasonable decision rules to determine the number of
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unknown parameters (see Inagaki [10]).
The authors of this paper discuss the case of Markov observations
in another paper [11].

2. Assumptions and several lemmas

In this section we shall state three groups of assumptions, Assump-
tions A, B, C and give several lemmas. Assumptions A are primitive,
B are local at the true parameter 6,, and C are global with respect to
6. Suppose that the true parameter, 6,, is an inner point of 6 and
fixed. Let |-| be the maximum norm, i.e. for “ ¢ R', 6| (the ab-
solute value of ), and for =%, -, 6*)7, |0|=max {|6*],---, |6*]|}.

ASSUMPTIONS A.

(A1) The parameter space 6 is a subset of R*.
(A2) For each 6¢€6, P, has a derivative, f(z, )=dP,/dy, which is con-
tinuous with respect to # €6, for a.s. [p]x.

(A3) 1If 6,#6,, P,+P,: Slf(x, 0,)— f(x, 6:)|dp(2)>0.
There is a neighborhood of 6,,

(2.1) U=U,(8)=1{0: |0—6i|=d)} , (say),

satisfying the following. |

ASSUMPTIONS B.

(Bl1) For any 6 €U, f(x,6) has a common support; and for a.s. [y]z,
log f(x, 6) is continuously differentiable on 8¢ U;:

@2 2w, 0=-2-10g f@, 0= (25 50) log f@, 0)

(B2) For each 6 ¢U,, 5(x,d) is B*-measurable, where B? is the family
of Borel measurable sets in ER?.

Put
2.3) A(0)=E,x(x, 6) ,
and
@4 W@, 0, d)= sup_|7(z, ) —1(z, 0)|

(B3) For all 6 €U, A(0) exists.
(B4) For all #€U,, the variance-covariance matrix I'(8)=E,{n(X, 6)-
7(X, 6)7} (say), exists and is continuous at 4,. I'(6,) is positive definite.
(B5) () is differentiable at 6,:
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@5 e)=2x0)=(20) @), i, =1, k.

and

(2.6) —AB)=TI"(6) .

(B6) There are positive numbers b, and b, such that

@1 E,u(X,0,d)<b-d  for |0—0,|+d=d,, d>0,

and

(2.8) E,u(X, 6,dy'<b,-d  for |0—0,|+d=<d,, d>0.
Let |

(2.9) 8(6y, 0:)=16,—0:/(L+|6,—6[)

and (6, 6) be a metric space satisfying the following.

AssumpTIiONS C.

(C1) (8, 6) is the Bahadur compactification of 6, (see Bahadur [3], p. 21),
that is:

(i) 6 is compact. |
(ii) 6c6 and 6 is everywhere dense in 6.
dii) Put
g(z, 6, d)=sup {f(x, 6): €6, &8, 0)<d}
for 6 € 6 with &(6,, 8)<1,

9(z, 0., d)=sup {f(x, 8): 6 €6, 36, 6)>1—d}
for 6. € ©® with 6(6,, 6..)=1.

(2.10)

Then, for each 6 €6, there exists d;=d,(8)>0 such that for each d,
0<d<d,, g(z, 8, d) is B*-measurable, 0<g=<oo.

(iv) For each 6¢6, S g(z, 6, 0)dp(x) <1,

where

(2.11) 9(, 6, 0)=lim g(x, 6,d) .

(©2) | 1o(z,7, 0~ F(z, 00 |dp(z)>0, it 5+0,.
(C8) For every 6 €6, there exists d=d(6), 0<d<d,, such that

S log* {g(z, 8, d)/f (@, 8} f (=, B)dpu(z) < oo
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where log* is the positive part of the logarithm function.

(C4) For a given t,, 0<t,<oo, and any #¢ 6, there exists d=d({,, 9),
0<d=d,, such that

| 16, 3, d)1£(w, 00}, 80dp() <o .

(C5) For 6.,€6 with (4., 6,)=1, there exists a positive number a=
a(t,)>0 such that

Tm S {9(=, 0., d) /£ (@, O} (&, Bo)dp(m) < oo .

We shall mention several lemmas which are fundamental in this
paper.

LEMMA 2.1. Suppose Assumptions A and B hold. Let ¢>0 and h
be a vector in R* such that 6, and 6,+ch € U,. Then, it holds that

lim =5 § (@, O eb)— f(a, 0"} du@) =L b T @I .
PROOF. Assumption (B1) implies that
lim = L (F(=, Oytehy— f(z, 6r)7)
= {172 f(a, 00} [(2f (@, 001} = L 17 5t 802, 00"
Hence, by Fatows Lemma and Assumption (B4) we have that

lim = | (£, 80 eh)*— £z, 00/} dut)
2 lim 2 (7@, 00+ by £, 09 dia)
=3 | 9t 0010, 607h) £z, 9dp(z)

=1 prrn .

>

Since

f(x, 00+eh)1/2 f(a: 00)1/2 S h"r;(a:, 0.,+th)f(x, 0q+th)mdt ,
we have by Fubini’s Theorem that

S (@, o+ eh)— f (@, )"} dp(x)
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=S dy(x){—;— So T (%, By-+th) f (, 6o+ th)dt}?
gg dp(z) & S WP (s, Byt th)y(@, Go+th)7hF (%, Op-+ th)de
=2 S;dt-hTF(00+th)h :
Hence, from Assumption (B4) we have that
Tim L (@, 00+ b= fla, 00"V dp(@) S THTT O

Thus, the lemma is proved.

From this lemma we calculate the affinity (see Matusita [14]) of
f(x, 6) and f(x, 8,+¢h) for 6, and 6,+ch € U, :

2.12) S F(z, Oo+eh) 1 (, 0(.)1/%1,,(95)=1—%hfr(oo)h-52(1 +0(1))

as ¢e—0.

Further, this lemma implies that f(x, 6)" is differentiable in quad-
ratic mean at 6,. Therefore we have the following theorem due to
LeCam. (See LeCam [12], p. 810 for the proof.) For 6, and 6,+h/v/n
€ U,, consider the likelihood ratio random fields k= Z,(h),

Zm)= {f<X¢,00+ J’iﬁ)/f()g,ao)}, (recall (1.1)).
Let
@13)  L=log Z,0)=1 log f(X., - —r) [ F(Xe. 0

and P,, be the n-product measure of P,.

THEOREM 2.1 (LeCam). Under Assumptions A and B, it holds:

(i) For {h,} such that h,—h as n— oo, {Py .} and {Ps i/ z,a} are con-
tiguous.

(i) The random filds h=Z,(h) have finite dimensional distributions
which converge to that of h=Z(h),

(2.14) Z(h)=exp {hTF((io)‘/ze—%-hTI’(ﬁo)h}

where & 18 the k-dimensional standardized mormal random variable.

Remarks.
(a) From Assumption (B6), for |z—0|<d and [6—6,|+d=d,
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|A(z)—2(0) | = Epu(X, 0, d)<b,-d

(b) It follows from the differentiability in quadratic mean that (6,
=0, (see LeCam [12], p. 807).

(c) From Remark (b) and Assumptions (B4), (B5), it is easy to see
that there exist positive numbers b, and d >0 such that for |6—6,|<d

|2(6) | 2b0| 0—04] .

Assumptions A and B together with Remarks (a)-(c) are the same
as Assumptions (N1)-(N4) in Huber [6], pp. 226-227 and equivalent to
Assumptions in Inagaki [9], pp. 8-4. Thus, we have the following re-
sult which is the same as Lemma 3.2 in Inagaki [9], p. 7: for any M>0
and >0,

1 &2 h
(2.15) hm P,o{lﬁ}lsg 7-:? ()Q, 00+-ﬁ>

— = X, 00+ IO > ¢ =0

LEMMA 2.2. Under the same assumptions as in Theorem 2.1, it holds
that for any M>0 and >0,

L(h)——— E (X, 0o)+ h* I (6o

lim P%{IS}ID > e} 0.
hlsM

n—0

~/_
Proor. By Assumptions (B1) and (B2), we have that

L(h)——— Z‘. (X, 00)+ k™ I(Go)h

3
[ el (Xi,oo+ )= 50X, O+ ATT R

and therefore, that

lﬁ}g’{ Ln(h)—7= E (X, 0o)+ KT (G)h
1 n
§M'I§L1IJ£' Jn 2 7]()(‘» 0.+ 1/—>——477 E WX, 6)+T(G)h | .

Hence, (2.15) leads to this lemma.
Denote the Kulback-Leibler information by
(2.16) K(6, 0=~ log {£(z, 0)/(x, )} (z, 0)uta)

for 6, 6,¢ 6 and let
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2.17) K06, 09=—{ log {g(a, 0, 0)/f(z, 89} f @, Btz ,
for 6,€6 and 6 ¢86.

Remarks.

(d) From Assumption (A2) and the definition (2.11) of g(x, 8, 0), we
see that

g(x, 8, 0)=f(x, 6) , for 0€@.

Therefore, g(x, 8, 0) is an extension of f(x,d) on R?X6 to a funetion

on R*x6. Thus, K(9, 6,) on 6x0 is regarded as an extension of K(6, 6,)
on 6x6.
(e) From Assumptions (C1)-(iv) and (C2), it follows that

0<K(9, 0)<oo, for 6 (#6,)€6.

(f) From Assumption (C3) and the Lebesgue Convergence Theorem,
it follows that for 6 ¢ 6

tim { log lo(e, 0, D/f (&, 09} /(& O)du(w)=~K(@, 0)

and hence, from Remark (e), that for #¢ 6 there is d=d(6), 0<d<d,,
satisfying

(2.18) —co | log {g(a, 0, D)/f (=, 8} f (2, 0)dp(z)

<——;-IZ’(0, 6,)<0 .

The following lemma is due to Chernoff [5], p. 495.

LEMMA 2.3 (Chernoff). Suppose Yi,---,Y, are i.i.d. random vari-
ables such that

EY.<y
and
E e''fi< oo for some t;, 0<t;<oo.
Put
pe=min{e"Ee’i: 0=t} .
Then, it holds that 0<p<1 and
P{Yi+- - +Y,z2my} =p".
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3. Theorems

In this section we shall prove three theorems in the multi-dimen-
sional parameter case which correspond to those due to Ibragimov and
Khas’minskii in the one-dimensional parameter case. The following
lemma is the same as Lemma 2.6 in Ibragimov and Khas’minskii [7] ex-
cept for dimension of the parameter, and the proof runs in parallel.

LEMMA 3.1. Under Assumptions A and B, there exist positive num-
bers d, 0<d=d,, and ¢,>0 such that for all h, |h/y 7 |<d,

P’O {Zn(h)>e_cxlh|2} ée-cllhlﬂ .

LEMMA 3.2. Suppose the same assumptions as in Lemma 3.1.
Choose d and ¢,>0 such as in Lemma 3.1.

Then, there exists a positive number ¢,>0 such that for every posi-
tive integer 1, l+1< 4/ nd,

Py { sup Z(h)>e ") <cpfl2.

lgin|st+1
PRrROOF. For ¢, 0<e<1, chosen later, let.

D(jv"'vfk):{h:(h(l) co BT G SRY <G+ 1)d, i=1,- K},
J:=0, £1, £2,. -+, +([(+1)/el]+1), i=1,---, k.

Denote Di,...,,, which cover the set {h: I<|h|<I+1} by D,---, D,
and let k, be the center point of D,N {kh: I<|h|<I+1}. Then,

I+1 4\*
an  ssp(]n)fs(4),
(independent of l), IZ|h,|=1+1.
Further,
(3.2) Sup Zn(h)s sup ,[Zu(h,)-exp {supan(h) L(h,)[}]
(recalling (2.13)).

Now, it follows from Assumptions B and Remarks (a) and (b), that

(3.3)  sup|Ly(h)—Lu(k,)|

ssup [ | L)L ——h)7 s 31 0( X, a4 )|
+| - wﬁg{ (X“o.,+~,’” )X, )

n
é 7](Xi y 00)
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oonr et )|

v LI AR 7%)

-l o )|

8 e )t 2 |

‘/1% X, o.,)| (6l el 1)b -

Therefore, choosing ¢>0 such that (2¢+¢%)b,<c,/3, we have that

§el

+él

+ el

P, {sup | L(t)—Lu(h)| >~ ol

<P, |

7 & a7 )

~Ea{X ot 7 7)) >4

Tl (%0 00+

S

+P,|

+P, [ |

e X, 0| >-2L].
Hence, by Chebyshev’s inequality and Assumption (B6) we have that

64) Py, {sup | (b= L) | > o
=) b7 )]

l [ \?
bt (e ]+ e
(see Remark (b) of Inagaki [9], p. 4),
1 (18¢)° 2h2 72 2 72
g’l_z' 2 {5b2d+5 bld +bzd+b1d +k'Tz} ’

C

(recall [/ym <d).
Thus, we conclude from, (3.2)-(3.4) that for [, [4+1<+4/nd,

P, { sup Z,(h)>e ")

isirlsi+1
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<31 P, [Z,(h)- exp {59 | Lu(h)— Lu(h) [} >e~4%]

=3[P lsup 1L~ L) > Lo} + 2, (2R > ey
< ()% B (i y i b i)+ () oo
g%,

where ¢, is chosen independently of [. Thus the lemma is proved.

LEMMA 3.3. Suppose Assumptions A and C.
Then, for any d and M >0, there exist positive numbers c; a/nd Ty
>0 such that for all n=n, and h, d<|h/yn | M,

P,, {sup Z,(h)>e "} e~ .
ig|h|
ProOF. Let
6,={0€6; d<|0—6,|<M}

and 6, be the Bahadur compactification of 6,. It follows from (2.18)
of Remark (f) that for 6 € 8, there is d(6)>0 satisfying

(3.5) E, log {g(X., 6, d(6))|F(X,, )} < —-;-fc(e, 6)<0 .

Therefore, by Lemma 2.3 together with Assumption (C4) and (3.5), we
have that

(36) P, [Slog lo(X,, 5, dONS(X., 0) 2~ K0, 0)-m|Spl0r
where 0<p(6)<1.

Note 0=6,+h/vn with d<|h/v 7 |EM and yrd=ISVn M.
According to the compactness of 6,, there are finite numbers of

points 6,,---, 8, such that élc,g Usop(6,). Put
(8.7 K-. mm K@.,6), K>0
and

(3'8) o= Ina'x p(oa) ’ O<P<1 .

Choose ¢;>0 so small as



WEAK CONVERGENCE OF LIKELIHOOD RATIO RANDOM FIELDS 401

1

(3.9) csM2<?I_( and M’ -——% logp .

Then, since c¢*!<e;M*-n<K-n/2, and

sup  Z,(h)= Sup TT {9(X:, 0., d(6.))/f(X:, 6)}

|nl2l,hed,

it follows from (3.6)-(8.9) that
P, { sup Zﬂ(h)>e‘°3‘2}

|hlzlh
<3 ’, |10 (9(X., 6., dOIF(X., 00) 2 5 Kon]
=m-p"<exp (—n(—log p)+log m)
2 el 1 100
§exp<—csM,,+logm fn( 210gp>>

<exp (—cil?), for n>logm/<—%logp> .

Thus, the proof of this lemma is completed.

LEMMA 3.4. Suppose the same assumptions as in Lemma 3.3.
Then, for any N >0 there exist positive numbers M and m,>(0 such
that for any n=m, and |=My/n

1 1
P, {sup Z,(0)> 5| <5
PROOF. Recall:

(b, O)=10—0,|/(1+[0—60]) ,  ((2.9)),
and
8(6,, 0)=1 .
Since

g(m, 0«»’ d)=Sup {f(wa 0); 5(00’ 0)>1_d}
=sup {f(x, 6); |6—06,|>(1—d)/d}

=sup {f(x, 0); I0—0o|;%}
we have that

(3.10) sup ZMW=]T {o( X, 0., L) (X, 00)] -

It follows from Assumption (C5) that there are positive numbers ¢, and
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M >0 satisfying: for I, |l/y/n |>M,
™M t
(3.11) g {g(x, b, ‘/T“) /f(w. 00)} f(, 6)dp(x)
(L) sl <
By Chebyshev’s inequality and (3.10)-(3.11), we have that
312) P, {"s.up Z.(h) >llN}

=k [f1{o (Xwo ) >4

<w[§ {o(s, 02, L) [ £, 00} " P, %)dp(x)]"
o (T ’
Since
l(t,+1)N< ﬁ/lﬁ c4>
_ < ‘/7 c4>m—“l+lm-n“1“’”’z-cS‘l“)”

€, \ N . .
S( 4 ) DN/, (DN

there exists a large integer =, (which is independent of l) such that
for all n=n,

(3.13) l“ﬁ“”(@c‘)"a .

Hence, (8.12) and (3.13) complete the proof of this lemma.

It is easy to show that Lemmas 3.2, 8.8 and 3.4 lead to the following
theorem which corresponds to Theorem 2.3 of Ibragimov and Khas’-
minskii [7], p. 456.

THEOREM 38.1. Under Assumptions A, B and C, for any N>0
there exist positive numbers n, and ¢, (which depend only on N) such that
for dll n=n,

(3.14) P,o{ sup Z(h)> zN} <&, I>1,

E—1 ?
ISIRISI+1 A

and
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1 Cy
(3.15) P, {5}1213[ Z,,(h)>—]‘2,7}g—l‘7 . M=1.
Define new random fields A2 Z,(h) as follows:

Zhy, i m% €6,

I {o(x o+—L0) [rx, o), it o= cB,

(3.16) Z,(h)={ = e
0, if 00+Te9 {a: (0, é):%} (say),
continuous , otherwise .

Noticing Remark (d) and the proofs of Lemmas 3.3 and 3.4, we have
the following theorem by Borel-Cantelli’s Lemma and (3.15).

THEOREM 3.2. Under the same assumptions as in Theorem 3.1, the
realizations of Z.(h) and of the limiting random field Z(h) belong to Cy(R*)
with probability one, where Cy(R¥) is a family of continuous functions on
R* such that lim f(h)=0.

|h]—>o

THEOREM 3.3. Under the same assumptions as in Theorems 3.1 and
3.2, it holds that for any ¢>0

lim im P, { sup |Z,,(hq)—Z,,(h2)]>e} =0.

d—0 n—oco

ProOF. Choose m, and ¢,>0 such as in Theorem 3.1, and M,>0
such that

1 and &

(3.17) S "

<e.
Then, we have from (3.15) and (3.17) that for |h,|=M,, i=1,2, and
n=n,

(3.18) P, { sup |Zy(h)—Zu(hs)|>e} <Py {SUp |Zi(h)|>e} < .
|2y —hgl <d iz M,

Now, let My>M, and |h|<M,;, t=1,2. Because e’—e”=Sze‘dt, it
v
follows from the relation: L.(h)=log Z,(h), that

(3.19)  sup N Zih)=Z, (ko) | < sUD Zy(h): SUD | Lo(hy)—Lu(he)]| -
|n)< M, |ny—hyl<d

1=

Further, noticing (3.1), we see that
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(3:20) sup Z,(v)sexp | sup L)~ 31 7(X,, 6)+-L BT 01|
Inl s, RIS, yn o 2
M| 330X, 00|+ 2 M
and that
(3.21) sup |Lg(hy)— Ly(hs)|
|hy—hy| <d
<2 sup |Ly(h)—— S1y(X,, 0+ hfr(a.,)h]
|l s M, vy

~/— 2 nWXi, 60)| +d My, .

Thus, it follows from (3.19)-(3.21) that for |h;|=M;, 1=1, 2,
Po{ sup |Zy(h)—Z.(hs)|>e}
|y —hy|<d

=P, { sup.
|hl= M,

Ln—1 ‘/_ 319X, 00+ - hfr(oo)h$>e}

+P, | 717 $19(X,, 00| > 4]
+P,[ sup | L) - S10(X, 0+ hTT 0|
hIsH, 1/

>l LA+ M)+ Lol exp |~ (st 24+ L) ||

Hence, it follows from Lemma 2.2 and Chebyshev’s inequality (see
Remark (b) of Inagaki [9], p. 4) that for any ¢>0 there exist n,, d,
and A>0 such that for n=n, and |k,|ZM,, i=1, 2,

(3.22) P, { sup |Z,(h)—Z(hs)|>¢} <e .
|hy—hyl <d
(3.18) and (3.22) conclude the proof of this theorem.

According to Theorem 3.2, we can consider that {Z,(h)} are bounded
and continuous functions on the compactification (R*, §) with probability
one. Further Z,(0)=1. Then, it follows from Theorem 5.6 of Straf

[16], p. 207 that the tightness of distributions of {h=Z,(h)}, is equiv-
alent to the assertions of Theorem 3.3. After all, Theorems 2.1, 3.2 and
3.3 lead to the following (see Billingsley [4], Prokhorov [15] and Straf
[16]), which corresponds to Theorem 2.5 of Ibragimov and Khas’minskii
[71, p. 460.

THEOREM 3.4. Under Assumptions A, B and C, the distributions
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in Cy(R*) of the random fields h=Z,h) converge to the distribution of
h=Z(h) as n—oco where Z(h) is given in (2.14). In particular, for
measurable functionals on C(R*), {¢,}, which continuously converge to ¢,

lim Py {¢(Z,) S} =Py {$(Z) <1} ,

for all x € R.

4. Applications

In this section we shall study some applications in multi-dimensional
parameter cases. 4.1 is an extension of what we discussed above to
the multi-dimensional case. Examples corresponding to those treated
by Ibragimov and Khas’'mingkii [7], [8] can similarly be dealt with,
though we shall not give them here.

4.1. The maximum likelihood estimator

Define the maximum likelihood estimator é,, as one of solutions of
the equation

(4.1) 94X, 6,(X))=sup {g.(X, 6): 0 €6}
where

4.2) 0.(X, 0)=T1 9(X., 6,0) .

For any vector y=(u",---, y®) € R¥, let

(4.3) 4,=11 [0, 4]

and define functionals on Cy(R*) by
$y()=sup {|z(h)|: hed)}
Y (z)=sup {|2(R)|: h ¢4}
for z € C((R*). Then, if and only if 7 (6,—6,) € 4,,
(2 2V Z,) -
Further, if and only if I'(6,)""*¢ € 4,,

(4.4)

¢(Z) 2 ¥(Z) .

Since ¢,—¥, is a continuous functional on Cy(R¥), we have by Theorem
3.4 that

(4.5) P, (V7 (6,—0,) € 4,}
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=P, {¢(Z.)-¥(Z,) =0}
—"Pa {¢V(Z)— w;l(z)go}
=P {F(ﬂo)"mf € Av}
= N0, I'"(8,)) (v)

as n—oo.

4.2. The likelithood ratio test whether or mot the true parameter vector
is subject to some linear restrictions

For a matrix A, (IXk), and a constant vector «, (IX1), we shall
consider the following linear restriction on the parameter:

(4.6) Ah=a,
that is, for ¢=6,+h/v 7,

(4.6") A0=Ab0,+alvn .
Let |
4.7 S.={(6,)"h: Ah;O}

and h, be a particular solution of the equation,

(4.8) Ah,=a .

Denote the I;rojection from R* to S, by P,:

(4.9) P,:R*—S, .

Consider a functional on C(R*),

(4.10) g()=sup {z(h): Ah=a}, ZeCy(R").

Then, by Theorem 3.4 we have that the log likelihood ratio test statis-
tic with a linear restriction Ah=a, 2log ¢(Z,), weakly converges to

(4.11) 2log ¢,(Z)=¢T&—sup {(E~ —1"'(00)‘/213)“"({ —F(oo)”zif) ; Aif:a}
=£Te— siup {(¢ —1:(00)” *h)T(e—I'(6,)"*h); Ah=0}
=§T6—¢T(I—-P,)¢

where

(4.12) E=¢—T (00" R, .

4.3. AIC statistic and C, statistic

Suppose that it is known, in advance, with respect to the true
parameter vector 6, that
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002(0(()1), Tty %r)’ ogr-}-l),. oty 03"))" (Say)
=(0gl>, .., g‘()r), 0‘()3“), cee, 0(03))1

where G,=(0, -, 85, 650, -+, 06)7 is a given and known interior
point in ® but » is unknown except for 1=<r<k. Without any loss of
generality we may assume that

000-:0:(0,' 0y O)T € 6.

For 9=(6,- -+, 67, 67>, .., §®)T, define
: k—r
(4.13) A=, -, 67,0,---,0)7.

Suppose that @ has the following property :

(4.14) H€B if 6e6.
Then the prior information becomes

k—t
(4'15) 00=t00=(0§1)i ctty 01()0’ 0’ ct O)T

where 60 and t, 1<t<k, is unknown. When (4.15) holds, we shall
call ¢ the “dimension of parameter 6,” and the values of &, --, 6,
the “value of 6,.” ‘

What matters now is how to simultaneously decide the dimension
of the true parameter 6, and estimate that value.

Akaike [1], [2] give a solution to this problem by using an extended
method of the maximum likelihood estimation. Let

k—r
érn=(ér(111), tty ér(;)’ 0’ 0y O)T (Say)
satisfy
(4.16) g.(X, 6,(X))=sup {g(X, ,0): ,0€6}.

Note that 4,, is the maximum likelihood estimator 6, in (4.1). Akaike’s
Information Criterion (A.I.C.) to estimate the dimension and value of
the true parameter 4, is given as follows:

(4.17) AIC,(r)=210g {g.(X, 6 X))/gu X, 6,.(X)} +2r—k .
Then, define the dimension of 6,, rf=r¥X), by
(4.18) AIC,(r¥)=min {AIC(r): r=1,---, k}

and estimate the value of 6, by 0,*::5,;:,,. We shall call (v}, 6F) the
“ AIC estimators” of the dimension and value of §,. Let
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(0 \
Y 0
0

A, = 1 , (kX k) matrix,

- k—r
0 \
1

\

(4.19)
S,={I'(6:)""h: Ah=0},
P,:R—S,, projection ,
¢ (z)=sup {z(h): A,-(+h/y7)=0}, 2z € Cy(R¥) .
Since
(4.20) AIC,(r)=2log ¢(Z,)—2log ¢ (Z,)+2r—F ,

we have, in the same way as in 4.2, that

(4.21) AIC(r)—2log ¢(Z)—2log ¢ (Z)+2r—k
=§"(I—-P,)¢+2r—k=C(r)  (say), for r=t,

where ¢t is the true dimension of #,. Noth that C(r) is the Mallows’
C, statistic (see Mallows [13]) which is defined in the normal linear re-
gression models. It is easy to see that, for r<t,

(4.22) —2log ¢,(Z,)—c0  with probability one,
and hence that
(4.23) AIC,(r)—> oo, with probability one.
This implies r*=t with probability one, as n—co and further
AIC(r¥)—min {C(r); r=t} =C(r*), (say) ,‘ in law,
(4.24) r¥—r¥, in probability ,
N (0F—0)—>T(6,)*P,.¢ , in law,

as n — oo,

5. Asymptotic optimality of AIC estimators in the Bayesian sense

One of the authors of this paper tries to formulate some problems
of statistical model fitting and then, proposes an error of model fitting
which is based on the Kulback-Leibler information (see Inagaki [10]).
That is, for the family of probability density functions (p.d.f.),
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(5.1) F={f(x,0): 66}

(which contains the true p.d.f. f(x, &)), let us consider k¥ families of
p.d.f.’s:

(5.2) F,={f(z, ,£): L6}, r=1,---,k.
(Assume in this section, too, that (4.14) holds.) If we want to match
some p.d.f. in &F, with a p.d.f. f(x, @), it is reasonable that we choose
f(x,, %) such that ,{(#) € ® and
5.9) | 1og {6, 0)1(a, LON) £, O)dut@)

=int | log {(=, 0)//(@, O}/ @, O)dut@)

Denote an estimator of the dimension of 4, by

(5.4) ta= e X)=31 I, (X)
where By,,- -, By, are separated from each other and I (x),---, I, (X)

are indicator functions of B,,:--, Bi., respectively, such that
Ly (x)+- +Ip, (x)=1.

Let T,=T,X) be an estimator of 4, such that

(5.5) Poyinrym iV (To—b—h/ym)<y}—>L(y), as n—ooo

where the convergence is uniform for |k|<+7d, with d;>0 chosen in
Lemma 5.5 below and L(y) is independent of k. Then, .(T;) is an
estimator of the value of 6,. Now, define the error of the estimators
(tas T) by

(5:8)  Rule Ti 0)=| £i(x O0dsn(0)] log {£(x, O, ,cok(O))
+ | og (¥, cxkONFT: b TL())

X ¥y o ONgn(p)|

where

Ma=pX o Xp, the n-product measure of g,
(5.7)

fn(X! 0)=JZT1f(xu0) ’ for X‘_—-(xly"'y xn)-

Consider the uniform distribution on {#; |6—6,|<d,} as a prior distri-
bution of 4. Then the Bayes risk is
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5.8) rien TY=QU2d) || Bules, Ts 0)d0

S{a/zrdookg < v, ZeBYER
X onlea(), TGOV, 8 X))

for 6=6,+h/vn, where p,(r,, T,) is the posterior risk:

x [1og (fulxs 0o+hlﬁ)/fn(x, o)}
—log {£u(%, . LB/ T)FAX, 60))
tn S 10g (@, ..CO+h[y )| F W, LT}

X £y, ,,,C(ﬂo+h/~/'i))d;z(y)]] .

We shall state several theorems in order to study the asymptotic
behavior of the posterior risk p,. See (1.1), (2.14) and (8.16) and recall

the definitions of Z,(h), Z,(h) and Z(k). Put
Y.(h)=(log Z,(k))Z(}) ,
(5.10) Y.(h)=(log Z,(h))Z.(h) ,
Y(h)=(log Z(h)Z(k) .
Since
(N log ¥ <11 for N’>N and all large [,
we have that

Py { _sup [Yu(h)|>1/"}

isihlsi+

<Po{ sup |log Z,(h)| Z,(k)>(N"log D1’}

Is|hls

=P, { sup Z(h)>1/l”}

lsirls

Thus we obtain the following from Theorem 3.1:

LEMMA 5.1. For any N >0 there exist positive mumbers n) and c|
(which depend only on N) such that for n=n)

(5.11) Pp{ _sup |V,(h)|>10}seiflt,  lzl

Isihls

and
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(5.12) Py, {sup |Y.(R)|>1 My <ci/M,  M=1.
hlz

LEMMA 5.2. The realizations of Y.(h) and of the limiting random
field Y(h) belong to Cy(R*) with probability one.

Further, from
re® —yel = Sz e'(t+1)dt,
v
it follows that for |h;|<M, =1, 2,
(6.13)  sup |Y,(h)—Y.(h)]
|hy—hql <d
= sup (l Yn(h) I +Zn(h))° sup IIOg Zn(hl)_log Zn(h2)| .
Inl<M |y —hql<d

Similarly to the proof of Theorem 3.3, we can prove the following
lemma:

LEMMA 5.8. For any ¢>0 _
lim im P, { sup | Y. (h)—Y.(h)|>e} =0 .
[y =hql <d .

d—0 n—oo

LEMMA 5.4. The distributions in C(R*) of the random fields h=Y,(h)
converge to the distribution of h2Y(k) as n—oo. In particular, for con-
tinuous functionals on Cy(R¥), {¢.}, which continuously converge to ¢,

lim P, (¢ 7) 9} =Py, (§(Y) <} .
THEOREM 5.1. Under Assumptions A, B and C,
(i) |, Zaydh— | Z(ih= (VTP 1)
in law as n— oo,

iy | Tan—|  vodh=ERpIT e Lere— L]

in law as n— oo, where & is the same one as in (2.14) and we define
0-log 0=0.

The proof of (i) will become self-evident ih the course of the fol-
lowing proof of (ii).

PROOF OF (ii). From the definitions of Z and Y ((2.14) and (5.10)),

(5.14) [, Y(dh—0  in probability, as M—co.
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Since

P, { 1T, > 1/MN-1}

S|M>
<3 P, ||
=M

<51 P, {lésup |1‘f,,(h)|>1/lN-'=+l} ., for M=2",

=M |RIST+1

| V.(h) | dh> 1/1N}

is|rlsi+1

it follows from Lemma 5.1 that there exist n; and ¢;>0 (which depend
only on N) such that for n=n} and M=>2*,

(5.15) P, {Smw |\ V,(h) | dh> 1/MN-1}

oo

=c; X 1/P=2c{/M—0 as M—oco.

l=

On the other hand, because of the continuity of functional

lA|

o=\ i, zecm),
it follows from Lemma 5.4 that
(5.16) S I_’,,(h)dh——»S Y()dh  in law as n—oo .
|hl=M lnlsM

(5.14), (5.15) and (5.16) complete the proof of this theorem.
The following is straightforward.

COROLLARY 5.1. Under the same assumptions as in Theorem 5.1,

(i) Z,(h)ydh— SR" Z(h)dh={(vV2x)¥[|T(6,) |2},

Slnlwwl
wm law as n— oo,

k

@) | GesZmZe)| | ZdrdnoLere-%,

Rl < 7
wn law as n— oo.

COROLLARY 5.2. Suppose the same assumptions as in Theorem 5.1.
If = (X)<t, then the posterior risk

pn(fn(X)’ Tn(X))“’" o , as n—oo
with the conditional probability ome conditioned by r,.(X)<t.

ProOOF. From (4.19) and (5.8) it is apparent that
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Pl Z) Z A X, LG+ IV )]FAX, 6,) -
As in (4.22), it follows that
(5'17) —IOg {fn(X! rC(00+h’/‘\/%))/fn(X9 00)} Z _lo.g Sbr(zn)_’ oo

with probability one if r<t. Therefore we have from Corollary 5.1 (i)
and (5.17) that

618) | (IR (X, kOt BTN, 00)]
X {Zn(h)/ qu—d Z,,(h)dh}dh-—»oo . as oo

with the conditional probability one conditioned by z,(X)<t. In (5.9)
we have

(5.19) n | log (£, .. LOAHRVENIF W, LTI
X (Y, ., 5(0+h]yW))d(y) 20 .

Corollary 5.1 (ii), (5.18) and (5.19) lead to the conclusion of this corol-
lary.

As
r(¢9¢.+h/«/'75)=00+.rhlx/%' , for rx=t,
we cah denote
(5.20) L@+h/yR)=0+.LR)[yn  for r=t

where

(5.21) S log {f(z, 6o+h/vR)[f(®, O+ LR)V P} (2, O+ h[/ 7 )d ()

= inf S log {f(@, B4R/ ) f(x, b0+ LIV T)}

6g+C/Jm€B

X f(x, O+h/vV0)dp(x) .

In order to study properties of ,{,(h) defined in (5.20), we need the
following condition :

(5.22) Assumptions A, B and C hold not only at 6, but
also uniformly for 6¢U,.

Let



414 NOBUO INAGAKI AND YOSIHIKO OGATA

I (00)1/2:(7’}/2(00)’ Tty T}‘/ﬂ(aﬂ)s T}'/:l(ao)! Tty T}clz(oo)) ’
k—r
A (00)1/2=(T}/2(00)’ ) T}‘/z(ao), 0,---, O) ’

V(I'(8,)"*) is the vector space generated with
vectors 71%(6y), - - -, 7Y%(6h) of ,I[(6:)"*,

P, : R*—>CY(,I'(6,)"*) , projection .

(5.24)

LEMMA 5.5. Under the condition (5.22), there exist positive numbers
d, and c5 such that for r=t and h with |h|S<ynd,

(5.24) [:Ca(R)—h|=cs|R] ,

and further for |h|=M

(5.25) La(h)—.L(h) ,  as m—oo,

where the convergence is uniform on |h|<M and L(k) satisfies
(5.26) I'(6,)'*.5(h)=P,I'(8,)"h .

PrOOF. Denote

2(0)=E,n(X, &) , A,(o'):-a% (@) .

Then
2(0)=0, (see Remark (b)).

It follows from the continuity of I'(f) and A,(¢') that for any ¢>0 there
exists a positive number d’ with d’<d/4 for d in Lemmas 3.1 and 3.2,
such that for [§—6,|<2d’ and |¢'—6|<2d’

(5.27) IT@O)—T6)|<e, | A0)+T0)|<c.

According to the compactness of 6\ {#': |¢#'—6|<2d'} and a similar re-
lation to (2.18), we have that there exist a finite number of points 4,

v, 0, €ON\[{0': |0'—0]|<2d’} such that
PR ]0’—0|<2d’}c!l§1{0’: |6'—8,|]<d'}
and
— oo log o(z, 0., )/ 7 (=, 0)} £z, M) < ~ L (0., 6)<0

for |0—6,]<2d’. Thus, for |0—6,|<2d’
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inf S log {#(z, )/ (z, &)} f (@, O)dyu(x)

|o’—6| 22d’

> max [ | log {o(a, 0., @)/ (&, 0)} /@, O)du@)|

8=1,e00,m

g% min  K(6,, 0)=%1’c(0) >0 (say).

8=1,+e,m

Since the continuity of K(6) follows from that of K(¢', ), there is a
positive number d,<2d’ such that

(5.28) inf int | log (£(z, 0)// (@ 0} f(z, 0)dla)

16—8g1<dy |6'—0|22d’

>1 inf K@)>k-nd,

T 2 16-gl<d,

where 7, is the smallest eigenvalue of Fisher’s information (2.6).
On the other hand, for |6—6,|<d,

(5:29) n | log (72, 0)If (@, 0+C1V I f @, O)dntz)

={ {vaer S: (@, 6-+uC]y/T)dul £, O)duta)

=vaer || —a6+ug)ymdn

=CT{S: du S —A,(o+vc/m)dv}c (noticing 4,(6)=0).
(5.27) and (5.29) implies that for [0—6,|<d, and |¢/v7 |<2d’
G300 |n{log (s 0)1f@ 0+t S O)inta)

—%cfr(oo)c <el7C .

It follows from (5.28) and (5.30) that for r=t¢, |h|Sv7nd,

_int (| log (£, b0+ b1V 1f (@, 0T/}

X f(z, 6+ k| W)dp(x) > nky.d,

%hfr(oo)th hh

>n S log {£(, 60+ h[y/T0) | F(, 6o+ hIVT)}
X £(#, 0o+ b/ T )dp(x) ,

and hence from these together with (5.20) and (5.21) that for r=t and
lhlé‘\/%—dl’

=
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(5.31) [,R)—h|<2¢ymd .
We have from (5.30) and (5.81) that for r=t and |h|<y7d,
(Eull) —R)"T(00) (Lulh)— ) — e Lulh) — R (Lo(R)—P)
<n | log {£(s, O+ IV T) 7@, B0t L))
X f (%, Og+h/vW)dp(x)
<n | log {£(@, 80/ 7)1 (@, b0 ]/ 7))

X f(x, O+h/yn)dp(z)
=(h—h)"T'(6)) (h—h)+e(;h—h)"(;h—h) ,

and therefore we obtain (5.24). (5.25) and (5.26) are the immediate
results of (5.24) and (5.30). The proof of this lemma is completed.

Let the Bayes estimators of the dimension and value of 6, be (¢,
T¥):

(5.32) o, T¥)=inf {p,(z,, T.): =, and T, are such as in
(5.4) and (5.5), respectively} .

The following theorem shows an asymptotic optimality of the AIC
estimators (¥, 67).

THEOREM 5.2. Under the condition (5.22), the AIC estimators (r¥,
%) are asymptotically equivalent to the Bayes estimators (c¥, T¥):

(5.33) ¥—r¥—0, vV (L(TF)—0%)—0
in probability. Further

(5.34) o, Tn*)—%AICn(r,t)—»o

in probability, where we define oo —oo=0.

PrOOF. Let r=t.

Consider (5.24) and taking ,(,(k) in place of h, in (3.3) of the
proof of Lemma 3.2, we can see the following: there is a positive con-
stant ¢; such that for |h|<+/md, and any large n
(5.35) Po{ sup |L.(h)—L(Suh)|zcd?} <eifl*,  1z1.

ls|h|si+1

From (5.35) we obtain a similar relation to (5.15), that for any large
n and M=2¢

(5.36) Py, {g | Lu(h) = L. W) | Z(h)dR > co/ MY

M<n)< yEd)
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[vmd;]
< 3P| L) LL )| Z0dh > ]
=2 IS|R|Si+1
< 3UP,{ _sup |- L(L0)(zek)
=M IZ|h[Sl+1
+[~/72tdl] P%{ sup Z,,(h)>1/lN_k+s}
=M IZ|r|sti41

gé{ ce/z2+é P<2ce+c)/M*—0, as M—oo.
Corollary 5.1 (i) and (5.36) imply

(5.87) S

L. (h) = Lo(;8a(R))

Z,,(h)/ Smw—d Z,,(h)dh}dh—»O ,
nd)y
in probability as M— o .

M<|R|< VTidy {

From (5.25) and (5.26) we have that, correspondingly to (5.16),

6.38) | AL—L(LO)Zmdh—|  (L#)—~ LR Z)dh
in law as n—oo .

Therefore from (5.36) and (5.37) together with the fact that

[, L= LK) Z)dh—0
in probability as M— oo,
it follows that for r>t

639 | [L0-LOENZG) | 20k

- [ 1w -z 2| | zman)an

=—;—{$T$—k—$TP,$+r} , in law as n—oo .

Now we choose small d; so that (5.30) holds for ,{ (k) with |h|Z
vrnd,. (If we take d,/2 in place of d’ in the proof of Lemma 5.5, this
is possible.) Then (5.5), (56.25), (5.26) and (5.30) imply

G40 | [[n{10gtr@ ot civmis@ o LTIV
lhl< v7dy

X £, 00t LV TN) |20 |

_S 1
Ial<ymd; 2

Z,,(h)dh]dh

i< y7d,

| (VT (T.= 00— R} "T(6)"P.I(0)'"

X (/T (Ta—60)—h} Zo(h) / S y Z,,(h)dh]dh

[h]| < V7l
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=0 1eee [ V02 1w, B 2NV 5w, 0 T
X £, Ot KWV |20 Zdn]an
— LU (L= TV @) "P.LO) (YR (L= T} 7]
-0, in probability ,
where

(5.41) ‘/W(T"_”"):Swml {hZ,.(h)/ S|n|<./m, Z,.(h)dh}dh . (say)

—>S {hZ(h)/ S Z(h)dh}dh:l’(ﬁo)“ﬂs ., for rxt
in probability. (5.89) and (5.40) lead to

(5.42) oa(7, T,,*)—-;— AIC,(r)—0, for r=t in probability .

For r<t, (4.22) and Corollary 5.2 lead to
(5.43) pulr, T,.*)—% AIC,(r)=co—oco ,  in probability .

These imply (5.34) and further
x—r¥—o0.
From (4.24) and (5.41) we have

VRGLUTX)—05)= (v n(Tx—0))— /1 (65 —6)
——’F (00)—1/2P r‘e—r (00)-1/2P r‘s
=0, in probability .

This completes the proof.
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