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Abstract

In this paper we consider analysis of several models, where the
structure of the covariance matrix is intermediate between that of
intra-class correlation form and completely arbitrary. The designs con-
sidered are incomplete blocks and split-plot. Some of these models arise
in studies of growth-curves, learning processes and other areas. Analy-
sis is generally in terms of likelihood ratio tests.

1. Introduction

Conventional analysis of randomised block design uses interaction
of treatments with blocks as error variance. This is based on the as-
sumption that every treatment comparison has the same error variance
(Scheffé [14]). When different treatment comparisons do not have the
same error variance, Scheffé [13] suggests estimation of variances and
covariances by a Wishart matrix and using a Hotelling’s T? statistic
for comparing treatment effects. Scheffé thus considered the case of
the covariance matrix being an unknown positive definite matrix.

In this paper we consider analysis of various models where the
structure for the covariance matrix is intermediate between that of
intra-class correlation form (i.e., one with equal variances and equal
covariances) and completely arbitrary. These relate to Weiner process,
Markoff process (and its generalisations) and others which arise naturally
in experiments having split-plot structures. Some of the above covari-
ance matrices have been found suitable in some practical problems, e.g.,
see (Guttman [10], Anderson [2], Morrison [11], Gabriel [7], Bhargava
[4]).

Tests of significance for the hypotheses concerning treatment effects
have been obtained using likelihood ratio methods.

Throughout this paper, we shall assume that the observations are
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normally distributed. We shall discuss the analyses of some incomplete
block designs and split-plot designs in the framework of mixed models.

2. Analysis of block designs

It is well known that the standard analysis of a block design re-
mains valid when all the observations have a common variance and the
covariance between a pair of observations within a block is the same
for all pairs, it being understood that observations in different blocks
are independent. In this section we shall consider the analysis for the
following structures of the covariance matrix.

(a) Weiner process
In each block, observations are taken at time points ¢, <t,<---<t,,
and the covariance matrix of these observations is

tl tl PR tl
2.1) S=g|t bl
' t oty - t;,

Let z,; denote the observation in the ¢th block at time t;, i=1, 2,
-ve,b; j=1,2,---,p. Let x;=(xy, -+, %) and p=(py, -+, g,)’. Under

the mixed model x,,---,x, is a random sample from Nj(g, ). Our

aim is to estimate p,’s and to examine hypotheses concerning them.
Let y;=u, Y, " *» Yip-1)’ Where y,;=z;;,—2;,. It is easy to see

that

(2.2) V(y¢)=az Diag (tz—tl, ts_tg, ey, tp—tp_l) o

It follows that y,;/(t;,;—t;)"* are all uncorrelated and have the same
variance. Standard least squares methods ean now be applied to esti-
mate the differences between p,’s and to examine hypothesis of no differ-
ences or of a linear trend (in time) or any other hypothesis of interest.

The above methods can be applied when the blocks are incomplete
in the sense that the set of time points in a block is a subset of the
set {t;, t;,---,t,} but the design is connected, i.e., all differences among
p;’s are estimable. Such an analysis might provide some guidance in
the choice of the appropriate design. Of course, for unconnected de-
signs also, an analysis along the same lines can be made to examine
hypotheses concerning estimable parametric functions.

(b) Non-stationary process with independent increments

Consider observations at time points ¢, <¢,<---<t, (in each block).
Suppose the dispersion matrix of these observations is
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6, 6, - 4,
2.3) s=|b0 G-l
6, 6,-- -6,
where 6,,---, 6, are unknown parameters subject to 0<8,<8,< - - - <0,.

Using the same notation and transformation as in (a), we get

2.4 V(y.)=Diag (6;— 6., - -, 0,—0,,) .

It is clear that g;,,—pg; is estimated by y.,:l/béyu (throughout
i=1
this paper - will indicate average over the suffix replaced) and that the
variance of y, is estimated by ﬁ (¥:;—y,)/b(b—1). This leads to a ‘¢’
i=1

test for testing for a specific value of y;,,—pg,.
To test py=---=p,, we note that the likelihood ratio test statistic is

-1 [ b
=T 2" where Z=% y—v.)[S o, -

Under the hypothesis Z,,---, Z,_, are independent and each is distributed
as a beta random variable with parameters (b—1)/2 and 1/2. The asymp-
totic distribution of —2log, 2 under the hypothesis can be obtained by
following the method of Box [8] which is given below. Let M, be the
observed value of —2log, 2. The significance probability is given by

@5)  P{—2log =M} =(1—t) P (2., 2pM} +t P {(X.s= oM}

+O0™),
where
p=1-3/2b,
and
2.6) t=C0=D (61— gb)/2} {(b—1)—pb—1} .

20"

Approximations of higher orders may be obtained by taking more terms
in the expansion (see Anderson [1]).

It would often be of interest to examine if #;’s are linear in time,
ie., gj—p;=alt,,,—t;) for some a. To compute the value of the likeli-
hood ratio test statistic, one computes

p—1

1T (%) vy 2
May=25——  where &’=3] (y;;—¥.;)}/b

1l 5}

Jj=1
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and &ﬁ»(a)=;(y,.,—-at,+l+at,)2/b for a given a. A=min A(a) is the value

of the likelihood ratio test statistic. —2log, 21 can be regarded as a X
variate with p—2 degrees of freedom when b is large.

Similar methods can be employed when the blocks are not complete
but each block contains observations for a contiguous set of time points
beginning with the first, i.e., in the case of a staircase design, Graybill

[91.

(¢) Markoff type dispersion matrix

We consider a situation where we have p treatments applied in
sequence. The covariance matrix will be said to be of the Markoff
type if the regression of the yield of the jth treatment (5>1) on the
yields of the preceding j—1 treatments involves only the yield of the
(7 —1)th treatment.

Let the experiment be performed in b blocks each with all the »
treatments. Observations in different blocks will be assumed to be
independent. Let x;, denote the yield of the jth treatment in the ¢th
block.

Let x;=(xy, -+, %) and Ex,=pg=(y, -, ;). The above descrip-
tion implies that

E (z,; |2, J=13°" "% xﬂ):#j'i' .(ij—)l(xij—l_ﬂj—l)
for j=1,2,---, p, it being understood that g*=0. Let
V(@ 1,000y ) =0%0 -

We shall now obtain the likelihood ratio test for the hypothesis
m=p="---=p,=p, say. Let L(2) and L(w) denote the likelihood func-
tion under the model and under the hypothesis. Then

b/2

max L(Q2)= e‘””2(2n)"°’2<]'[ 0,(¢)> )

where
b 2
. b [E (5 —2.;) (2, j—l_x-j—l):l
bdf&e):g (@ —2., ) —L=2—
B El (mij—l_a;-j—l)z
Also,

Lo)=@0) [ oko)  exp{—1 55 Cump BBy iV}

G'j(e)

Let f(r) denote maximum of L(w) for a fixed value of p. It is easy
to see that
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F(@)=(ne) ™ 1T G} ",
where
[? (@ —p) @y — I
Zi (@i1—p)

boie(pr) = Ei] (@ —p)'—

max L(w) which is maximum of f(z) can be obtained by numerical
methods. This gives us

1= max L(2)
max L(w)

Under the hypothesis asymptotic distribution of —2log, 1 is ** with
(p—1) degrees of freedom.

It is clear that these methods can be applied when the blocks are
not complete but are monotonic in the sense that if a block does not
contain treatment j, it does not contain treatments j+1,---, p.

Similar methods can be developed when the regression of the yield
of the jth treatment depends upon the yields of previous treatments
j—1,---,7—s (j>s). For j<s, it depends on the yields of all the pre-
vious treatments*.

3. Treatments with a factorial structure

In this section we shall consider designs where the treatments are
combinations of levels of factor A, applied at m levels and factor B,
applied at s levels. We shall consider split-plot type situations where
levels of A are varied over main plots. Each main plot contains s sub-
plots to which the s levels of B are applied.

Let m;; denote the number of main plots in the ith block to which
jth level of A is applied. We shall assume 7,,=0 or 1. Let y,; de-
" note the observation in the ¢th block for the plot containing jth level
of A and kth level of B. We shall put

y¢j=(ym, Yijer®* " ym)’ .

Let V (y,;)=C; when n,,=1 and cov (y,;, y/;)=D;;,, when n;;=mn,;,=1.
We shall assume that the observations from different blocks are
independent.

Case I- Cj=C, .Djjsz
Let syij.=§ Yijx

* Such a model has been termed sth ante-dependence by Gabriel [7]. Gabriel [7] and
Bhargava [4] have given methods to examine the adequacy of such a model.
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V (syiy.)=a, cov (8Y:5., 8Y:5.) =P J#J

where a is the sum of all elements in C and B is the sum of all ele-
ments in D.

It is clear that the main plot totals can be analysed as in any
incomplete block design to make inferences concerning main effects of
A. Hence, we shall only discuss the tests for the main effects of B
and for the interaction AB. In this section H, will denote the hypoth-
esis of zero main effects of factor B and H,, will denote the hypothesis
of no interaction between factors A and B.

I(a). C;,=C, D=E,, (E,, denotes an m Xn matrix with each element
unity).
Consider an (s—1)Xs matrix P such that

PP'=1,,, P'P=I,—(1/s)E,, .
Let u,;=Py,;. Further, let

E(u)=p;=u, ) ttjs1)
and
V (uu):zvo .

It is easy to check that cov (uy;, u,;)=0 When J#j'. Evidently, g, is
estimated by p,—E niu;/N; where N;= Z‘. Nij.

Hypothesis H; is equivalent to ,2 #;=0.
=1

V(B35

It is clear that S=§ ém,(uu—ﬁ,)(ui,— £;) is a Wishart matrix
with parameters (s—1, Z'o) and with Z(N, 1)=N—m d.f. where N=
2 N;.

It follows that (3 ,&,)’S"(; ﬁ,)(N—m)/g 1/N; follows Hotelling’s

T*s—1) distribution vs;ith N—m d.f. when Hj is true.

In the special case, C=yI,+dE,,, 3, reduces to oiI,_, where oi=y.
Here, one uses the F statistic to test H,.

To obtain this F' statistic we note that for each [, (zj} U, ,,)’/(Xj} 1/N;)a?
follows x* distribution with one d.f. if H, is true. It follows that the
sum of squares due to Hj is 21‘, {(; u.ﬂ)"/g 1/N;}. Expressed in terms

of original observations this reduces to
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1
N,

Error sum of squares can be verified to be the sum of the so-called
“interaction (between blocks and levels of B) sum of squares” computed
for different levels of A. This will carry (s—1) 5‘_, (N;—1)=(s—1)(N—m)

degrees of freedom.

Next, we consider test of H,; which is equivalent to g=--.-=p,.
In the general case when X, is arbitrary, this is equivalent to one-way
classification analysis of dispersion, (e.g., see Rao [12]).

When C=yI,+4E,, one can use the following F test. To obtain sum
of squares due to H,, we note that to test y,=py,="---=p,, appropriate
sum of squares is %‘. N,u?ﬂ—(; N;u.;;)’/N. Adding this over different

DACIINERISD PN

[ and expressing in terms of original observations we get > > Ny, —
i Tk

S1sNyt,. —(1/N) %‘, (%‘, Ny.x)+(s/N)(X Nyy.,.)t. Of course, the error

i J

sum of squares would remain the same as in the test of H,.

I(b).

tl t;' tl
C=¢t|& bt p—yE,
t oty -t

t,<t,<---<t, are known, ¢ and y are unknown. Let

Viji=Yisi+1—Yiji» =1,2,...,5—-1,
Uiy =ij0,0 % Vigst)
A (U“)=0'2 Diag (tz—tu ct ts—t:—l) .

v;;’s are all uncorrelated. Let

E (vi))=5; -

To examine the main effects of B we test the hypothesis
2 ﬂ,=0
Jj=1

N,
Let N,v,ﬂ=izj:'vm, j=1,---,m, l=1,---,s—1. Then the s.s. due to
=1

main effects of B is
(B fen—t)

(Ew)

P
|

~
[

SSB=
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H,; is equivalent to

ﬂlzﬂzzu-:ﬂm .
Then the interaction s.s. reduces to
m 2
s-1 1 m ( 2 Nﬂ’-ﬂ)
SSAB_Z ZNJ’U?,;— j—m
=1\ {—t | it ENJ

$8.=31 5 3} s =t —t)
I(e).
Bt -t
c=|t Bt po,o
t ty - t,

We shall assume here that every block contains each treatment.
Let v;;, and v;; be as defined in I(b). It is easy to see that

V (vu)=02 Diag (tz—tl, ey, t,""tl_l) y

Cov (vi.f’ vii’)=m2 Diag (t2_t17 MR} ts_ts—l) ’ J¢jl ’

COV (vij, U,»,-:)=0 y i¢i, y

E (v)=8; -
Let

X, =(Zu, "+, xﬂ_o':; Uij .

Then, V (x)=md*(14+m—1p) Diag (t,—t,,- - -, t,—t,_;). ¢¥(1+m—1p) can be
looked upon as a single unknown parameter. To examine the main

effects of B, one tests E (x;)=0. s.s. due to the hypothesis turns out
to be

8—1 bx2
= ot

where bx.,=3x,. Error s.s. can be shown to be
13

8

L S (@a—ay
_— Xyu—%.,) .
1 (i —t) =t * '

1
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This will be based on (s—1)(b—1) d.f. and is independent of SSj.

Interaction AB may be examined by testing Bi=B=:--=8..

It is easy to verify that for fixed 7 and I, orthogonal comparisons
involving wv,;, are uncorrelated, each normalised comparison having var-
iance (t,,;,—t,)(1—p)s’. From this, one can show that

SSp=5—0 3 (v,—v.)

=1t —t, i=1

with (m—1)(s—1) d.f. where bv.,=31v,, and bmv., =3 > v;;,. Let
B L)

mv;.; =2 ;. Error s.s. to test interaction AB reduces to
i

8—1 1 _ _ .
Em;;(@’m Vi — V. 0.,)° .

This will be based on (s—1)(m—1)(b—1) d.f. and is independent of
SSAB'

Case 11. C;=a;I,+8,E,, and D,;,=p,,E.,

We shall analyse this case on by when the design in the levels of A
is a staircase design. Of course, this includes the complete design.

For the main-plot totals we have completely arbitrary covariance
matrix. Levels of A can be compared as in Bhargava [5].

For the sub-plot analysis we consider vector u;; defined as in I(a).
Clearly, V (u;;)=0%l,_, where ¢i=q,;.

COV (uu ) u,-:j,)=0 for jij’ .
Again g;=(1/N,) S u;;. Hj, is equivalent to ; #;=0. We note that
3
V(X £)=(3 (1/Nye)I,. To estimate 3 (1/N,)o> we construct w,=3"
- :

J
(1/¥Nuy,. Clearly, V(wy)=3](1/N,)s? and w; are all uncorrelated.

This implies that if @, denote means of w,, from the N, complete blocks,
$—-1 N,

lf‘_.:l g}: (w“—@"vl)’/(%‘, (1/N;)e3) is a ¥* with (s—1)(N,,—1) degrees of freedom
and is distributed independently of 4;. This gives us an F statistic
with (s—1) and (s—1)(N,—1) d.f. for test of H,.

H,; is equivalent to g,=p,=---=p,. We note that any particular
component of AB can be tested by a procedure exactly similar to the
one above.

The problem of testing the entire AB interaction involves compar-
ing mean vectors of m populations where within a population all the
(s—1) variables are independent and have the same variance. For any
fixed common mean vector g the maximum of the likelihood can be
easily obtained. For small values of s, maximum of this w.r.t. u can
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be obtained by numerical methods. This provides maximum of the
likelihood under H,,. Since the maximum of the likelihood under the
model can be obtained easily, likelihood ratio test statistic can be cal-
culated. .

When the main plot design is complete the following approach can
also be used.

Let Bi=Bu, "+ Bnd); 1=1,2,---,8—1 be independent contrasts
in gy, -+, pm such that the coefficients do not depend upon I. Clearly,
H,; is equivalent to 8,=8;=---=8,_,=0.

Let V(,éJ:Z‘. The data provides a Wishart matrix S with (b—1)
-(s—1) degrees of freedom such that E (S)=(—1)(s—1)%. Further, S

and §, are independently distributed. This leads to |S| /‘s+zz .60

as a test statistic for H,;. Under H,;, the distribution of this will
be that of the product of (m—1) independent Beta variables, the ith
Beta having parameters ((s—1)/2, (b—1)(s—1)—(¢—1))/2).

In this method we are estimating the covariance matrix of order
(m—1) ignoring the fact that all the elements of this matrix are linear
functions of m parameters. Anderson [2] and Bhargava [4] have adopt-
ed such methods in similar situations.
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