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1. Introduction and preliminary results

Many multivariate test statistics (such as the likelihood ratio test
statistic for MANOVA and the Bartlett modification of the likelihood
ratio test statistic for testing the equality of covariance matrices) have
null distributions whose hth moment M, is of the form

T\ [ rea+h+e)

L@/ T raa+h+y)

(1.1) Mh=K y h=0’ 17 2,"' ]

where K is a constant (such that M;=1), the 2’s and y’s are positive

i=1
from 0 to 1, so that the moments M,, £=0,1,2,..--, determine the
null distribution.

For any statistic W, 0<W<1, whose moments are of the form
(1.1), Box [4] has proposed an asymptotic expansion for the cumul-
ative distribution function (c.d.f.). This expansion provides an accurate
method for determining the critical constants defining rejection regions
for the multivariate tests mentioned above. One form in which this
expansion is often given (see Anderson [1], p. 207) is the following:

I J
numbers, and > z,=>)y,. Such statistics have a range of variation
j=1

(1.2)  P{-2log W=t}=(1—9) P {xj=pt} +¢ P {x},.=pt} + R() .

I J
Hel’e, 5=2 xi=2 yj ’
i=1 i=1

_ I —J _1 -
8 f=—2e—n-2U-J)],
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o is the solution of the equation

(L5) 30 Bi(1— o))~ 3 45 B (L= s +7)=0 ,

and R(d) is a remainder term. (Note: p is chosen so that Anderson’s
w, is 0.) Also B(u), By(u), and By(u) are the Bernoulli polynomials of
degree 1, 2, and 3 defined by:

(1.6) Bl(u)=u—%, Bg(u)=u2—u+%, Bs(u)=u’——2-u2+—;—u.

If lim 67", >0 and &im (1—p)x, exists, 1=1,2,---, I, and if lim 'y,

0—c0 d—r00

>0 and Eim (1—p)y, exists, j=1,2,---,J, then Anderson ([1], pp. 203-

207) sketches an argument which shows that the remainder term R(9)
in (1.2) is O(07%) as d—oo. In the case of the likelihood ratio test for
MANOVA, Anderson [1] gives examples showing the high accuracy
provided by the approximation (1.2).

From Anderson’s discussion (ibid.) and the statistical literature, it
might appear that to obtain the constants p and ¢, Equation (1.5) must
be solved ab imitio for p in each particular case. However, it can be
shown by use of (1.6) and algebraic manipulation that solution of (1.5)
yields '

1 17 - R Ap
1.7) p=1 7[12_1 z;'By(é:) ,El Y; Bz(’)j)] .
Substitution of (1.7) into (1.4) then gives us
(L8) b= ] 3 57 Bie) — 217 Biln) 5 (L= VS |
. 60t it ¢SS Yy 8\75 ) o .

In the important special case when the Ath moment of W has the
form (1.1) with I=J=L, and

(1.9) By=Ly=" -+ =T, =Y =Yp=+*=Y;=2,
&=a+bi, np=c+di, 1=1,.--, L,

then (1.3), (1.7), and (1.8), respectively, simplify to the following:

(1.10) f=—2L[(a—c)+%(b—d)(L+1)] ,

(1.11) p=1—£[(a2—c2)+(ab—cd)(L+1)
fz
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1 2_ 92 L
+20 d)(L+1)(2L+1)+2L],
1 [ 84 o 1. 8, o,
112) 4= W[A S—paf+1r+3a-orar],
where

A=(a3—c”)L+%(a2b—ch) (L)(L+1)
+—:12—(ab2—cdz)(L)(L+1)(2L+1)+—i—(b’—d3)(L2)(L+1)2 .

Examples of test statistics W whose moments (under their respective
null hypotheses) satisfy (1.1) with the restrictions (1.9) are the likeli-
hood ratio test statistics for MANOVA, and various special cases of
the likelihood ratio test statistics for independence of sets of variates.

Formulas for the constants f, p, and ¢ in the expansion (1.2) are
known for a great many statistics used in multivariate analysis. In
many cases a new multivariate test statistic W can be represented
distributionally as a function of independent statistics W, W,,---, W,
each of which has an expansion (1.2) for its c.d.f. for which the co-
efficients f,, p,, ¢, have known values (or for which these values can
be easily obtained), g=1,2,---,G. If W also has a c¢.d.f. which can be
expanded as in (1.2), the coefficients f, p, ¢ of this expansion can, of
course, be obtained by appropriate substitution in (1.3), (1.7), and (1.8).
However, since W is a function of W,,--., W;, one would expect that
f, p, and ¢ are functions of the known quantities f,, p,, and ¢,, g=
1,2,-.-, G, thus offering an alternative and often more convenient way
of obtaining the coefficients f, p, and ¢. Formulas for doing this are

G
given for the important case where W=T[ W,; two applications of the
g=1

results are provided.

2. Approximation for the distribution of the product of independent
statistics whose moments are of the form (1.1)

Let the independent random variables W,, 0<W,<1, be independ-
ent, with Ath moments of the form

T @oo \* 1T (o1 +R) 4,0
@)  E@W=K[Z

7 %
iU; (4e)70t ;D; I'(y,,(1 +h)+7701)
h=0,1,2,.--,

b
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where K, is a constant (such that E (W})=1), and Z} x,,,—Z Y5, for
g=1,---,G. Let W—TT W,. Note that since W;,-- WG are mdepend-
ent and 0<W, <1, g= 1 -, G, we have 0<W<1 and E(W*)= T[E(W"),
which is of the form (1.1) with I=L+---+1;, J=J,+-- ‘+'Jg,

L1i s Ii=17"'1I11
5?2,1-11 ’ i=I]+1y' %y I1+I2 s

: G-1
xG,i—:Z:lzIk’ z:ElIk+1,...’I,

and similar formulas relating ¢, to the ¢,’s, ¥, to the y,’s, and 7, to
the 7,’s.

Since the moments of W,,---, W,, and W are all of the form (1.1),
it follows from the results of Section 1 that the c.d.f.’s of these vari-
ables can be expanded in the form (1.2). By means of Equations (1.3),
(1.7), and (1.8), straightforward algebraic manipulation yields the fol-
lowing relationships between the coefficients f,, p,, ¢, of the expansions
of the c.d.f.’s of W,, g=1,2,-.., G, and the corresponding coefficients
f, p, ¢ in the expansion (1.2) of the c.d.f. of W.

THEOREM 1. Let the statistically independent variables W,, 0<W,
<1, haw moments of the form (2.1), g=1,2,---,G. Let f,, p,, ¢,, and

8 -2 m,i—z Y,; be the constants in the Box expansion (1.2) of the c.d.f.
of W,, g= 1 2,---,G. Finally, let W—TIW Then

(2.2) P{-2log W=t}=(1—9¢) P {xj=pt} +¢ P {1}, <pt} +R() ,

where 5=géag, f:'éfav P:%éfvpﬂ’ and
p=1 é Oidet o S fuilos—pa) -
= f

Note that if in the Box expansions for W,, W,,---, W,, each R,(d,)
is 0(s;°) as 6,— o, and if 4, 0,, -+, d; are all asymptotically of the
same order of magnitude (i.e., lim§,0;'>0 as §,, d,—oco for all g+#h),
then R(0) in (2.2) is O(6~°). In practical use of Theorem 1, the §,’s will
usually be asymptotically of the same order of magnitude. If the §,’s
are not asymptotically of the same order of magnitude, Equation (2.2) is
formally correct (when 4, f, p, and ¢ are defined as in Theorem 1), but
the order of magnitude of the remainder term R(5) in 6 must be sep-
arately investigated.
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3. Applications to multivariate hypothesis testing problems

Suppose we are interested in testing whether either the mean
vectors and/or covariance matrices of k multivariate normal populations
are identical. Suppose that an observation (p dimensional row vector)
z® from the 4th population has a p-variate normal distribution with
mean vector y and covariance matrix ¥?, 1=1,2,--.,k. Let z* be
partitioned as (z{, "), where x{ is 1xgq, and let

D=, 1) so_ (2 2P
© Hi7s p27) o yw)
21 22

be correspondingly partitioned, =1, 2,---, k. Suppose that we observe
N, observations from the ith population, :=1,2,.--, k.

We consider two tests of hypotheses. The first test compares the
null hypothesis

@ _

.M — 0 W YO, .. — W
H,.: pP=p coe=p® JP=3B=...=3®

against general alternatives. In the second test, we compare the null
hypothesis H,,. against the alternative:

. — D — — ,Ck — — —
Hyoe: pP=pP=---=pf?, IP=3P=...=3P.

k
Let z“=(z{”, 75”) be the sample mean vector, let N=>'N,, =
i=1
k
(z,, Ez):%r- 21 NP, 25°), V be the sample cross-product matrix from
i=

the ith population, ¢=1, 2,---, k, and A the cross-product matrix of the
means :

() (i) k o _
V“)=<V:<}> V:(:i)), A=<j: i:):{zﬂ N(EO—E) (&Y —7) .
3.1. Test of H,,., versus general alternatives

Anderson [1] suggests testing H,,. against general alternatives by
means of the test statistic

amyvers\ [ |amzvel |
B1) W=[Z—0 — - =W,W,,
wmzve|" I\ |am(gvera)

k
where n,=N,—1, ©=1,2,---,k, and n:tz‘, n;.
=1

As Anderson [1], shows, the statistics W, and W, are independ-
ent when H,, holds, the moments of W, under H,,. are of the form
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(1.1), and

_1, (1 _ 1)\ 2p°43p-—1
fimg e=Dp D), pi=l— (3
P+~ DB+ 3] (10— Un) | - 6k—1) 1 -]

b= 4801

(In comparing (3.2) with Anderson’s results it should be noted that his
q is our k.)

Anderson ([1], p. 207) gives the hAth moments of i1=(W,)*” under
H,... From his result,

ﬁ L((1/2n1+k)+1/2—(1/2)s)
E (W) =K,
TT (/2 n(1+h)+k/2— (1/2)t)

Thus, applying (1.11) through (1.13), with L=p, z=n/2, a=1/2, b—
—1/2, ¢=k/2, d=—1/2, we find that

o (le _1_Dp—k+2 _pk—1) [P+ (k—1)*-5]
Si=p(k—1), =1 o o= 1870y .

To obtain an asymptotic expansion for the c.d.f. of the test statis-
tic W under H,,., Anderson ([1], p. 255) goes back to the hth moments
of W and applies the Box expansion method ab initio.

Alternatively, using Theorem 1, we find that the constants f, p,
and ¢ in the Box expansion (1.2) of the c.d.f. of W are given by

(3.3) f=§(k—1)p(p+3) ,

| 1> 2p'+3p—1 _ p—k+2
=1-(3 ——= - ,
e <?‘:1 n, n)6(+3)(k—1) n(p+3)

__D Pl 17, B _ e
¢_288p2{6[¢2=1 () nz]@ 1)(p+2)—36(p+3)(k—1)(1—p)

— 1___2(’;2—1)(—2k2+7k+3pk—2p2—6p—4)} ~

3.2. Test of H,,. versus H,.,.

Gleser and Olkin [5] show that the likelihood ratio test statistic
for testing H,,. against the alternative H,.,., modified along the lines
suggested by Bartlett [2], is
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n/2

(T 1amoviar) | am (5 v+ )
o reeal

i=

n P —_ . . k
where Vii=Vi°— V> (Vi) "Vi, m=Ni—1, 1=1,2,- -+, k, and n=3}n,.

(There is more than one way to modify the likelihood ratio test statis-
tic along the lines suggested by Bartlett [2]. One way is given here;
another, and possibly preferable, way is considered in Gleser and Olkin
(5].)

To obtain the c.d.f. of U, let U, be a similar modification of the
likelihood ratio test statistic for testing hypothesis H,,,. against general
alternatives. Gleser and Olkin [5] have derived the likelihood ratio test
statistic. From their result, we find that

k
;l;[l [/ n)VEP [

(£ v+ )

1=

n/2 "

Comparing the statistic W defined in (38.1) with U,U,, and recalling that
|V | =V Vi3] for 1=1,2,.--, k, we see that W=U,U,.
Since under H,.. the statistics z?—z(V )V, (V) 'V, Vi1,

k
1=1,2,---,k, T, and (Z‘. VP4 Au> are complete and sufficient, and
t=1

since the distribution of U, is the same for all values of the parameters
pL, Yy, y®, IO IP L. I® obeying H,,., it follows from a theo-
rem of Basu [3] that U, and U, are statistically independent under H,.,..
(and thus under H,,.).

Note that U; has the same form as W, except that U, is a func-
tion only of «{*(j), j=1,2,---, N;; ©=1,2,---, k. That is, U, is a ¢-
dimensional version of W. It has already been noted that the moments
of W under H,,. are of the form (1.1). The moments of U, under H,,.
can be obtained from the formula for the moments of W by every-
where replacing p by q. Since U, and U, are independent under H,,,,
and since W=U,U,, the hth moment of U, under H,,. equals the hth
moment of W under H,,, divided by the Ath moment of U, under H,,..
It follows that the moments of U, under H,,. have the form (1.1).

From the preceding discussion and Theorem 1, it follows that the
c.d.f.’s of U, U,, and W all have asymptotic expansions of the form
(1.2). Let f, p, and ¢ be the coefficients in the expansion (1.2) for the
c.d.f. of W; these constants are given by (3.2). Let f*, p¥, and ¢F be
the coefficients in the expansion for the c.d.f. of U,, g=1,2. Since
U, is a g-dimensional version of W, the coefficients fi*, pf, and ¢F can
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be obtained by substituting ¢ for p in (3.3). Finally, from Theorem 1

we know that

(3.4) F=Ff*+f*, pzfl*p?‘:rcfz*p;" ,
b= (pi*)’¢f‘-l;(p;")2¢;" n fi‘?* (ot —p?) .

Solving for f.*, p¥, and ¢F in (3.4) yields

£ =%(k—1)(p—q>(p+q+3),

__1_}[2p2+2pq+2q2+3p+3q—1]_[p+q—k+z] ’

pé"=1—[2 6(p+q+3)(k—1) mp+q+3)

1
=i, n

R | LA | __}_ : 2 e .
" 288(o) {G[E ) nz][(p 1)(#*42p)—(¢"—1)(¢*+29)]

— [U2E=DC=9) [13(p+g)(k—2)— 200+ pa-+ )~ 24+ Tk —4]

—T2f (=01} -
We conclude that
P (—2log U<t} =(1—g) P (X3 S pit) +F P (XpuSpit) +0(n™Y) ,
where f*, pf, and ¢F are given above.
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