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Summary

The joint distribution of two weighted residuals for a normal theory
regression model is derived and some of its properties are studied. A
useful bound depending on the residual variances for the correlation
coefficient between any two residuals is obtained. An application of
this bound in the detection of a single outlier is also considered.

Some key words: Linear regression; Residuals; Correlations; Normal
distribution ; Outliers.

1. Introduction
Consider a normal theory linear regression model described by
y is distributed as N(X'B, ¢’I) ,

where y is an (nXx1) observation vector, X is a known (mXxn) matrix
of rank r (r<m<m), B is an (mx1l) parameter vector and I is the
identity matrix of order n. For this model, the residual vector, e, and
the residual sum of squares, S%, are given by

e=Ay and St=y' Ay

respectively, where 4=I—X'(XX')"X=((4;;)) is an idempotent matrix
of rank n—r. Here A~ denotes a generalized inverse of A satisfying
AA-A=A (Rao [7], p. 24).

Now e has a multivariate normal distribution with mean vector 0
and covariance matrix ¢’4. Further S*/¢*® has a X* distribution with
n—r degrees of freedom. Let s, be a root mean square estimator of

o based on v degrees of freedom and independent of y. For i=1,..., n,
let
( 1 ) 2i =ei/‘v lii and Wy =zi/Sp )

where S2=S*+us? is the pooled sum of squares based on p=n—r+v
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degrees of freedom. In this paper, the joint distribution of w; and w,
is derived and some of its properties are studied. These results are
also mentioned in Joshi [4].

2. Marginal and joint distribution of weighted residuals

Throughout this paper we will assume that |p,|<1 for all i#j,
where p;;=2,;/(A.4;,)"* is the correlation coefficient between the residuals
e; and e,. It will be shown in Section 4 that a sufficient condition for
its validity is that 2,+2,,>1 (¢+#7).

Without any loss of generality we take ¢=1 and consider the dis-
tribution of w'=(w,, w;,). Let py=p and P be the correlation matrix of
z'=(z,,2z;). By our assumption, P is positive definite and p is greater
than 1. For p=2, w'P'w=1, so that w' has a singular distribution.
We therefore assume that p=3.

Let @=S.—2z'P'2. Now using the independence of z,, (z.—pz)/
1—p)" and @ we see that the joint distribution of z and @ is

g(z, Q)=CQR» *2 exp {—1/2(Q+2 P~ '2)} ,
where C is a generic constant. Make a transformation
Q=Q, w,=2,/(Q+2P'2)"*, 1=1,2.

The jacobian of the transformation, after some simplifications, is Q/
(1—w'P'w)® and the joint distribution of w and Q is

9w, Q)=CR**(1—w' P 'w)* exp [-Q/{2(1—w'P 'w)}] .
Integrating out @ from 0 to o, we get
(2) gw)=CA—uw'P 'w)**"*,

where the region of positive density is the interior of the ellipse w'P~'w
=1, i.e.,

wi—2pww,+wi=1—p*
and the constant C is given by
C=(p—2)/2zv (1—p") .

Integrating out w, or w, we see that the marginal distribution of
w; is

1

T = g, 12 -1

A —wi)@—d2 —1zw;<1.

This is the same for all ¢ and can be derived by other methods
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also (Srikantan [8]) and is valid for p=2.

3. Related results

McFadden [5] has studied the bivariate distribution given at (2),

viz.,
_2 mz_z xy+y2 (p—-4/2
3 x, Y= D <1—— £ )
(3) 9(z, y) oV T—o) g
inside the ellipse
(4) ot —200y+y'=1—p".

He has derived a diagonal expansion for g(x,y) and has also obtained
the characteristic function of x and y. Here, we consider some addi-
tional results concerning this distribution.

A method for evaluating the bivariate probability Pr(x=h, y=k)
=L(h, k, p, p) for p=—1/(n—1) by fitting an increasing number of planes
to the density surface is given by Quesenberry and David [6]. We will
now describe an alternative method of finding L(k, k, p, p) by expressing
it as a single integral and then using numerical integration.

It is clear that we only need to consider the case when both A and
k are non-negative. Let 0 be the origin and A be the point (%, k) which

y

—

o

‘A=(h, k) B

Fig. 1 The region of integration: x=h, y=k and z?—2pzy+y?<1—p2.
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lies inside the ellipse (4) in the (x, y)-plane (Fig. 1). The region of
integration is the shaded area ABCA, where B=(pk+(1—p®)"¥(1—k%"?, k)
and C=(h, ph+(1—p*)"*(1—h*)"?).

Let D be the point of intersection of the extended line 0A and the
ellipse in the first quadrant and let M(h, k, p, p)=Pr ((x, y) € ABDA).
Then due to symmetry

(5) L(h, k, o, p)=M(h, k, p, p)+ Mk, I, p, D) .

To find an expression for M(h, k, p, p), we assume that k>0 and
make a transformation 7 cos 8=(x—py)/v(1—p’) and rsinf=y. Then

Ml ) arc tan (k V(= pB)/(h—pk)) 1 p—2 1 — 1292 pdg
s ’ ’ = _r ) ’r
P Smm(k/m) Skwse“ 2z 4 )

1 Sarc tan (k Y(1—p2)/(h—pk))

= (1—k* cosec? 9)*2dg .
T

arc tan (k/ V(1—%2))
On putting tan 6=Fk(1 —u?"*/(h—uk), this can be rewritten as

=1 k(le—uh) _ h2+k2—2uhk>‘1’-2>/2
Mk, k, p, 7) = | T (1- B4k |

where the range of integration is
(6) hk—(1—h)*1—k) 2 <u=<p .

Note that this holds for k=0 as well, because M(k, 0, p, p)=0. The
expression for M(k, k, p, p) is similar, with & and k interchanged. Sub-
stituting this in equation (5) we get

1 <1_h2+k2—2uhk>‘1"2’/2du ,

1

where the range of integration is given at (6). Putting u=cos w, we
finally have

arc cos (hk—(1—h2)1/2(1-k2)1/2)

1
h! k: ’ =
L(h, k, p, p)= o S

h 4+ k*—2hlk cos w\ @~/
(1= = d
sin? w

arc cos p

w .

This gives the desired expression for non-negative values of % and
k. For other values of h, k, the bivariate probabilities can be evaluated
by using the symmetry properties of g(zx, y).

Doornbos ([3], p. 21) has also considered this distribution in a dif-
ferent context. He has shown that Pr(x<h, y<k)<Pr(x=<h) Pr (y<k),
where h and k are of the same sign and p=—1/(n—1). Following an
identical approach, this can be extended for other values of p<0. An



SOME DISTRIBUTION THEORY RESULTS FOR A REGRESSION MODEL 313

application of this inequality for the detection of outliers is given in
Joshi [4]. It should be noted that this result is not true for p>0, since

Pr (=0, y§0)=%+2i- arcsinp .
T

4. Correlations between residuals

Clearly, the correlation matrix R=((p;;)) depends on the design
matrix X. Except in some cases, which in general occur in the analy-
sis of variance problems, it is difficult to write down the matrix R
theoretically. In some statistical problems it is necessary to compute R
and know about the magnitude of correlation coefficients; for example,
in the detection of outliers we want |p;;| to be less than 1 (Anscombe
[1], Joshi [4]). Here, we show that

( 7 ) P%/g(l_lii) (l—lij)l(ziizjj) .

PRrROOF. Since A=I—A4=((a;,)) is a covariance matrix, hence a},<
QiiQyj. But Q= 1 —l“ and ai/ = —lij . Consequently 22; é(l _‘2“) (1 ‘_211)
and the result follows.

Equation (7) shows that if A,+24,,>1, then |p;;|<1. Note that 4

is an idempotent matrix of rank n—r and therefore trace (4)=rank (4),

that is, Xn‘, Aax=n—r. Consequently if »n is large compared to r, then
k=1

the condition 2,,+21;,>1 is likely to hold.

For a particular regression model, some of the p;,’s could be close
to zero and then the universal bound given at (7) may not be sharp.
However, for moderate values of |p;;|, it is expected to be reasonably
good. This is illustrated in the following examples.

1. Regression on one vartable (m=1). For the simple case E(y,)=p8
(i=1,---,m), we have 2,=(n—1)/n (i=1,---,m) and 2,;=—1/n (T#J).
Consequently p,;=—1/(n—1) and equation (7) yields |p;;|<1/(n—1).
2. Simple linear regression (m=2). Let
[ 1 1..-1 ]
X=
Xy Ly - - X,
be a matrix of rank 2. Without any loss of generality we assume that
S1x,=0. Then

A=

_ 2
n—1 X3 @

I

=1’...’n)’
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= — l —_wixj ) ) y

== () ).

With the help of these values, the bound for [p,| can be compared
with the exact values. If z’s are equally spaced, then (n—4)/n<i,<
(n—1)/n (Anscombe [1]) and hence we must have |p;;|<4/(n—4) for all
1#3. Of course, for individual p,,’s the bound in (7) may be consider-
ably better than this crude bound. Thus, for example, for z,=i—
(n+1)/2 (¢=1,-.-, n), we have

2= (n—1)(n—2)
" n(n+1)

’

1= (n—2)(n*—2n+13) P —4(n—2)
# n(nt—1) ’ T Tan+1)

This gives p;,= —4/(n*—2n4-13)"* and the upper bound for |p;,| is given by

e {pﬁ + 12(n+1) fvz.

(n—1)(n—2)(n*—2n+13)
Even for n as small as 5, we have p,=—0.756 and U=0.802.

3. Quadratic regression (m=3). Let

1 1-.---1
X =] ¥ 2 R
xf x% e xz

be of rank 3. In an unpublished report, Chew [2] has considered this
example to show that the correlations can be large even for moderate
values of n. For n=21 and x,=¢—11 (¢=1,---, 21) his values for i,,
J and p, are 0.6437, 0.7596 and —0.4143 respectively. Equation (7)
now gives |p;;|=0.4186, which is quite close to the true value.

As an application of (7), we consider the problem of detection of
a single outlier in linear regression. Now a test statistic for an out-
lier in either direction is (Joshi [4])

B=max |w,|
i

where w; is given at (1). It is clear that B will have a maximum for
a single ¢, say 1=1,. A large value of B then indicates that y, is an
outlier. Let b, be the upper a% point of B and b* be an upper limit
for b, obtained by solving the first Bonferroni inequality

n Pr (|w | >b})=a,
that is,
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a

where

1
B(p, q)

It is known (Srikantan [8], Joshi [4]) that b} coincides with b, provided
that

L(p, 9)= Sx w1 —u)*'du .
0

1/2

br> {2+l Gd),

where p;;’s are as in Section 2. Srikantan [8] has used this result for
obtaining the true percentage points b2 of statistic B® for some special
regression models. Here, we consider the regression models for which
all the residuals have equal variance, viz. (n—7)/n. In this case

1/2
B=< n ) max |e| ,
n—r S,

so that the observation with the largest absolute residual is a possible
outlier. Further, equation (7) reduces to

(8) loy|=r/(n—7)

and hence b* coincides with b, provided that

9) NI
T 2m—r))

The 5 and 19, values of b* for v=0, r=1(1)4 and #<20 are tab-
ulated in Table 1. For r=1 and 2, b*® has been also tabulated by
Srikantan [8]. Wilks [9] has tabulated 1—b*% for »=1 in a slightly
different context. It is clear that equations (8) and (9) are useful only
for n>2r. The lower and upper values of n for which the inequality
at (9) holds are given in Table 2. Note that (9) does not hold for any
n in the case r=4 and a=0.05. For other cases, although (9) does not
hold for some small values of n, yet we feal that b*=b, for these
values also.
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Table 1 Approximate percentage points b* of statistic B obtained

. n—r—1 1 a
by solving Ix—b;';ﬂ<———2——, —2—> =
a=0.05 a=0.01
nlr
1 2 3 4 1 2 3 4

3 0.9997 1.0000

4 0.9875 0.9998 0.9975 1.0000

5 0.9587 0.9900 0.9999 0.9859 0.9980 1.0000

6 0.9245 0.9635 0.9917 0.9999  0.9665 0.9875 0.9983 1.0000

7 0.8907 0.9302 0.9671 0.9929  0.9433 0.9690 0.9888 0.9986

8 0.8593 0.8965 0.9347 0.9699 0.9190 0.9462 0.9710 0.9897

9 0.8306 0.8649 0.9014 0.9385 0.8951 0.9222 (0.9487 0.9727
10 0.8046 0.8359 0.8697 0.9056 0.8721 0.8983 0.9249 0.9509
11 0.7810 0.8095 0.8405 0.8740 0.8504 0.8752 0.9011 0.9273
12 0.7594 0.7855 0.8139 0.8446  0.8300 0.8534 0.8780 0.9036
13 0.7397 0.7636 0.7896 0.8178 0.8109 0.8329 0.8562 0.8806
14 0.7217 0.7436 0.7674 0.7933  0.7931 0.8137 0.8355 0.8586
15 0.7050 0.7252 0.7472 0.7709  0.7763 0.7956 0.8162 0.8379
16 0.6895 0.7083 0.7285 0.7504 0.7606 0.7787 0.7980 0.8185
17 0.6751 0.6926 0.7114 0.7316  0.7458 0.7628 0.7810 0.8002
18 0.6618 0.6780 0.6955 0.7142 0.7319 0.7479 0.7650 0.7831
19 0.6492 0.6644 0.6807 0.6982  0.7187 0.7339 0.7500 0.7670
20 0.6375 0.6517 0.6670 0.6832  0.7063 0.7207 0.7358 0.7519
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