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Abstract

For testing that several regression lines are concurrent, a class
of rank score tests is proposed. This class includes the usual Wilcoxon
and normal scores type of tests. The performance of the proposed
tests is shown to be the same as that of rank score tests in the ordi-
nary c-sample problem.

1. Introduction and summary

For the c-sample model Y;;=a;+2Z;; j=1,---,m;, i=1,---, ¢, where
Z;; are independent random variables, optimum rank score tests for
the hypothesis a;=a for all 7, have been given by Puri [7] and Kruskal
and Wallis [5] among others. In this paper, we consider the c-sample
problem in the regression model, and give rank score tests. The basic
model considered in this paper is used quite often in practice. One
may for example be interested in the effects (a;+pz,;) of ¢ treatments
on experimental animals, where z,, is the weight of the (i—j)th ani-
mal prior to the treatment, and the unknown factor B3, which is as-
sumed to be independent of the treatments is not of interest.

2. Assumptions and notations

Let Y;; (5=1,---,n;; i=1,---,¢) be a sequence of independent ran-
dom variables with continuous distribution functions F}, given by

2.1) P[Y,<yl=F,(y)=Fy—a;—Bxy;) i=1,---,c.

Here z,; are known “regression constants,” a,’s are the quantities of
interest while 3 is a nuisance parameter. Our problem is to test the
hypothesis :

2.2) a;=a (unknown) , for all 7,

against the set of alternatives that ay,---, a, are not all equal.
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Let us write
(2.3) =3 Z xi; 5 N=§‘. n;
(2.4) 2i=NiIN) 5  1u=(n/C) t=1,---,¢.

Observe that the quantities above depend on an integer m which is
assumed to tend to infinity. Furthermore each of C?, n; and N tends
to infinity with n in such a way that

Tni 715 0<rZy1, o r(l—10)<1
zni—')li; 0<10§211"'7 Zc(l'—lo)<1

2.5)
where 4, 7y<1/c. Furthermore, the regression constants are assumed

to satisfy the Noether condition,
(2.6) lim [rrgslx |25 1/C]=0,

and the boundedness condition

2.7 sup [N7'Ci]<oo .

To simplify the notation, we shall assume throughout this paper that

(2.8) ;xUZ‘O y 1:21,"',0.

Observe that assumption (2.8) imply that the group averages of z’s
are all equal (to zero).

Let ¢(u) (0<u<1) be a smooth non decreasing functlon with bound-
ed second derivative. Also let the scores generated by ¢ be defined by

(2.9) a.(p)=¢u(P)=¢(p/(N+1)) 1=p=N,

and let R;; be the ranks of Y;; in the combined ranking of all the N
observations. We shall need an estimate of g in (2.1), for that pur-
pose, let

(2.10) S(Y)= ;‘, %} 20 R;;)

and define as in [1], the estimate of 8 based on (2.10) as follows:

(2.11) B¥=sup{b: S(Y—bx)>0}; Bi*=inf {b: S,(Y—bx)<0}
2.12) B= 3 (BB |

where S, (Y—bx) is the statistics (2.10) when the observations Y;, are
replaced by (Y;,—bx,;).
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Now let

1 s=1, j=1,--+, m;
(2.13) d®=

0 s#1, j=1,---, m,
so that

d(i) N -1 2 2 d‘j —

For each i=1,..., ¢, write
(2.14) Tu=Tw(¥)=3 5 (@9 ~d)a,(R.)
(2.15) Ta=T,(Y")= Z‘. 2 (dY—d®)a(R)
(2.16) L, =3iny (T A= 2 W3

where fB,, and R}; are the ranks of K,=(Y,j—ﬁx,,) and Y., =(Y,;—Bs;)
respectively, and

2.17) A’=S P — (S gb(u)du>2 .

For suitably defined ¢, we propose L, given in (2.16) as the test sta-
tistics for the hypothesis (2.2). Observe that L, is easy to compute
since it is based essentially on the ranks R,, of the group residuals Yu
For example T,,= Z a,,(Ri,) 4. (constant), and if we choose the Wilcoxon

score, ¢(u)=1u, then

T,,F; {R,/(N+1)} —n,/2 .

3. Asymptotic distribution of I,

The following theorem gives the asymptotic distribution of the L.,
statistics under the hypothesis (2.2).

THEOREM 3.1. Consider model (2.1), and assume that ¢ has a bound-
ed second derivative, and that

3.1) sup G F(y)= sup d/dy(¢(F(y)))

18 also bounded. Then, under the assumptions of Section 2, the statistics

ﬁ,, given in (2.16) has asymptotically under the hypothesis a chi-square
distribution with (c—1) degrees of freedom.

ProOF. Follows as a special case of the proof of Theorem 3.2 below.
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In view of Theorem 3.1, an asymptotically level ¢ test rejects the

hypothesis (2.2), if L, is greater than the upper 100:% point of the chi-
square distribution with (¢—1) degrees of freedom. To study the asymp-
totic power of the proposed test, we shall consider in the next theorem,

the limiting distribution of L, under a sequence of alternatives given by,
(3.2) ai=a+0¢C;l ":=1, cee, C
where 6, t=1,---, ¢ are all real and finite.

THEOREM 3.2. Let ¢ satisfy the conditions in Theorem 3.1, then

under (2.5), (2.6), (2.7), (2.8) and (3.2), L, has asymptotically a mon-
central chi-square distribution with (¢c—1) degrees of freedom and mnon-
centrality parameter,

(3:3) 44(F, 9= 10~0Y(| $iF@)aF @) 4
where §=Xi_‘, 2.0;, while y, and 2, are as defined in (2.5).

The proof of this theorem rests on the following three lemmas.
LEMMA 3.1. Under the sequence of alternatives in (3.2)

(3.4) Cu(B.—B)

18 bounded in probability as mn— oo.

PrRoOF. Similar to the proof of Lemma 3.1 of [8] and is therefore
omitted.

LEMMA 3.2. Under the conditions of Theorem 3.2,
(3.5) (T— T2)/C1—0
wn P, probability, i=1,---,c.

PrOOF. Without loss of generality, we may for the proof of this
lemma, take a;=8=0, so that Y;,=Y,,. Now write

(3.6) Y =Y,;—(bx;;/C,) , |b|<k (a generic constant) .
We then have that under (3.2), Fi,(y)=F(y), and
Fi(y)=F(y—(bx:5/C.))

where F% is the distribution function of Y. Because of Lemma 3.1,
it is sufficient to show that

3.7 limE, [{T,(Y*)—T.(Y)}/C.J*=0
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uniformly in |b|<k; where E, denotes expectation under (3.2).
Observe that T, are linear rank statistics, and from Hajek’s work,
see Theorem 4.2 of [3], it follows that for each 1%

(3.8) lim [E (T — ttoi — Zi)} [7n(1 — 2,5)/C2]1 =0

where

(9 =33 @-09) | FMFQ) ., FO)=N"DSF,0)

(3.10) Zu(Y)=N"'% 23 3 (A0 —d)Bi(Y.)
with

(3.11) Bu(Y.)=g(Fo(V.1)) + Qo ¥,;)+const.
and

(3.12) |Quynw) | Sk max | ()~ Fuy)|

Now as in [2], we can write

(3.13) E(Tx -T2 <4 E(Tx—Z}—pX)+4 E(TY—Z5—1b.)
+2E(ZF—Z3)+2(pk—pn) .

Now since the expectation in (3.8) is taken under any alternative what-

soever, including the sequence in (3.2), and in view of (2.4) and (2.5)
it is enough to show that both

(8.14) E{(ZX-Z})/C,)?
and
(3.15) {(ek—8)/C.}? tend to zero.

On expanding and integrating by parts, and on making use of (3.10)
through (3.13), it readily follows as in Adichie [2] that both quantities
in (3.14) and (3.15) are bounded by

(3.16) K(1 =27 max (23,/C2) Eu [ F(Y )] -

By virture of (2.6) and (3.1) the assertions in (3.14) and (8.15) follow,
which due to (2.4), (2.5) and (8.13) imply (3.7). That completes the
proof of the lemma.

LeEmMMA 3.3. If W, is as defined in (2.16) then under the conditions
of Theorem 3.2, the random wvector (W,y,---, W,.) has a limiting normal
distribution with zero means and covariance matrix whose (i, s)th term is
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(8.17) 15— (AniAns )2
where b;, is the kronecker delta.

PrROOF. From Lemma 3.2, ’.f',.‘ and T ¢=1,.--, ¢, have the same
limiting distribution under the sequence of alternatives (3.2). Since
under (3.2) with =0 in (2.1),

max | F,,(y) ~ Ful) |<10,—0) | F@)/C,
and
max (1—2,)/{2(N—n,)} * < K|C,
it follows from the results of Hajek, (see Theorem 2.2 of [3]) that for

each 1=1,---,¢, and as n— oo, W, is asymptotically normally distri-
buted with zero mean and variance (1—2,). Furthermore the joint
asymptotic normality of the vector (W,,---, W,.) follows readily, for

example from Remark 2.4 of [3]. Also as in the proof of Theorem 2.2
of [3] Cov(T%,TY) can be replaced, by an asymptotically equivalent
expression given by Cov (V,;, V,,) where

(3.18) Vu=313 (AP —d)F(Y.y)) -

Routine computations give that Cov (V,, V,)=—{(nn,)/N}A:. The
asymptotic Cov (W, W,,) is therefore given by

(3.19) {(nn.)'*| N} = — (Anidne)

which, with the asymptotic var (1—24,;) of W,; gives the covariance ma-
trix (8.17). Observe that T i=1,---, ¢, are the same statistics whose
asymptotic normality has been considered by Puri [7] under Chernoff-
Savage type of assumptions. A detailed discussion of these assumptions
compared with Hajek’s assumptions used in this paper is given in [3].

PRrROOF OF THEOREM 3.2. The asymptotic covariance matrix (3.17)
of the vector (W,,---, W,.) is singular of rank (c—1). Using orthogo-
nal (analysis of variance) transformation it follows that under (3.2),
>3 W has asymptotically a noncentral chi-square distribution with (¢—1)

degrees of freedom and noncentrality parameter given by
(3.20) 4,(F, ¢)=§i} lim %7 { (@) — 2 (0)} 2/ A% .

Where p,(a,) and p,(0) are the values of the quantity in (3.9) computed
under (3.2) and (2.2) respectively.

On expanding and integrating by parts, it is easily seen that the
right-hand side of (3.20) is equal to (3.3) and the proof is complete.



NON-PARAMETRIC ¢-SAMPLE TESTS WITH REGRESSION 305

4. Asymptotic efficiency of L, test

The usual method of testing the hypothesis (2.2) is based on the
use of least squares estimates of the various parameters. The test
statistic is (see [6], p. 286)

4D Q=3 S (Yu—Y.)+Bw—)—ha,—s.)F/e—1)S:

where

K.Zn;l;Yuv K-’:N—IZZYH;

and the least squares estimators are
.é= 22 (Y =Yy, —2)/2 X (@ — )
=35 (Yy—Y.) (@, —2.)/3 33 (2~ ..}

and S? is the mean square due to error.
It is well known that for any F(y) for which az(F)=[S ydF(y)—

(S de(y)ﬂ<oo, (¢c—1)Q, under (2.2) has asymptotically a chi-square

distribution with (c—1) degrees of freedom, and under (3.2) has asymp-
totically a noncentral chi-square distribution with (¢c—1) degrees of free-
dom and noncentrality parameter,

(4.2) 4o(F)=lim ; Zj} [{(6:—8)/C.} — {g Zj} 0i(x;;—..)/C}
< (@ —x )N F) .
Under (2.8), this simplifies to
(4.3)  do(F)=lim 33 3 [(6.—0)/C,J/o*(F) =3 7.~ 6V}o*(F) -

By the conventional method of measuring asymptotic efficiency, the
efficiency of ﬁ,, test relative to the usual least squares test is therefore

(4.4) 2/d0=e(F, )=(I)|| ¢ F@)IF@W)] 4 .

Now (4.4) is the familiar efficiency of rank score tests relative to
the classical tests in the ordinary ¢ (=1) sample problem. This result
shows that even when the analysis of variance technique is compounded
with regression, a suitable rank score tests can still be constructed.

One attractive feature of this efficiency expression is that it is in-
dependent of x’s. As is apparent from (4.4), the efficiency expression
depends only on the parent distribution function F' of the observations,
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and on the score function ¢.
The choice of ¢ would usually depend on F. If F and f=F", are
assumed known then the best choice of the score function is given by

(4.5) ‘ P(w)=—[f'(F~(w) [ f(F(u)] .
In this situation, an asymptotically locally optimum parametric test is
(4.6) Z,=—2log M, ,

where M, is the likelihood ratio criterion. It is well known that under
(8.2), Z, has asymptotically a chi-square distribution with (c—1) degrees
of freedom and noncentrality parameter

4:(F)=do{a(F)I(F)}

where the Fisher Information I(F') <=S f ’/f)2> is assumed to be finite.

It follows therefore that the efficiency of our L, test based on (4.5),
relative to Z, is

eu.o(F)= (| $UF)IFW)) 1) 4°

which reduces to 1, for all F. In other words, if F is known, our
method yields an asymptotically optimum rank test of the hypothesis.

Quite often, however, the functional form of F is really not known.
In that case the commonest score functions used are ¢(u)=u the Wilcoxon,
and ¢(u)=0""(u), the normal scores. If the Wilcoxon is used, (i.e. if only
the ranks are considered), then the efficiency in (4.4) reduces to

4.7 e B)=12/(F){ | Fw} ;

an expression that has been studied fully by Lehmann. It is well
known that e,(F)=0.864 for all F. If ¢(u)=® '(u), the expression be-
comes

(4.8) ex.se.(F)=d'(F) S (@)@~ (F(y))}'dy -

This expression has been studied in detail by Chernoff and Savage who
found that ey (F)=1 for all F.

The table below gives the numerical values of e,(F) and eys. (F)
for the common distributions. A detailed study of the efficiencies of
Wilcoxon and normal scores criteria has been given by Hodges and
Lehmann in [4].
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Table I Numerical values of efficiency of Ly relative
to the least square test Qy,

F . . Double :
x Normal Logistic Uniform Exponential Exponential
3 w2
ew(F) ;:.955 T=1'097 1 1.5 3
enso(F) 1 %:1.047 o —3:1.273 ©
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