DECOMPOSITION OF INFINITELY DIVISIBLE CHARACTERISTIC FUNCTIONS
WITH ABSOLUTELY CONTINUOUS POISSON SPECTRAL MEASURE

SHIGERU MASE

(Received April 20, 1974; revised Jan. 22, 1975)

Abstract

We shall consider the problem of characterizing infinitely divisible
characteristic functions which have only infinitely divisible factors.
Infinitely divisible characteristic functions treated in this paper are
those which have absolutely continuous Poisson spectral measures and
have no Gaussian component in their Lévy canonical representations.
It will be shown that Ostrovskii’s sufficient condition is also necessary
in this case.

1. Introduction

Arithmetic of characteristic functions (abbrev. ch.f.’s) of probability
measures concerns possible decompositions f(t)=g(t)h(t) of a ch.f. f(f)
into the product of another ch.f.’s g(t) and h(t). g(t) and h(t) are called
factors of f(tf). Two extremal classes are important in this connection:

(a) The indecomposable ch.f.’s, i.e. those for which one of two
factors is always degenerated (i.e., of the form e*).

(b) The ch.f.’s without indecomposable factors, i.e. those which
have no indecomposable factor. This class is usually referred to as the
class I,.

It is well-known that the ch.f.’s of the class I, are necessarily in-
finitely divisible (see, Lukacs [4], Chapter 6). The characterization of
the class I, has been the central problem of the arithmetic of ch.f.’s.
In this paper we shall consider a necessary and sufficient condition for
the membership of the class I, for a certain class of infinitely divisible
ch.f.’s.

Consider the Lévy canonical representation of an infinitely divisi-
ble ch.f. f(tf) without Gaussian component;

(1) log f(t):iat+s " K(t, x)dM(z)+ gi‘” K(t, ©)dN() ,
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where the kernel function K(t, x)=e'*—1—itx/(1+x?). We shall be es-
pecially interested in those which have absolutely continuous Poisson
spectral measures dM(x) and dN(x);

(2) log f(t)=iat+| _ K(, e)ata)ia

where a is a real constant and the spectral density function a(x) is a
nonnegative function satisfying conditions

SH a(@)de<+oo  and SH Sa(w)ds < +oo .
rl=1 r|S1

Cramér [1] was the first who obtained a necessary condition that
f(t) of the form (2) belongs to the class I,. Shimizu [6] then extended
Cramér’s result. Especially he considered also a case in which spectral
measures are not absolutely continuous. Their results are further ex-
tended by Cuppens [2] to the following form:

THEOREM (Cuppens). Let a ch.f. f(t) of the form (2) belong to the
class I,. Suppose that a(x) is continuous a.e. on the real axis. Then
there 1s a positive comstant ¢ such that either o(x)=0 a.e. outside the
interval [c, 2¢] or a(x)=0 a.e. outside the imterval [—2c, —c].

On the other hand, Ostrovskii [5] proved the following sufficient
condition that a ch.f. f(t) of the form (1) belongs to the class I;:

THEOREM (Ostrovskii). Let a ch.f. f(t) be of the form (1). Suppose
that there is a positive constant ¢ such that either dN(x)=0 outside the
wnterval [c, 2¢] and dM(x)=0 or dM(x)=0 outside the interval [—2¢, —¢]
and dN(x)=0. Then f(t) belongs to the class I,.

The purpose of the present paper is that the Cuppens’ necessary
condition is valid without any restriction on the spectral density fune-
tion a(x). Our method will be a refinement of the one used by Cuppens
[2].

Therefore, taking note of Ostrovskii’s sufficient condition, we shall
solve completely the problem of characterizing the class I, for the class
of infinitely divisible ch.f.’s with absolutely continuous Poisson spectral
measures and without Gaussian component.

2. Preliminary lemmas

We define the n-fold vectorial sum (n)I of a set I recurrently by
(n+1)I=(n)I(+)I, where the symbol (+) means the vectorial summa-

tion. If the set I is of the form (a, b)U(c, d), then (n)I=an (ka+
k=0
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(m—Fk)c, kb+(n—k)d). This is easily seen by induction.
For an integrable function g(z)=g,(x), we define the iterated con-
volutions g,(x) of g,(x) with itself by the recurrence formula g.(x)=

SM Oui(@—Y)g(y)dy, n=2,3,---. We shall summarize some properties
of g.(x) in the next lemma. Proof is easy, so it will be omitted.

LEMMA 1. Suppose that g(x) is bounded (||g,||=B) and vanishes
outside an open set of finite length ¢. Then, for n=1,2,...,

(a) g.(x) is continuous (n=2),

(b) llg.llsc B,

(¢) g.x)=0 outside (n)l.
Further, if we assume that g,(x) is positive on I, we have

(d) gux)>0 on (n)L.

Remark. ||g|| means the maximal norm max |g(x)|.
—00<T< +o0

Next we shall consider the iterated convolutions of the spectral
density a(x). The next lemma is basic for the rest of the paper.

LEMMA 2. Let a(x)=ay(x) be a nonnegative bounded function vanish-
ing outside an interval (d, ¢) and a,(x) its iterated convolutions. Assume
that, for any positive number e, both the sets {x: c—e<x<c, a(x)>0}
and {x: d<x<d+e, a(x)>0} have positive Lebesgue measures. Then,
for any fixed positive number h, a,(x) is positive on the interval [nd+h,
ne—h] for all sufficiently large n.

PrROOF. Fix any h>0. Since ay(x) is continuous, there are four
numbers d,, d,, ¢, ¢; 2d<d,<d;<¢e;<e;<2¢, h>2¢—c;, h>d;—2d) such
that ay(x)>0 on the set (¢, ¢;)U(d;, d;). Therefore a,(x) is positive on
(2¢;, 2¢;). On the other hand, there is an increasing sequence {x,} tend-
ing to 2¢ such that 2c—=x,<c¢;—e¢; and ay(x,)>0, n=1,2,---. So () is

also positive on the set G (¢;+x,, c;+x,). Calculating distances between
n=1

adjoining two intervals in this set, we see that «,(x) is positive on (¢,+
Xy, 02+20).
Repeating the same reasoning, we can show generally that a,.(x)

is positive on the set kCJ (key+(n—k)x,, key+2(n—k)e). Again calculat-
=1

ing distances between adjoining two intervals in this set, we can con-
clude that, for all sufficiently large %, a:(x) is positive on the interval
(ney, ¢;+2(n—1)c). Hence, of course, a;,(x) is positive on (ne,, 2nc—h].
Similarly we can show that, for all sufficiently large m, a,.(x) is
positive on [2nd+h, nd,).
On the other hand, a,.(x) is positive on the set (¢, ¢;)U(d,, d;), so
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a(%) is positive on the set G (kd,+(n—k)ey, kdy+(n—k)c;). Again cal-
k=1

culating distances between adjoining two intervals in this set, we can
conclude that, for all sufficiently large n, a,,(2) is positive on (nd,, nc,).

Adding the preceding results, we have proved the assertion for
all sufficiently large even integers. Taking note of the condition about
a(x), we can immediately show that the assertion is true for all suf-
ficiently large n.

The last parts of proofs of Theorems 1 and 2 are the same. So
we shall summarize it in the next lemma.

LEMMA 8. Let f(t) be the infinitely divisible ch.f. defined by (2).
Suppose that there exists a bounded fumction B(x)=pB(x) with the pro-
perties ;

(a) PB(x) vanishes outside a compact set,

(b) B(x)<0 with positive Lebesgue measure,

(¢) a(x)—p(x)=0 everywhere,

(d) 5?_.‘1 BA(2)[n! =0 everywhere.
Then f(t) has an indecomposable factor.

PROOF. Note that the series in (d) is absolutely convergent by
Lemma 1.
Define the functions ¢(t) and ¢(t) by formulas log ¢(t)=1at+ SM K{(t, x)

+o0
‘[a(@)—p(x)ldz, log ¢(t)=g_w K(t, x)p(x)dz. Then f(t)=¢(t)¢(t) and ¢(t)
is obviously an infinitely divisible ch.f. We shall show that ¢(t) is also
a ch.f. If so, ¢(t) cannot be infinitely divisible (see, Linnik [3], Chap-
ter 6) and, by a theorem due to Khintchin (see, Lukacs [4], Chapter
6), ¢(t) has an indecomposable factor. Hence f(t) itself has an inde-
composable factor.

Set b= Sw Bx)dx and c¢= Sw 2(142")7'f(x)dx. Then

H(t)=exp {St K, x)p(x)dw}
= o {143 || evrpada ' [n)]
=e¢ e’ S: e“‘[de(w)+§ ﬂ,.(w)/n!dx] ,
where de(z) is the unit distribution at z=0. From (d), we see that

¢(t) is a Fourier transform of a positive measure. Noting ¢(0)=1, we
conclude that ¢(t) is a ch.f.
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3. The case when a both-sided Poisson spectrum exists

THEOREM 1. Let f(t) be the infinitely divisible ch.f. defined by (2).
Suppose that both the sets {x: x>0, a(x)>0} and {x: <0, a(x)>0} have
positive Lebesgue measures. Then f(t) has an indecomposable factor.

PrROOF. There are two numbers ¢, d (d<0<c) such that, for any
¢>0, both the sets {x: c—e<x<¢, a(x)>0} and {x: d<x<d+e¢, a(x)>0}
have positive Lebesgue measures. Fix a positive number i>(c—d)/2.
Define the function ay(x) by

1 if xe(d,d+h)U(c—h,c) and a(z)>1,
a(x)={ a(x) if xe(d,d+h)U(c—h,c) and a(x)<1,
0 otherwise,

and its iterated convolutions a,(x). Set the intervals I,=[nd+h, nc—*h],
n=1,2,--.. By Lemma 2, for sufficiently large %, say from m on-
wards, «,(x) is positive on I,. Note also that, since d<0, I,cI,,, for
all n.

For a given small number ¢>0, define the function B(x)=pg(x) by

ay(x) if xe(d,d+hlU[c—h,0),
Bx)y=1 —e¢ if xe(d+h,c—h),
0 otherwise ,

and its iterated convolutions g,(x). We shall show that g(x) satisfies
the assumptions of Lemma 3. Only (d) of Lemma 3 should be verified.
First we have, for n=1, 2,---,

(3) || () — Bal@) || S enfc—d)*~ .

This is easily seen by induction from the inequality
|aw@) =50 = | Bus@—9) B®) —s(w)ldy |
+| [, el —ar @)y
ée(c_d)n_l+(c—d)”au—l_.Bn—IH .
We have also, for n=1,2,.-.,
(4) a(x)=B.(x) outside I,.

This can be proved by induction. It is true for n=1. Suppose that
it is also true for 1,2,.---,n. Let x<(n+1)d+h. Then
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d+h [
b=\ Ba—vB@Ay+| pe—1pwNY -
In the first term of the right-hand side of this equality, x—y<nd-+h.
Hence, by induction hypothesis, a,(x—y)=8.(x—y) and a(y)=p5(). In
the second term, x—y<nd, so a,(x—y)=pB.(x—y)=0. Therefore B,.,(x)
=a,.(x). The case >(n+1)c—h can be treated similarly.
Set the constant {=min {a,(x): 2€I,, m=n<2m}. ¢ is positive.
For m=n<2m, we have

ﬁn(x)zan(x)—”an—'ﬁn”_z_é—”an_ﬁn” if :vEI,,.

Using (3), we can conclude that, for sufficiently small ¢>0, ,(x) is posi-
tive on I, for m=n<2m. Outside I,, by (4), B.(#)=a,(x)=0. There-
fore, if we choose ¢>0 sufficiently small, 8,(x)=0 everywhere for m<
n<2m. Furthermore B,(x)=0 everywhere for n=m. For example,

fun(@) = Bula— 1)UV Z0 -
Let « be a point of I,, then
3 B@mzS a@)in! =3 lla—flin!
z¢/m!—3 lla,—all/m! -

From (3), the right-hand side of this inequality can be made positive
if we choose ¢>0 sufficiently small. Since I,DI,, B.(x)=a,(x)=0 out-
side I, for n=1,2,---, m. Therefore,

(5) é Bu(2)[n! =0 everywhere.

From (5) and positivity of g,(x), n=m, we have, for sufficiently
small ¢>0,

i Ba(x)n! =0 everywhere .

This is just (d) of Lemma 3 and Theorem 1 has proved.

4. The case when a one-sided Poisson spectrum exists

THEOREM 2. Let f(t) be the infinitely divisible ch.f. defined by (2)
which 1s mot degemerated. Suppose that a(x)=0 a.e. for <0 and that
there is no positive number ¢ such that a(x)=0 a.e. outside [c, 2¢c]. Then
f(t) has an indecomposable factor.

If we suppose that a(x)=0 a.e. for x>0 and that there is no posi-
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tive number ¢ such that a(x)=0 a.e. outside [—2¢, —c], then the same
concluston holds.

We shall prove the first case only. The second can be proved
similarly. We need the next lemma.

LEMMA 4. Under the assumption of Theorem 2, there is a positive
number ¢ such that both the sets A(c)={x: 0<x<c, a(x)>0} and B(c)=
{x: 2c<x, a(x)>0} have positive Lebesgue measures.

PrROOF OF LEMMA 4. Assume the contrary. Then, for any posi-
tive ¢, either |A(c)|=0 or |B(c)|=0, where |E| means the Lebesgue
measure of a set E. For sufficiently large ¢>0, |A(c)|>0. Let ¢, be
the infimum of the values ¢ for which |A(c)|>0. Of course, ¢, is posi-
tive. For ¢>¢,, |A(c)|>0 and |B(c)|=0, and, for c¢<c,, |A(c)|=0 and
| B(c)|>0. Hence |A(c))|=|B(c,)|=0. This means that a(x)=0 a.e. out-
side [c,, 2¢;]. This contradicts the assumption.

ProOF OF THEOREM 2. From Lemma 4, there are three positive
numbers b, ¢, d (c<b<2¢<2b<d) such that, for every >0, both the
sets {x: c<ax<c+e, a(x)>0} and {x: d e<z<d, a(x)>0} have positive
Lebesgue measures.

Define the function a,(x) by

1 if x€(c, b)U(2b,d) and a(x)>1
a(x)=41 a(x) if xe(c,b)U(2b,d) and a(x)<1
0 otherwise ,

and its iterated convolutions a,(x).

Fix some positive number A <min (b—c, d—2b) and set the intervals
IL=[nc+h,nd—h], n=1,2,-.--. Then, by Lemma 2, for sufficiently
large n, say from m onwards, a,(x) is positive on I,. In the present
case I, is not contained in I,,,. Therefore we cannot use the argument
in the proof of Theorem 1 and must modify it more subtly as the
following.

For some given small number ¢>0, define the function p(x)=g(x) by

a(x) if x€(e,b)U[20,d)
Bx)={ —eay(x) if = € (2¢, 2b)
0 otherwise,

and its iterated convolutions g,(x). We shall show that p(x) satisfies
the assumption of Lemma 3. Again we must prove only (d) of Lemma 3.
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As (3) and (4) in the proof of Theorem 1, we can show that, for
n:l, 2, ceey .

(6) latn—Ba || Sen(d—c)"
(7 (%)= Bu(x) outside I, .

Set the constant ¢=min {a,(z): x€I,, m<n<2m}. According to
Lemma 2, £ is positive. For m<n<2m, we have

Bu(@)Z2an(®)—|lan—BallZ§ —llaa—Bull  if weL,.

Using (6), we can conclude that, for sufficiently small ¢>0, 8. (x) is
positive on I, for m<n<2m. Outside I,, by (7), 8.(*)=a,(x)=0. There-
fore, if we choose sufficiently small ¢>0, 8,(x)=0 everywhere for m<
n<2m. Moreover

(8) B.(x)=0 everywhere for n=m .
Next, define the functions p(z) and 7 (x) by

a(x) if ze(e,b)
o(x)= {

0 otherwise ,

ay(x) if x€[2b, d)
n(x)= {

otherwise ,

and their iterated convolutions p,(z), 7.(x). It is easily seen that py(x)
is the restriction of ay(x) to the interval (2c, 2b), so By(x)=p\(x)+7(x)—
ep(x). Making m-fold convolution, we get

Isn(x) =t+j‘-‘)::c=n Nn('i9 j’ k) ( - 1)kekpi+2k * 7/j(x)

i, 5,k20

= 3 N, 5, 2k)epirp * 7,(2)
t+j+2k=n
i,7,k20

— 3 N3, 5, 2+ 1)% 0, s * 75()

i+ j+2%k+1=n
i, 7,k20
=gi(x)—Ba(») ,
where the symbol * means the operation of convolution and the num-
bers N,(t, 7, k)=n!/(@!5'k!). Calculating further,
Brn(@)/2(n+1)— B (%)
g 2 ‘% n('i'+1’ jv 2k)52k.oi+4k+l * 7]1(17)

i-::—j+2k=n

=3 N G B D s 2 (@)
i, 5, k20
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S [-;-Nn(i+z, 4, 2k)—eNy(i, §, 2%+ 1)]pw+2 x7,() .

e
Therefore, if we choose sufficiently small ¢>0, we have, for 1<n<m,
Bi(@)/2(n+1)— B, (x)=0 everywhere .
For such ¢>0, if z¢I,,

3 Bu(@)/n!

28/ (ﬂ?)+:':§j: {27 (e + DB (@) — (n) 7' Bz (2)}

+27(m!)™'Bu(x) — 27 (m!) ™ Bu()
227H(m!) ™ [Bn(@) — Br(@)]
227(m!) () — || an— B || — 1| Bz 1]
227(m!) ¢l an—Bull =1 Bull] -

According to the definition of f.(x), it is easy to see that ||8;]| can be
made arbitrarily small with ¢ and that g,(x)=0 outside I,. Hence, for
sufficiently small ¢>0,
é}lﬁ,,(x)/n!gO for vxel,.

On the other hand, if x¢ I,, then

3 @)in! 227 (m!) [Ba()— Bia()] =2 H(ml) “an(@) 20
Consequently
(9) ?7;‘1 Ba(x)[n! =0 everywhere .
Finally, adding (8) and (9), we have

20_2‘ B(x)n! =0 everywhere .

This completes the proof of Theorem 2.

5. Main theorems

Combining Theorem 1 and Theorem 2, we immediately get the fol-
lowing main theorems.

THEOREM 3. Let f(t) be the infinitely divisible ch.f. defined by (2).
A mecessary and sufficient condition that f(t) has no indecomposable factor
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18 that there is a positive constant ¢ such that either a(x) vanishes a.e.
outside the interval [c, 2¢] or a(x) vanishes a.e. outside the interval [—2c,
—c].

THEOREM 4. Let f(t) be the infinitely divisible ch.f. defined by (1)
and a(x) be the density function of the absolutely continuous part of spec-
tral measures dM(x) and dN(x). Suppose that there is mo positive con-
stant ¢ such that either a(x)=0 a.e. outside [c, 2¢] or a(x)=0 outside
[—2c¢, —c]. Then f(t) has an indecomposable factor.

Remark. The problem of characterizing the class I, has not been
solved completely at present. If an infinitely divisible ch.f. has no
Gaussian component, Theorem 4 tells us that the absolutely continuous
part of its Poisson spectral measure in the Lévy canonical representa-
tion must be supported by an interval of special form. But, as to the
singular and discrete part of the Poisson spectral measure, it is known
that Ostrovskii’s sufficient condition is not always necessary. It will be
interesting to study what restrictions on the singular and the discrete
component exist if a ch.f. of the class I, has a nonvanishing absolutely
continuous Poisson spectral measure in its Lévy canonical representation.
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