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1. Introduction

The estimation of the parameter p for binomial and negative bi-
nomial distributions truncated away from zero has been considered in
a few papers. Thus, Rider [9] gave an intuitive estimator of p without
any minimum variance or unbiasedness considerations. Fisher [5] and
Patil [7] examined maximum likelihood (ML) estimation in the binomial
case. Sampford [10] gave moment and ML estimators of p for the neg-
ative binomial distribution under trunecation at zero.

This paper is concerned with uniformly minimum variance unbiased
(UMVU) estimation under truncation away from zero. In this respect the
results of Patil {8] are quite pertinent; treating the binomial as a gen-
eralized power series distribution with parameter #=p/q, it follows from
Corollary 1, p. 1052 (op. cit.) that there is no UMVU estimator of 4
since the range of values of the binomial variable is finite. Moreover,
it can easily be verified that no UMVU estimator exists for p either.
On the other hand, there is a UMVU estimator for p in the negative
binomial case, which we are actually going to construct. As regards
the binomial case, it is interesting to ignore momentarily the non-exist-
ence of a UMVU estimator and proceed, heuristically, to construct an
unbiased estimator of the odds ratio ¢ based on a sufficient statistic,
namely, the sum T of the observations. This serves a double purpose.
First it illustrates the dependence of an unbiased estimator on the range

of the distribution and, second, it leads to a sufficient estimator 6,(T')
whose relative bias is practically negligible (see Section 2.2). Further-

more, the expression of 6,(T) (see (2.7)) in terms of certain analogues
of the Stirling numbers of the second kind can be used to show the
intrinsic relations in the estimation problems of the parameters of the
Poisson (cf. [11]), binomial and negative binomial distributions, each
truncated away from zero.

A main feature of this paper is the derivation of the distribution
of the sufficient statistic T in each case by applying the Poincaré for-
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mula and certain combinatorial results. A similar method was used in
[2] for the Poisson case. Ahuja [1] recently derived the distribution
of the sum of truncated negative binomial variables by applying some
results of Patil [8]. The distribution of T in the binomial case, appar-
ently, has not been given so far in any explicit form.

The truncated negative binomial distribution arises in several appli-
cations in biology (see Sampford [10]). The truncated binomial occurs
when one observes the presence or absence of a given attribute in cer-
tain finite groups where at least a specified number of their members
have the attribute. For example, the group may be a family and the
attribute chicken pox; here the specified number would be one and the
situation calls for a truncated binomial away from zero.

2.1. The distribution of the sum of truncated binomial variables

ProposiTION 2.1. Let X,,---, X, be a random sample from the
truncated binomial distribution away from zero, that is, with probability
distribution

(2°1) P[X1=m]= : (,r>p1‘qr—x, x=1,"" r, ’i=1,'°°,n
1—q¢" \z

(r>1, q=1—p). Then the probability distribution b,(t), say, of the suf-

ficient statistic T=X,+ .-+ X, for the parameter p is given by

nlr Cl,.

(2.2) by(t)= m £l

pgt t=n,n+1,---, 10

where the numbers C!, are defined for all integers », n,t (n>0, t>0,
r+0) by

i ()&
2.3) cr=L22 51 1)< k)(rk),.

ProOF. We have, by (2.1) and the independence of X;,

(2.4) bo(t)=P[T=t]=P[;;x=t]=(12 L <'r)p,q

oz i=1 1—q" \ @

e (2o
1—q ) @ e rn
&

where the summation extends over all ordered =n-tuples (x,,---, x,) of
integers x,, 1<z,<7, such that x,+.--+z,=t.
In order to evaluate the last sum, consider the following coupon
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collector’s problem (see, e.g. Feller [3], p. 111). An urn contains r
identical groups of balls each group consisting of n balls numbered 1,
2,---,m; t (t=n) balls are drawn without replacement one after another.
Then the probability that each of the numbers 1,2,.---, n is included
in the sample is given by the last sum in (2.4). This probability p,,
say, can be obtained by Poincaré formula as follows: Let A, denote
the event: the kth number does not show up (k=1,---,n). Then

p=1-P| [ 4,|=1-31(-1p"'s,
k=1 =1
where

S;=>P[A,--, Ai,ﬂ}:("g)("_’(?'r%;@i (k=1,2,---,m)

so that p,, by (2.3) also, becomes

et (=K, _ mlrt o,
P=2( D(k) o, m), O

Therefore, in virtue of (2.4), we obtain (2.2).

The distribution of T can also be obtained by inverting its char-
acteristic function. This is given by

1
=gy
where ¢, denotes the characteristic function of (2.1). By the Fourier
inversion formula, the probability distribution b(t) of T is given by

[(pe™+q) —q'T"

er(u)=[px(W)]"=

bo(t)zi S” or(u)e “du
27 J-=
L1y
(1—q") 2z

[ é (_1)n—k< "I: )(peiu+q)rqu(n—k)]e—tzudu
k=0

-

which, after expanding (pe™-+q)™ and taking into account
S' e dy=0 for every s+t,

gives (2.2).

2.2.  An asymptotically UMVU estimator of the odds ratio 4

As stated in the introduction, there is no UMVU estimator for 4=
p/g as shown in [7]; actually, there is no unbiased estimator based on
the sufficient statistic T in which case, T being also complete, would



238 T. CACOULLOS AND CH. CHARALAMBIDES

imply the existence of a UMVU estimator of # by the well known the-
orems of Rao-Blackwell and Lehmann-Scheffé. Nonetheless, ignoring

this fact, let us denote by 6,(t) an estimate of & based on T and let us
proceed to see where unbiasedness fails. The condition of unbiasedness is

(2.5) z By(t)bo(t) =0

and since b,(t) in (2.2) can be written as

b t — 'n!’l"” rt,n 0‘
i) [(L+6y—11 !

’

condition (2.5) gives

™ . Ct ™ Ct
(2.6) S0 Zee=3 rret (0<6<00).
t=n . t=n .

Equating the coefficients of # on both sides shows that (2.6) can be
satisfied if, and only if,

@2.7) Gty =t %‘f‘ t=mn, n+1,--, rn—1
cr 1

2.8 oo 1

(2:8) (rn)! nlr

where we have used the fact that, by definition,

2.9) =L o p=1,2,... .
nlrt

Obviously, however, (2.8) cannot be satisfied and 6,(t), as defined
in (2.7), has relative bias, caused by the last term #™*! in (2.6), equal to

~ 5 p?‘ﬂ
2.10 f)=E <-£>—1=—b _— .
(2.10) po)=E (% rm)=— P
Sinece p"/(1—q")<1 with strict inequality for 0<p<1 and moreover this

is an inereasing funection of p, it follows that ,8(50) approaches zero very
fast even for moderate values of the sample size n, and the relative
bias is practically negligible for all values of p not close to 1 (not too

large values of #). It can be easily verified that ],B(éo)l as a function
of r is strictly decreasing and 4,(t) is asymptotically (r— oo) unbiased.

Let us now look at the behavior of 50(t) as r— oo and p— . From
the preceding discussion we see that ,8(50)—>0. This asymptotic unbiased-
ness of 6,(t) follows also from (2.6) where now we have an infinite power
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series in 6 and therefore 6,(t) as defined in (2.7) becomes unbiased as
r—oo. In fact, we will show immediately that

@.11) 1) — ao(t) =t Tz
, S

where ,(t) denotes the UMVU estimator of the parameter 2 of the

truncated Poisson at zero obtained in [11] and &7 denotes the Stirling

number of the second kind defined by

Sr=

07 t<n.

To show (2.11) we use the following property of the numbers C/,:

2.12) lim Cin g,

7r—00 7" =

It should be noted that (2.11) reflects the Poisson approximation to the

binomial as 7— oo and p— 0 so that rp—2. Thus r6—2 and 76,(t)— A(t)
as r—oo and p—0.

An intrinsic relation between the Poisson and binomial estimation
problems under truncation is further pointed out by the following. The

UMVU estimator A(t) can be written (see [11]) in the form

A similar relation holds for 6,(t), namely,

(2.13) Gy(t)=—t (1—Cf'il-l>

' ’ rn—t+1 Ct, /"
This is a consequence of the recurrence relation (easily verifiable):
(2.14) Cl.=(rn—t+1)C +Cih,

which can be used also to show, by induction, that the C;, are integers.
The quantity

—_ Ct—l
(2.15) Cr,n, t)=1—=0r=t
Cr,n
may be interpreted as the correction factor by which the modified ML
estimator t/(rn—t+1) of # in the usual case of no truncation has to be
multiplied to give the asymptotically (r— o0) UMVU estimator 6y(t) (the

usual ML 6 of 6 is 6=t/(rn—t). Note that C(r,n,n)=0 and C(r,n,t)
increases with ¢ reaching the value 1 for t=rn—1 and t=7n.
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3.1. The distribution of T=31 X, in the negative binomial case

PropoOSITION 3.1. Let X,,---, X, be a random sample from the
negative binomial distribution truncated away from zero, that is, with
probability distribution

(31) P[)(i_—-x]= 1 <r+x—1>pzqr x=1r2v"', 'i=1,2,"'-
1—q" x

Then the probability distribution of the sufficient statistic
T=X\+---+X,

is given by

rn! S
3.2 t)= Brnoptgmn  p=p, m41,
(3.2) 9(t) =gy ¢ p'q n, n+

where, for all positive integers », u, t, S, is defined by

z__t—nc=i'n_n—kn —
(3.3) Sra=(—1)"C’, . n!r"fg( 1) <k>(rk+t 1),

and C!, was defined in (2.3) (we prefer the S, to the C‘,, since the
latter are alternately positive and negative integers, whereas S:, are
non-negative integers).

Proor. We have

@4  an=P[HX=t]= 5 T[Z ("% Ve

zp e =1 L1 —q" x;
<rn+t—1> A (r+w1—1> <r+x,,—1>
t pa * e x
E 1 n
Q—q) (g, ) (rn+t—1)
t

where the summation extends over all ordered =-tuples (x,---, x,) of
integers xz,=1 with «,+.--+x,=t.

In order to evaluate the last sum in (3.4) consider the following
problem. Suppose that t=n indistinguishable balls are distributed at
random in 7rn cells constituting n groups of r cells each. Then the
probability that each group of cells contains at least one ball is given
by the last sum in (3.4). This probability P, .(t) say, can be found by
applying the Poincaré formula as follows. Let A, denote the event:
the kth group of cells contains no ball. Then

P, . (t)=1-P [kL:J1 Ak]zl_é(—l)k—l > P[Ail"'A*k]

lsi1<..-<ik5n
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'rn—rk+t—1>
t _ nlrt .
<'rn+t—1> (rn+t-1), "’
t

A-gr(p)l

Hence (3.4) yields (3.2).

Remark. The probability distribution (8.2) of T=i‘, X, can also be
=1

obtained easily by inverting the characteristic function of T,. The char-
acteristic function of (3.1) is found to be

prw) =1L [1—pe) 1]

therefore that of T=é X, is
i=1

— n__ qm — uy\—r __11»
or(0)=loxW] =g Lo [ —pey 71T

Thus the probability distribution of T is given by

__]-__ " —itu,
go(t)= o S_t or(w)e " “du

=)
“ar BV ) B T g e
and since
S”_, e ddy=0  for every s+t
we get (3.2).

As noted in Section 1, the probability distribution (8.2) is obtained
by Ahuja [1] by applying a results of Patil [8] for the generalized power
series distribution.

3.2. UMVU estimator of »

For the construction of a UMVU estimator of p in (8.1) on the
basis of a random sample from this distribution, it suffices to find an
unbiased estimator of p which is a function of the complete sufficient
statistic T.

Let y(t) be such an unbiased estimator of p. Then the condition
of unbiasedness gives the identity
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Shdat=p  (0<p<1)

which by (3.2) after some simplification gives

oo 't oo 't
3 pult) Sen pr= 5y Srn e
SPETTPTE

this holds if, and only if

t—1
3.5) nit)=t g .
Thus we have obtained the UMVU estimator py(t) of p.
By the analogue of the recurrence relation (2.14) in terms of the
numbers S:,, namely,

(3:6) Sta=(rn—t—1)Si 48,
we can write p(t) in the form

- t t—1
3.7 )= <1_ r,n—1> .
@1 =\

It should be observed that t/(rn+t—1), p say, is the UMVU estimator
of p in the usual (non-truncated) negative binomial distribution. To
obtain the UMVU estimator 7,(f) we must multiply p by the correction
factor (cf. (2.15))

— St—l 1
(3.8) S(r, n, t)=1—S+'£':— .
It is interesting to note here also, as in the binomial case, that
the estimate of rp as r— o and p—0 so that rp— 21 converges to the

estimate A(t). This is expected in view of the corresponding conver-
gence of the negative binomial (3.1) to the truncated Poisson at zero
with parameter A. Indeed, by the limiting property of S:, which is
the analogue of (2.12), that is,

¢
lim Lg_"_".z &7,

roe ptR
we obtain:

Sﬁ:‘,}/r‘-”-’.l t @ﬁl—l

=) .
e b=

rho(t) =t

The ML estimator » of p, which can be found as the solution of
the equation (see Patil [7])



ON MINIMUM VARIANCE UNBIASED ESTIMATION 23
b =t
1-p-QA-py] rn

is obviously different than p. Therefore, by the uniqueness of the un-
biased estimators based on ¢, » is a biased estimator of p.
The asymptotic variance of p is given by:

o p(l—p)[l—(—p)T
Var )= =+ (I=p)T

This is also the Cramér-Rao lower bound for the variances of unbiased
estimators. We will show that there is no unbiased estimator whose
variance attains this lower bound. Indeed, if f(z,,---, 2,; p) denotes
the joint probability function of » independent truncated negative bi-
nomial variables, then a necessary and sufficient condition for a Cramér-
Rao estimator to exist is that there exists a function g(p) such that
the expression

p+g(p)—aa— log f(®(,+ -, @a; D)
D

is independent of p for all values of (z,,---, z,). Since

S rn(l—p)!
P 1-p)—1

no such function g(p) exists. Therefore we may write:

ail()gf(xlf"" xn)=
D

- pl—pf[l—(—p)T
Var @)> = () =0T

4. Asymptotic expressions for the estimates

For values of ¢ which are large compared to =, approximate ex-
pressions for the estimates may be obtained by using the following
asymptotic expressions :

¢ (rn).
Cra~ r"n!

s~ rntt—1), .
i rn!

’

these can easily be verified by considering the limits of Cf,/(rn), and
St . J(rn+t—1), as t—oo. The estimates (2.13) and (3.7) can now be
written in the form:

9 (+) — t _ (rn—17),
6u(t)= rm—t+1 (1 (rn—1),_, )

and
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= t ( (r(n—=1)+¢—2),, >
t = 1"‘ ’
() rn+t—1 (rn+t—1),_,
respectively.
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