CLASSICAL ASYMPTOTIC PROPERTIES OF A CERTAIN ESTIMATOR
RELATED TO THE MAXIMUM LIKELIHOOD ESTIMATOR*

JAMES C. FU AND LEON JAY GLESER

(Received Oct. 14, 1972; revised April 11, 1973)

1. A general method for constructing point estimators

In a statistical point estimation problem, the goal is to use infor-
mation obtained from a sample of observations to estimate an unknown
parameter (or a function of an unknown parameter) of the probability
distribution which governs the variability of sampling. Ideally, we
would like to construct an estimator which has the property that with
probability one a correct estimate is made of the true value ¢ of the
unknown parameter. This goal is, of course, met only in trivial cases.
More realistically, we hope to find an estimator having highest possible
probability of being “close” to 4.

Suppose that we have independent and identically distributed (i.i.d.)
random observations X, X,,---, X, having common distribution P,.
Here we assume that each X, is defined on a measure space (¥, g),
- where X is any topological space and g is a sigma-field of measurable
sets. We assume that P, is a member of a class {P,, # € 6} indexed
by a point 4 in a subset @ of k-dimensional Euclidean space. Further,
we assume that the class {P,;, 6 € 8} is dominated by a ¢-finite measure
p defined on B, so that each P, has a density (Radon-Nikodym deriv-
ative) f(x|8)=dP,/dy with respect to . The sample (X, X;,---, X,) is
then defined on the Cartesian product space (X, ) with respect to

the product probability measure P/ which has density ﬁ f(x;]0) with
i=1

respect to the product measure p™.

With this probability background in mind, we define an estimator
T, of 6 based on X, X,,---, X, to be a measurable function mapping
X™ into 6. Since O is a subset of Euclidean k-dimensional space, we
can measure distance by the usual Euclidean distance [#—6¢'|. One way
of defining what we mean when we say that T, (x,, «,,---, ,) is “close”
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to 6 is to choose a small ¢>0, and to say that T, (x,, x;,---, x,) is
“close” to @ if |T.(x;, 5, -+, £,)—8|<e. The probability a(T,, ¢, §) that
T, is “close” to ¢ is then

1.1 AT, &, O=P{|T( X1, Xz, -+, X)) —0]<e} .

Let 7, be the class of all estimators T,: X™—6. The estimator T
has highest probability of being “close” to ¢ if

1.2) a(TF, e, 0)=g2p a(T,, 6 0) .

We could define T* to be a “best” estimator of ¢ if (1.2) holds for all
0 € 6. Unfortunately, this definition of “best” (although clearly rea-
sonable and meaningful) has the major disadvantage of almost never
being satisfied in practical statistical problems. The estimator T, satis-
fying (1.2) for a given ¢ and 6, may not satisfy (1.2) for other values
of ¢ and @; in other words, the optimal T* under the criterion (1.2)
depends on ¢ and 4.

To remove (or account for) the influence of # in measuring goodness
of estimators by means of the quantity a(T,,e 6) in (1.1), we could
consider weighting different values of # by means of any of a class of
measures defined on the Borel subsets of 6. Assume that we have
such a positive measure G which has a Radon-Nikodym derivative g(6)
=dG/dv with respect to some standard os-finite measure v(¢) (usually
Lebesgue measure or counting measure). With respect to G, we might
consider replacing the #-specific measure (1.1) by the weighted prob-
ability

(1.3) T, ¢, g)= S T, ¢, 0)g(0)du(6) .

We can then define a maximum probability estimator with respect to g
and ¢ to be an estimator T* which maximizes (1.3) over all T,€z,. If

(1.4) S g(O)dv(@) <o ,

then a maximum probability estimator with respect to g and ¢ is a

Bayes estimator with respect to g(a)/ Se 9(8)dy(8) under the loss function

1, if |#—a|=e,
(L.5) L, a)={
0, if |0—a|<e,

where a € 6 is the action to estimate # by a. When 6 is one-dimen-
sional, such a Bayes estimator T}*=TxXX;, X;,---, X,) can be shown to
satisfy
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T¥+e n

we) [T Sl 0)e@ds0)

= sup

ST,,+e n
T,er,
Tn = Tn(zh T2y ®°, xn)

1o AL f(@:10)g(0)dx(6)

for all (x,, 2;,--, x,) € X™. Even if (1.4) does not hold, if
) o L6, Tulats, 21, 2)

T f @ 09Oz, 71, -, 2.)

S K

is finite for some T, €r,, and 6 is one-dimensional, then the maximum
probability estimator T* with respect to g and ¢ satisfies (1.6). In the
special case where G(6) and v(d) are Lebesgue measure on one-dimen-
sional Euclidean space (so that g(#)=1) and (1.7) is finite for some T, ¢
7,, We can see some similarity between the maximum probability esti-
mator with respect to g(#)=1 and ¢, the maximum likelihood estimator,
and a somewhat different “maximum probability estimator” defined by
Weiss and Wolfowitz [15].

The maximum probability estimator T with respect to a g(6) and
a given ¢>0 can usually be shown to exist, and is an intuitively mean-
ingful estimator for many statistical problems. In the case when g(6)
satisfies (1.4) and © is one-dimensional, T ecan be seen to be the mid-
point of a modal interval of length 2¢ for the posterior distribution

9(0) 11 f(:l0)

(18) QPN R S — .
1,90 1 f@10)ax(0)

Although this property of the maximum probability estimator T with
respect to g and ¢ is appealing (and of theoretical importance since it
relates point estimation to Bayesian fixed-width confidence intervals),
calculation of the estimator is not always a simple task and the esti-
mator may not have a convenient closed mathematical form. Further,
the estimator T.* depends upon the constant ¢>0 (and upon the meas-
urement of distance used). Since which value of ¢>0 to use is not
always clear in practical statistical problems, we would like to somehow
avoid an estimation procedure in which an explicit choice of ¢ must be
made. Presumably ¢>0 would be a small constant in most cases, so it
is reasonable to consider the limit of maximum probability estimators
T*(¢) with respect to g and ¢ as ¢ tends to 0. If T*(¢) is unique for
each ¢>0 and if T.*) satisfies (1.6), then T *()—8F as ¢—0, where
0k =0*(x,, 25, -+, ,) and
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(L9) 1T f@l65)90)=sup T F.|0)90)

all (z,, 2,,+--, 2,) € X, When g(d) satisfies (1.4), 0}(z,, x;,---, x,) is a
mode of the posterior density A(0|x;, x:,---, x,) defined in (1.8). We
call 0}(X,, X;,---, X,) satisfying (1.9) a maximum probability estimator
with respect to g(#). In many cases, §F is as easy or easier to compute
than the maximum likelihood estimator 4,. Of course, the maximum
likelihood estimator is a maximum probability estimator with respect
to g(8)=1, all 6.

It is important to note that the estimator # is not the same as
the maximum probability estimator of Weiss and Wolfowitz [15]. Their
estimator is formed from T,*(¢) by choosing a particular useful sequence
of e-values {¢,}, ¢,—0, chosen to give certain asymptotic properties to
the resulting sequence of estimators T *(e,). Our estimator 6} is formed
(in many cases) for fized n by taking lirzl T*(¢), or can be defined directly

from (1.9).

In this paper, we consider two classical asymptotic (as n— o) pro-
perties of the maximum probability estimator 6 with respect to g. In
Section 2, we find regularity conditions under which 6F exists and is
measurable (X™, ). We also prove, under additional regularity con-

ditions, that @F is a strongly consistent estimator of 6(6%~>-6). In Sec-
tion 3, we show (again under additional regularity conditions and under
the assumption that © is a subset of the real line) that J%(ﬂ,’f—ﬂ)’—q
N(0, 1/1(8)), where I(6) is Fisher’s information, that V(0 —6,)20, and
that nl2=7(6%—6,)=>0, all o, 0<p=<1/2. This shows that 6f is a best
asymptotic normal estimator in Fisher’s classical sense. As a result of
the asymptotic convergence and asymptotic efficiency properties of maxi-
mum probability estimators shown in Sections 2 and 8, and of the ap-
proximate Bayesian character of maximum probability estimators men-
tioned in the present section, we recommend that such estimators be
considered and used in practical statistical problems. For large enough
n, the choice of the weighting function g(@) is irrelevant (provided g(9)
is positive everywhere and smooth enough—see Section 3). For small
n, choice of g(f) will influence the resulting estimates. In this paper,
we do not intend to discuss choice of g(6), since we feel that reasonable
choices depend both upon the problem and upon prior judgements by
the statistician.

2. Existence and consistency

In this section, Wé prove that the M.P.E. ¢* with respect to a
prior density g¢g(#) exists and is a strongly consistent estimator of 4.
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Our exposition of these results breaks naturally into two parts: (i) a
proof of the existence and measurability of 6} (Theorem 2.1), and (ii)
a proof that {6}} is strongly consistent (Theorem 2.2).

We start by establishing sufficient conditions for the existence and
measurability of 6 for a given sample size n=1. We have assumed
in Section 1 that we observe i.i.d. observations X;, X,, -, X,, and that
each X, takes values in the measure space (¥, ) according to the prob-
ability measure P,, where # is a point in a subset @ of Euclidean k-
dimensional space. Hence (X, X;,---, X,) takes values in the product
measure space (X™, ) according to the product probability measure

™ e®. We write 6=(X;, X;,---) and s=(x;, %;,---). The prob-

ability distribution of ¢ in its sample space (X, 8) when 6 obtains
is denoted by PS>, but we shall usually abbreviate P to P,.

Since O is a subset of Euclidean k-dimensional space, its closure 6

can be represented as the union G K, of a countable number of com-
t=1

pact subsets {K;: ¢=1, 2,---}, where for every t=1,2,---, K,CK,,,C6.
Such a representation is by no means unique, but to prove that one
such representation exists, note that the entire k-dimensional space &%
can be written as the union of the closed k-dimensional spheres S,=

{y: ye &P, |y|<t}, t=1,2,.--. Let K,=6NS,. Then since S, is com-
pact and @ is closed, K, is compact. Further, §=G K, and K,CK,,,.
t=1

In Section 1, it has been assumed that the collection {P,, 6 € &} of
probability measures on (&, g) is dominated by the o-finite measure g,
and that dP,/dp=f(x|6) is the Radon-Nikodym derivative of P, with
respect to p. Hence, the product measure P, has Radon-Nikodym
derivative

1) L@, 31, -+, 2)|0)=Lu(x|0)=TT £(:|0)

with respect to the product measure g™ on (X™, ™). We have also
assumed that there is a non-negative o¢-finite measure v defined on &
which has a Radon-Nikodym derivative g(8)=dv/d§ with respect to k-
dimensional Lebesgue measure. Let

(2'2) Hn(xl 0):Hn((x1 y Lgye vy xﬂ) | ﬂ)Eg(e)Ln(xl 0) .
We propose the following conditions :

CoNDITION 2.1. For all x € X™ (except perhaps for a set of x-
values having p™-measure equal to zero), L.(x]|6) is continuous in 8 for
all 6 €6, and can be extended to a function which is continuous over

all 6. That is, for any sequence {#,}C® such that lim §,=6, exists,

J—oo
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gim L,(x|6,) exists and has a value dependent on the sequence {6,} only

through its limit 6,€6. If 6,¢86, this limit is L.(x|8). If 6,€6~6,
we denote the limit by L.(x|6,) for typographical convenience. Hence,
L,(x|0) in its extended definition is for all x € X now a continuous

function of @ for all #¢6.

CONDITION 2.2. The prior density g(f) is continuous in & for all

#c6 and can be extended to a continuous function of 6 for all §¢ 6.
Further, ¢(@)= sup 9(8) < co.
fe

CoNDITION 2.3. There exists an increasing sequence {K,, t=1, 2,
.+-} of compact subsets of 6 such that &=U K, and lim sup L,(x|
=1 tso0 e KNG
0)=0 for all x € X™ (except perhaps for a set of x-values having p™-
measure equal to zero).

CONDITION 2.4. For each 6¢6, L, (x|0) is f™-measurable (meas-
urable with respect to (¥, g™)).*

Condition 2.4 implies that L,(x|8)g(6)=H,(x|6) is f-measurable for

each #¢6. Since O is dense in 6, it follows that for every 8¢ 6~6
there exists a sequence {6,}<6 such that lim§,=6. However, Condi-
J—eo

tions 2.1 and 2.2 imply that ljim H,(x|6,)=H/x|6) for all xeX™, so

that H,(x|6) is the limit of A™-measurable functions and therefore is
B™-measurable. Consequently, Conditions 2.1, 2.2 and 2.4 imply that

H,(x|6) is p™-measurable for all #e 6. Conditions 2.1 and 2.2 also im-
ply that for all x € 2™, H,(x|6) is continuous in & for § € 6.

LEMMA 2.1. Let S be a sample space with a sigma field 4 of sub-
sets, and let Y be a compact subset of FEuclidean k-dimensional space (a
metric space under the usual Euclidean distance |y—y'|). Let I’ be the
appropriate Borel sigma field of subsets of Y. Let U(s,y) map SXY
into [0, o0). If for every s€ S, Uls, -) is a continuous function on Y,
and if for every yeY, U(-,y) s a d-measurable function (measurable
with respect to (S, 4)), then
(i) U, -) 18 a AXI-measurable function,

(ii) sup U(s, y) exists and is a 4-measurable function,
ye

* We have called La(x|0) the Radon-Nikodym derivative of P{™ with respect to p™.
The Radon-Nikodym theorem asserts that there exists @ B(™-measurable version of the
Radon-Nikodym derivative, but this version of the Radon-Nikodym derivative need not satis-
fy Conditions 2.1 and 2.3. Condition 2.4 asserts that there is a version satisfying Conditions
2.1 and 2.3 which is also f™-measurable for each §¢6. (See also Wald [14], pp. 596-597).
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(iii) there exists a 4d-measurable function T: S—Y satisfying U(s, T(s))
=sup Uls, y) for all s€8S.
'3

PROOF. Since Y is a compact subset of k-dimensional space, Y is
bounded. Thus, there exists a k-dimensional cube C containing Y. We
may partition C into m* subcubes, each subcube having volume m~*
times the volume of C. Let C(p, m) be the pth such subcube formed
in this fashion, and let z(p, m) be any fixed point in C(p, m)NY (Gf C(p,
m)NY=¢, this does not effect the proof), p=1, 2,--., m*; m=1, 2,--..
Define U,L(s,y) to be equal to Uls, 2(p, m)) whenever y € C(p, m), p=1,
2,-«-,m*; m=1,2,..-. Then clearly U,(s, y) is 4 X I"-measurable. Since
U(s, ) is a continuous function on Y for every se€ S, it follows that
lim U,(s, y)=U(s, y) for all s€ S and for all y €Y. Hence, U(s, y) is the

pointwise limit of 4XI'-measurable functions, and therefore U(-, -) is
4 X I'-measurable, proving (i).
Define t,,: S—[0,00) by

t)=|, (e vyay] =106,

for m=1,2,-.-.. Since Y is compact and U(s, -) is continuous on Y for
all s, it follows that ||U(s, -)||.<oo for all s€S. Let

t(3)=§15119 Us, v)=1UGs, -)|l» -

For each m, t,(s) is 4-measurable (Fubini’s Theorem), and since lim

m—oo

UG, H)l.=lUs, -)|l. for all seS, it follows that #(s) is a pointwise

limit of 4-measurable functions and consequently is 4-measurable. This

verifies (ii). The existence of T': S—Y which is 4-measurable and satis-

fies Ufs, T(s))=su)13 U(s, y) for almost all s€ S now follows as a direct
ye

consequence of Theorem 2 of Olech [13]. QED

LEMMA 2.2. Let S be a sample space with a sigma field 4 of sub-
sets, and let Y be a closed subset of Euclidean k-dimensional space with
the appropriate Borel sigma field I of subsets. Let U(s,y) map SXY
iwnto [0, o0). If for every se€S, U(s, ) is a continuous function on Y,
and if for every yeY, U(-,y) is a 4-measurable function, then for any
ag-compact subset F' of Y, the restriction of U(s,y) to SXF s AXI%-
measurable (where I'x is the sub-Borel-field of I' consisting of subsets of
F which belong to I'), and Uls, F)Eflg) U(s, y) 1s 4-measurable. Further,

if there exists an increasing sequence {K,, t=1, 2,---} of compact subsets
of Y such that Y=G K, and
t=1
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lim sup U(s, y)=0
t-o yeKinY

for all s€ S, then there exists a Ad-measurable function T: S—Y for
which sup UGs, y)=U(s, T(s)), all s€S.
vE

PROOF. Since F is s-compact, there exists a sequence {K,: t=1,
2,---} of compact subsets of F' (and hence of Y) such that F=§1Kt.
Let U(s, y) be equal to U(s,y) on SXK, and be equal to 0 other;vise.
Since K,cK,,,, all ¢, and F=[_j K., it follows that U(s, y) restricted to
Sx F'is equal to 131_‘12 Ufs, v) foxt'_;ll (s, y) e SXF. Since U(s, y) restricted

to SX K, is 4XI'x,-measurable for all =1, 2,---, by Lemma 2.1, it fol-

lows that U(s, y) is 4 X ['z-measurable for each t=1,2,..-. Hence, Us, y)

is the limit of 4xIrz-measurable functions, and therefore is 4 X[ %-

measurable. Also, since by Lemma 2.1, U(s, K,)Esu;) U(s, y) exists and
€Ky

is 4-measurable for all t=1, 2,--., and since F'= G K,, then U(s, F)=
t=1

sup U(s, K,) is the supremum of a countable number of 4-measurable
1St

functions, and thus is 4-measurable.

For future reference, we remark that since Euclidean k-dimensional
space & is itself s-compact, every open set and every closed set in £&%®
is o-compact. Hence Y is o-compact, and U(s, Y)=sup U(s, y) exists and

yey
is 4-measurable.

Now assume that Y=U K,, where {K,, t=1,2,---} is an increas-

t=1

ing sequence of compact subsets of Y and

(2.3) lim sup U, y)=0, all seS.
t—oo yeKinY
By Lemma 2.1, for each ¢=1,2,.--, Uls, K,)Esuly U(s, y) exists and is
VEK,
d-measurable. Also by Lemma 2.1, for each t=1, 2,.-.., there exists a
4d-measurable function T,: S— K, satisfying
(2.4) U(s, K,) = U(s, Ti(s)) , all se S.

Let T¥(s) =Ti(s), all s€ S, and let
T._«(s), if Us,Y)=Us, K,)=Us, K,_,),
TX(s)={ Tu«s), if Us,Y)=Uls, K,)>Uls, K,_,),
Yo » if Us,Y)>Uts, K)),

where y, is some fixed point in Y. Since U(s, K,) is non-decreasing in
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t for each fixed s€ S, T*(s) is well-defined for all seS. By the 4-
measurability of T.(s) and U(s, K,), all t=1,2,--., by the 4-measur-
ability of U(s, Y), and from the definition of T*(s), it follows that T,*(s)
is 4-measurable for all t=1, 2,---. Further, from the fact that T\(s) ¢
K.,CY, for all se S, all t=1,2,--., it follows that T*(s)eY, for all
sef, all t=1,2,.... Finally, for every s€ S, it follows from (2.3), and
the fact that for all se S, t=1,2,-.-,

Us, Y)=max {U(s, K,), U, K,NY)},

that for every s e S, there exists integer t,=ty(s)=1 such that for all
t=t,,

(2.5) TXs)=Tis) .
Hence lim T,*(s) exists in Y for each s€S. Let T(s)=limT\*(s). Then
t—o0 t—oo

T: S—Y is the pointwise limit of a sequence of J-measurable func-
tions and hence is 4-measurable. From (2.5) it follows that for each
s e S, there exists t)(s)=1 such that for all t=¢(s),

Us, Y)=U(s, K.)=U(s, K.»)=Uls, Ti*(s)) .
Hence, since U(s, %) is continuous in y for all y€ Y,

Uls, Y)=lim U(s, T*(s))=Uts, T(s)) ,
t—o0
for all se S. This completes the proof. QED
Let
(2.6) H,(x|6)=sup H,(x|9) , H,(x|6)=sup H,(x|0) .
8eb €

By Lemma 2.2, H,(x|0) is f™-measurable. Further, since H,(x|6) is,
for each x € ™, continuous in @ for all 8¢ 6,

H,(x|0)=H,(x|6) all xe X™,
so that H,(x|®) is also g™-measurable.

THEOREM 2.1. If for a given integer n=1, Conditions 2.1 through
2.4 hold, there exists a ™-measurable function 0F(x): X ™ 6 satisfying

H,(x|6)=H,(x|6)=H,(x|0}(x))

Jor (almost) all x € X™. That is, for that n, the M.P.E. 0}(&) exists and
18 B™-measurable.

PrROOF. Since by Conditions 2.1, 2.2 and 2.4, H,(x|6) is g™-meas-
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urable in x for each fixed #, and continuous in # for each fixed x € X,
and since by Condition 2.3, there exists an increasing sequence {K,: t=

1,2,---} of compact subsets of & such that 6=U K, and lim sup
=1 t-o 0 KinO

H,(x|0)=0 for all x € X™, the asserted result is a direct consequence

of Lemma 2.2. QED

Before turning to a proof of strong consistency, we note that if
for some m,=1, Conditions 2.1, 2.8 and 2.4 are satisfied, then since

I ra@io=T (r@i0) .

it follows by induction on % that Conditions 2.1, 2.3 and 2.4 hold for
all n=mn,, and thus that 6}(x) exists and is f-measurable for all n=mn,.

For a proof of the strong consistency of 6%, we add four additional
conditions. In what follows, N equals a fixed integer » for which Con-
ditions 2.1, 2.3 and 2.4 hold simultaneously.

CONDITION 2.5. For all €6, g(6)>0.

CONDITION 2.6. If # and #', 0+6', are two distinct points, # €6,
¢ €6, we have

rP({x: x€e X, Ly(x]0)+ Ly(x]6)})>0 .

CONDITION 2.7. For every 6€6~6,

S e Ly(x|0)du(x)<1 .

CoNDITION 2.8. For every #¢€6,

L ((XDXz:""XN)Ie)
E,1 N
og | (X, X o) X)10) <o

It is important to note that we do not require that Conditions 2.6, 2.7
and 2.8 hold for the smallest n=mn, such that Conditions 2.1, 2.3 and
2.4 hold simultaneously, but only that these conditions hold for some
N greater than or equal to that smallest n.

For n=N and for fixed x= (=, 3, - -, ,) € X, define the sets

Ax)=1{6: 6 € 6, H,(x|6)=H,x|6)},
Ax(x)={0: 6 €6, H(x|6)=1/2-H(x|6)} .
Note that for all n=N, and all x € X,
(2.8) A(x)C A¥(x) -

@.7)
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Finally for any ¢ €6, any >0, let N(#, ¢) denote the set
(2.9) N@,e)=1{0": 6" €6, |6 —6"|<c} .

LEMMA 2.3. Assume that Conditions 2.1 through 2.8 hold. Then
Jor any ¢>0 and for each given 6 €6,

(2.10) P{AX(x) =43 (X, X3, - -+, X)) N, ¢)
Jor all sufficiently large n}=1.

PROOF. Let #ec6 be given. Let ¢>0 be fixed. Let {K,, t=1,2,
-++} be the increasing sequence of compact sets guaranteed by Condi-
tion 2.3. There exists a large enough integer ¢, so that N(6, e)CK,,.
Since for any t=1, K8, ¢)=K,~N(9, ¢) is the intersection of the com-
pact set K, and the closed set N°(8,¢), K,(8, ¢) is compact.

Conditions 2.1 and 2.4 and Lemma 2.2 imply that L,(x|N(', d))=

sup 5 Ly(x|6") is for any ¢’ €6, any §>0, a B’-measurable function
6" eN(Y,

of x. Further, Condition 2.1 also implies that

o gL L)

for all x € X, Since Ly(x|N(¢', d)) is for fixed #, x, an increasing
function of ¢ always bounded above by Ly(x|6), and since log [Lx(x|6)/
Ly(x|6)] is nonnegative for all x € ¥, it follows from Condition 2.8,
Equation (2.11), and the Lebesgue Monotone Convergence Theorem that

Since the logarithm function is strictly concave, it follows from Condi-
tions 2.6 and 2.7, and from Jensen’s inequality that E,log [Ly(X|¢")/
Ly(X16)]1<0 for all & € K,(8, ¢), t=t,. Hence, given & ¢ K6, ) for fixed
t=t,, there exists a(¢’), »(¢’)>0 such that

(2.13) E,log [ LN(XL' 7;]19 ‘;("'))) ] <—n(8).

Let ¢ be any integer=t,. Since K,(f, <) is compact, there exist 4, 4,,
.-+, 0,€ K,(0, ) such that K4, e)cifj N(,, (6;)). Hence since
=1

Ly(x| K9, €)) =,80p Ly(x|0')=max Ly(x| N6, 56.)) ,

it follows that

(2.14) E,log | L”(I‘j(’ ?I(Z), ) | <max —0)=—y<0.
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Consider Ly(x|K/)= sup Ly(x|¢'). Since K:N6 is g-compact, it
9 e Kin®
follows from Conditions 2.1 and 2.4 and from Lemma 2.2 that L,(x|K)
is f™-measurable in x. By Condition 2.3, lim Ly(x|K;)=0 for all x¢
t-—>o0

X, Further, for each xe X, Ly(x|K;) is decreasing in t and
bounded above by L,(x|6). Hence, from the Lebesgue Monotone Con-
vergence Theorem and Condition 2.8 it follows that lim E, log [Ly(X | K)/

L(X|8)]=—oo, and therefore that we can choose t*>t, so large that
for the fixed >0 defined in (2.14),

(2.15) B, log [LTN(%%] <—7.

From the preceeding results, we can conclude that

Ly(x|N(6, )= sup Ly(x|6")=max {Ly(x|Kz), Lu(x|K.(0,¢))}

¢ eNC(0,:)N6

is a g“-measurable function of x, and that

(2.16) £, log [ LoX '(g](g)' Dl<—y.

Let » be any integer=N. We note that
(2.17) log H((y, %3, -+, Z,)|6")
=% 33 log Ly((@:,, %4y + +» %0,)|6)+1og 9(8)
(%)
where the summation is taken over the < 1’:’,) possible choices of N in-

dices 14,, 4, -+, iy from among the » indices 1,2, 3,---,n. Thus by the
superadditivity of the supremum function and the fact that the log-
arithm is a monotonic nondecreasing function, it follows that

1 H, (1, %3+ - %) | N“(8, €))
(2.18) ; log [ Hn((xly Ly, e, wn)la) ]

n o g0

<1 Silog
n
()
We recognize the first term on the right-hand side of inequality (2.18)
as a U-statistic. Since the sequence of such statistics (indexed by n)

is a reverse Martingale, it follows from the Martingale Convergence
Theorem (see Berk [4]) that

[LN(mﬁ’ w‘," cy x;NlNc(o, 5))]
Ly((,, Z4yp- -y xiN)la)
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1 LN((XiIJXiz! ) XCN)INC(07 8))
(219) 2 Slog | Lo(X,, Koo X )10) ]

a.s. L ((XI’ XZ) ceey, XN)]Nc(a’ 6)) :I
— &l = —<0.
og | L((X,, Xy, Xl A7

Since by Conditions 2.2 and 2.5, n'log [g(®)/9(6)]—0 as n— oo, it fol-
lows that

l H‘u((leXzy"'QXn)lNc(av5)) _-l
(2.20) P,{nlog[ T 016 ]< L

for all sufficiently large n} =1.

Hence, for all § € N4, ¢)
H(¢|6")<e ™ H,(&|0)<e ™ H,(¢|6)< H(£|6)/2

for all sufficiently large » with probability one under PS>, all ¢6.
This establishes (2.10). QED

THEOREM 2.2. Under Conditions 2.1 through 2.8, there exists an
integer N =1 such that 6X(¢) exists and is f™-measurable for all n=N
and such that

0¥(E)—6 a.s. P as n— oo

for all 6 ¢€6.

ProOF. The first part of the assertion is a restatement of Theo-
rem 2.1. Since 6F exists and is measurable for n=N, 8}(s) € 4,(s)C
AX(s), for all s € X, so that Af(s) is non-empty for n=N. The as-
serted strong convergence of #}(¢) now follows as a direct consequence
of Lemma 2.3. QED

The regularity conditions which we have used in this section closely
resemble Kiefer and Wolfowitz’s [9] and Bahadur’s [3] modifications of
the regularity conditions originally adopted by Wald [14]. Of course,
to cover the greater generality of our estimator 6}(¢), we have added
Conditions 2.2 and 2.5, which are regularity conditions on the prior
density ¢(4). Since we nowhere used (or assumed) the requirement
that g(6) be a probability density on @, the density g(d)=1, all €8,
satisfies our conditions. Thus, our conditions cover the special case of

the M.L.E. 6,.

Our assumptions do differ in some respect from the regularity con-
ditions of Kiefer and Wolfowitz [9]. The major differences between
Conditions 2.1-2.8 and the conditions of Kiefer and Wolfowitz [9] are:
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(a) Our Condition 2.1 requires continuity in # of Ly(x[6). In contrast,
Kiefer and Wolfowitz [9] require that sup f(z]6')— f(x|6) as
5—*0' 9’e N(6,8)

(b) A comment by Kiefer and Wolfowitz [9] that if their regularity
conditions do not hold for Ly(x|6)=f(x|6), everything still goes
through if the regularity conditions hold for L,(x|6), some N>1,
has been directly incorporated into our regularity conditions (see
also Berk [4]). This enables us, for example, to verify existence
and strong consistency of the M.L.E. 4, and M.P.E. ¢* for the case
of the normal distribution with unknown mean and variance.

(¢) We have confined ourselves to parameters which are points in %-
dimensional Euclidean space under the usual metric. Further, we
have not tried to introduce special measures of distance or to trans-
form our regularity conditions on the densities f(x|6) to conditions
on transformations of the density functions f(x|6)—devices men-
tioned by Kiefer and Wolfowitz [9], and used more explicitly by
Huber [8].

The restriction in our Condition 2.1 pointed out in remark (a) above:
can probably be removed by appropriately modifying the Theorem 2 of
Olech [13] used in proving Lemma 2.1. However, until we can remove
this restriction, our conditions do not cover the case of estimation of
the parameters for the uniform distribution and other similar distri-
butions. The conditions of Kiefer and Wolfowitz, however, do cover
these distributions. The restrictions noted in point (c) above may also
limit the applicability of our results somewhat. These restrictions were
needed to prove Lemma 2.1. On the other hand, as noted above, the
incorporation of Kiefer and Wolfowitz’s remark directly into our re-
gularity conditions provides added flexibility and applicability to our
results. Actually, Kiefer and Wolfowitz only mentioned looking at cer-
tain integrability results (Condition 2.8) for large enough =»; we have
extended their suggestion to continuity and measurability conditions.
Our proof of strong consistency of the M.L.E. also differs somewhat
from that indicated by Kiefer and Wolfowitz [9].

Perhaps the major novelty of our results is the rigorous proof
(Theorem 2.1) we give for the existence and measurability of the M.P.E.
6% for fixed sample size n. The existence of 6}(s) for fixed s=(x,, .,
---) and large enough = has been argued by many authors (Bahadur
[3], LeCam [10], etc.), but this does not prove that 6X((x;, x;,---, %,))
exists and is g™-measurable for each n. The truth of this missing fact
has been asserted by the authors mentioned above, but (probably due to
considerations of space) they have omitted mentioning sufficient condi-
tions or providing a proof for such a result. Without a proof of the
existence and p™-measurability of #*(s) for all large enough =, the
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usual proof of the consistency of such estimators (as given in our Lem-
ma 2.3—although we have modified the usual proof slightly) is not com-
pletely rigorous (as Huber [8] remarks, it can probably be done by judi-
cious use of inner and outer probabilities).

3. Asymptotic normality

In the previous section we established conditions sufficient to prove
that the M.P.E. 6 with respect to a prior density ¢(#) is a strongly
consistent estimator of 4. In the present section, we show that under
certain additional regularity conditions when 6 is a one-dimensional
parameter, the M.P.E. is asymptotically normally distributed. We also
derive a useful representation for the sequence {6}}, and indicate a
rate for the almost sure convergence of #F to 6.

Denote log f(x|6) by l(x|6), and let

€
1@l0)=(Z ) uw|0)li-s
for ¢=1,2,-.-. Let
110)=319(X,10)

where ¢=(X;, X;,---). In what follows we assume that the M.L.E.

5,,(5) and the M.P.E. 6}(¢) with respect to a given prior density g(6)
exist for large enough n and are both strongly consistent estimators

of 4. Further, we assume that for all s=(z, 2y, ) € X, b,(s)=

6,((21, 3, - -, 2,)) is a solution of the equation

3.1) IP(s|)y=0,

and that 6X(s)=6}((x,, x;,- - -, x,)) is a solution to the equation
(3.2) 1(510)+-2- log g(9)=0 ,

for all large enough ». This will be the case if I‘(x|6) exists and
/a0 log g(0) exists for all 4 €6, all x € XX, and if the maxima of TT Sz
8) and of g¢(0) ]T f(x;|0) exist within the interior of & for all (large
enough) n. To obtaln the main results of this sectlon, we need the
following added conditions:

CONDITION 3.1. For each « € X, [®(x|8) exists and is continuous
in @ for all §¢ 6.
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CoNDITION 3.2. For each #€6, we have EJl¥(X|0)=0 and
0<E ("X |0)=—El®X|0)=I6)< oo .

CoNDITION 3.3. For each 6 € 6, there exists a d-neighborhood, say
N@,0)=1{0": |6—0'|<d}c O, of § and a measurable function M(x) on
(&, B) such that

[1P(x]6")—1®(x|6)| < M(=)
for all € X and all ¢ € N(4, 6), and such that E,M(X)< co.
CONDITION 3.4. 9/d6 log g(#) exists for all #€ 6.

Conditions 3.1 through 3.3 have previously been adopted by Bahadur
[2].

Before stating the main result of this section, we need to introduce
some new notation. By the symbol 0,(1/b,) we represent any sequence
of random variables {Z,} defined on (X, ) which has the property
that for the sequence {b,} of constants, b,— o as n— oo, b,Z,—0 al-
most surely (P&), n—oo. The symbol o,(1) represents any sequence
of random variables {Z,} defined on (X, 8°) which converges almost
surely (PS?) to zero as m—oo. Addition, subtraction, multiplication,
or division of the symbols 0,(1/b,) refer to the same operations per-
formed on the corresponding sequences of random variables. These
operations almost surely obey the calculus of o(1/b,). Also, in what
follows, the symbols o0,(1), 0,(1/b,), O,(1), O,(1/b,) have their usual mean-
ings (see Mann and Wald [12]).

THEOREM 3.1. Under Conditions 3.1 through 3.4 and under the as-

sumption that the M.L.E. 6,(¢) and the M.P.E. 6X(¢) exist (for all suf-
ficiently large n) and are strongly comsistent estimators of 6 satisfying
Equation (3.1) and Equation (8.2) respectively, it follows that for each
€0,

A B 1 .
(3.3) im0t €10 (o 1)
o1 [ d 4
(3.4) ”’T‘”ﬁ(’rf)[l; (E10)+-2- log g(a)u:o:] [1+0.(1)] ,
as n— oo,

PROOF. Since 8,(¢) and 0%(£) both are strongly consistent estimators
of 6, we can assume that

(3.5) 0.8)=0+k(8,6),  OXE)=0+h,(¢, 0),
where k,(&, 0)=0,(1), h.(&, 6)=0,(1) as n—oo. Since 6,(¢) satisfies (3.1)
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and (&) satisfies (3.2), we have

(3.6) 19(£16.(£)=0,
and
3.7) ls.n(ew:(e»+j—0 10g 9(6) b-otr=0 »

for all large enough n. By Condition 3.1, we can expand l‘“(e[é,,(e))
and [V(¢|6X(£)) each in a Taylor’s expansion around the true 6, obtaining

(3.8) 0=ID(£16(2)) =1L (€ 16) + K&, ONP(E | 9n) »
and
(3.9) o=zs:>(elo:(s»+§—0log 9O st

=IP(8|6)+hale, o)zs=>(ela")+§0— 10g 9(0)bstco »

where 7,=7.(¢) lies between é,,(e) and 0, and where a,=a,(§) lies be-
tween 6%(¢) and 6. Divide both sides of Equations (3.8) and (3.9) by
nl(0), where I(6)>0 is defined in Condition 3.2. We obtain

1(10) _ _ 1l
(3.10) EL) = ke, o (—EEL)
and
1 joeo42 e oy — K€
@11 L0102 Tog 00)hut | =(huts, 9 G )

Since 7,(¢) is between 6.(¢) and 6, and since a,(£) is between 6%(¢) and

8, it follows from the fact that 6,(¢) and 6X(¢) are strongly consistent
estimators of @ that

7§)—0=0,1),  a(§)—0=0.1).

Comparing (3.3) with (3.10), (3.4) with (3.11), and taking note of the
definitions (3.5) of k,(& 6) and h.(¢, 6), we see that (3.3) and (3.4) are
certainly verified if we can show that for any strongly consistent esti-
mator {T.(¢)} of 8, where T, (&) =T\(X,, X5, -+, Xo),

D@ T _
(3.12) 2 16) 1+0,1) .

Since
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BT, )| <| 5210 4 1)+
n n

IPEIT)—EP(E0)
n

and since by Condition 3.2 and the strong law of large numbers

- a(l) ’

to prove (3.12) we need only demonstrate that »™'|IP(¢|T,)—IP(&]6)|=
0,(1). But

(3.13) w7 EPE T - L2 10) | % iEn}_l (X | T —1(X:] )]

so that if the right-hand side of (3.13) tends almost surely to 0 as n—
oo, we are done.
Let

A, 9=, sup {1¥@|6)—1"(|0)]}
and let
A(B)=E,A(X,9) .

(Note. It can be shown using Condition 3.1 and Lemma 2.2 of Section
2 that A(z, d) is measurable.)

It follows from Condition 3.1 that for every z, A(x, 6)—0 as 6—0.
Hence, by Condition 3.3 and the Lebesgue Dominated Convergence
Theorem, A(6)—0 as 6—0. Given any ¢>0, chose 6 so small that
A(0)<e. Then since P,{T, € N(8,4) for all large enough n} =1, it fol-
lows that

31X T~ (X O[S T 31 AKX, 9),

3IH

for all large enough n}:l .
Since by the strong law of large numbers,
% 3 AX, 9 A@)<e,  as n—ooo,
i=

and since ¢>0 can be chosen arbitrarily small, it follows that

L35 (X T~ 12X 0) | =0,(1) -

3

This establishes (3.3) and (3.4). QED
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COROLLARY 3.1. Under the conditions of Theorem 8.1, and the
additional condition that

CONDITION 3.4’. Given 4 ¢ 0, there exists ¢>0 such that

sup -ga—log 9(0) |p=p | <00,

e N(b,e)

then the following relationships hold for any p, 0<p=<1/2:

(3.14) w6, —0)=0,1), W (6F—0)=o041),
(3.15) W0, —0¥) =0,(1) .

Further,

(3.16) WG, —6¥)=0,1) ,

and

3.17) nl/Z(é,.—o)iN@, 7(17)) nl/z(o;r—o)iN(o, T(107>

It follows that under Condition 3.4’ and the conditions of Theorem 3.1,
the M.P.E. 0% with respect to the prior density g(6) is B.A.N.

PROOF. By the law of the iterated logarithm for i.i.d. variables
having zero mean and finite variance, and by Condition 3.2, it follows
that for all p, 0<p<1/2,

(3.18) nlﬂ-v(%’)_) —o,(1) .

From Condition 3.4’ we know that there exists ¢>0 for which

sup
&' eN(b,¢)

<co .

;—0 1og g(6) s

Since 0¥ —60=o0,(1), it follows that P,{6} € N(4, ¢) for all sufficiently large
n} =1 and thus that for all p, 0<p<1/2,

nr g

(3.19) ey

log 9(6) l—ex =04(1) .
Assertion (3.14) now follows from (3.18) and (3.19). Assertion (3.15),
of course, is an immediate consequence of (3.14).

Since almost sure convergence to zero implies convergence in prob-
ability to zero, and since by Condition 3.2 and the Central Limit The-
orem :
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3.20 ﬂgp 0_'_[:.,N O,L ,

(8.20) nI(0)l (€10) ( I(0)>

it follows from (3.3), (3.4), (3.19), and the calculus of o0,(1) and O,1),
that (3.16) and (3.17) hold. This completes the proof. QED

Remark 1. Results similar to Assertion (3.15) of Corollary 3.1 have
been obtained by Bickel and Yahav [5]. These authors have shown
that under certain regularity conditions, any Bayes estimator B, under
a convex loss function converges almost surely to the M.L.E. én at rate
1/¥% ; i.e., that y % (B,—0,)=0,(1). Their results have been general-
ized to the multiparameter case by Chao [6]. Although the results of
Bickel and Yahav [5] and of Chao [6] are slightly stronger than our
result (3.15), the regularity conditions assumed by these authors seem
(as best we can compare them) to be somewhat more restrictive than
ours. In any case, the results of these authors do not apply to our
case since the M.P.E. 6 is not necessarily a Bayes estimator for any
convex loss function.

Remark 1I. The representation (3.3) for 6, has previously been
used without proof by Weiss and Wolfowitz [15].

Remark III. The results in Theorem 3.1 and Corollary 3.1 can be
rather straightforwardly generalized to the k-parameter case. Appro-
priate conditions for such an extension (except for conditions on the
partial derivatives of log g(#)) are given by Bahadur [2]. Essentially,
what is needed is that the information matrix exists and is positive
definite, that the second partials of I(x|f) exist and are continuous in
6, and that we can apply the Lebesgue Dominated Convergence Theo-
rem as in the proof of Theorem 3.1.

The results of this section show that under fairly weak regularity
conditions on g(8), the M.P.E. ¢ is asymptotically efficient in the clas-
sical Fisherian sense. In his Ph.D. dissertation (see Fu [7]), the first
author of this paper has shown that 6 has the maximum asymptotic
probability defined by Bahadur [1], [3].

UNIVERSITY OF MANITOBA AND PURDUE UNIVERSITY
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