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Summary

This paper is concerned with non-asymptotic error evaluation for the
uniform (or (B);-type) joint normal approximation for k sample quantiles.
The evaluation generalizes Reiss’ single sample quantile case in [6], where
the type of approximation is a little weaker than that of the present
article.

Some improvements of the previous results [2] are also given for
the uniform asymptotic joint normality of increasing number of sample
quantiles as the sample size increases.

1. Introduction

Let, for each n, X,;<X,,<---<X,, be order statistics based on a
random sample of size n drawn from a continuous distribution on the
real line, whose pdf and cdf are f,(x) and F,(x), respectively. Let
us select k& sample quantiles from the order statistics and denote the
joint random variable by X =(Xum,, Xun,s- -+ X.n,) Where 0<n,<n,<
<. <n,<n and k£ may or may not be dependent on n. Note that in
the notation X, the subscript » stands for the underlying sample size,
whereas, the superseript 7 indicates that the situation concerned is the
case of unequal basic distributions, that is, the population distribution
function F,(x) may vary with n. In the case of equal basic distribu-
tions, where F,(x)=F(x) and hence f,(x)=f(x) for all n, we denote the
corresponding vector by X, without the superscript.

It is well-known that under certain conditions X7, is asymptotically
normally distributed, and based on this fact the asymptotic theory of
statistical inferences is developed by many authors. Ikeda and Matsu-
nawa [2] proved that under some conditions X, is asymptotically equiv-
alent (B), to a certain k-dimensional normal random vector, Y%, =(Y,,
---,Y,.) say, whose mean vector and dispersion matrix are respec-
tively s,0=(sn1," ", 8u)’ and S, =1 —1)) fusSus /(0 +2), 1Si<5=k,
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with s, =F,(l.) and f,;=f.(s.), i=1,---, k, where, the authors showed
that the order of magnitude for the approximate error defined by

(1.1) 0u(Xaty, Yoty : B)= sup | PXic(E)— P¥rox(E) |

is at most O(k(n)'?/ min (n;—n,_,)"*) as n— oo, where B denotes the usu-
1SiSk+1

al Borel field of the k-dimensional Euclidean space R,, and P%:x and

P designate the probability measures corresponding to X7, and
Y., respectively. Related results to the above in censored cases have
been also obtained by the present author [4].

From the practical point of view, however, the above asymptotic
evaluation seems to be unsatisfactory when = is finite or moderately
large; it is desirable to find sharper bounds for the error of normal
approximation. For k=1 Reiss [6] recently considered this problem for
the sample p-quantile X, ;41 (or sometimes X, .,) based on the order
statistics for an equal basic distribution: Let £, be the population p-
quantile, ¢,=(p(1—-p))"*, ¢.=[1—0;%(|1—2p|((log n)/n)”*+(log n)/n)]'* and
1 l|=sup{|f'(x)|: =€ Ry}. Let, further, & be the standard normal
distribution function, P and P" be the probability measure with cdf
F(x) and the n independent product of P for each =, respectively.
Then, under some regularity conditions on F(x) and for n=9 Reiss gave
the following estimate by resorting to the Berry-Essen theorem :

1.2) sup

teR(1)

P”{_w(—ezl(xn,[np]+l—ep)<t} _¢(t)|
. Oy
-1/2 3||f'”‘7p ”f'“2

= S g e

where R,,=C(1—20¢292)/(¢,9.)+3(|1—2p|+((log n)/n)"*)/(10s,97) with (3+
¥/10)/(6/4/27)<C<0.7975. It should be remarked that the approximation
in (1.2) is apparently weaker than type (B),-approximation, and that it
seems to be unsatisfactory for some cases of practical application.

The purpose of this article is to give an exact error bound of the
joint normal approximation in the sense of (B), for k=Fk(n) sample
quantiles in more general situations than Reiss’. In the following sec-
tion some inequalities are presented. The main result is stated in
Theorem 3.1. The mathematical tools used there are almost the same
as those in [2], but derivations are a little simple.

2. Preliminary lemmas

In this section some useful inequalities are presented, which play
important roles in our error estimation.
Let {X,} (s=1,2,---) and {Y,} (s=1,2,---) be two sequences of
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random variables distributed over a measurable space (R,, B,) for each s,
where B denotes a o-field of subsets of any given abstract space R,. Put

(2.1) 3X,, Y.: B)=sup | P"(E)—P"B)| .

Suppose further that for each s both X, and Y, are absolutely continuous
with respect to a o-finite measure p, over (R,, B,) and denote their
gpdf’s (g,) by f, and g,, respectively. Now, as in [2], we can define
some measures of discrepancy between two probability distributions:

2.2) WX, Y)=| (fg)7dn,
23) LX, Y)=|_flog(fie)dn ,
and

(2.4) LX, Y)=|_glog@f)dm -

We can state the following

LEMMA 2.1. Let IX,, Y,)=min[I/(X,,7Y,), I(X,,Y,)], then for each
s it holds that

(2.5) 04(X,, Y,: B)<min [5(s), n:(s)] ,
where

_ 3 4 1/2— 1/2 172
2.6) 771(8)—5[<1+§I(X,, v)) 1] (s, Yo,
and
@.7) nu(8)=[1—exp (—I(X,, V)"

The equality in (2.5) holds iff f,=g. [a.e. ), for each s, in which case
the value of 04X,, Y,: B,)=0.

ProOF. Without loss of generality we can assume that I(X,, Y,)=
I(X,,Y,), then we have

X, Y)==2{_f.log (@/f)"duz~2log pX,, .),

that is,
(2.8) o(X,, Y,)zexp (—I(X,, Y))/2) .

Noticing the fact 0,(X,, Y,:B,)=SR | fi—gs)dp/2, it is then easily seen
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that
(2.9 04 X,, Y,: B)S[1—p(X,, Y)I'?<y(s) .

To find another bound in (2.5) we make use of the following deli-
cate inequality due to Kraft [3]:

1—2
1—y

(2.10) z log %-i—(l—w) log gz(x—y)2+:;‘_(x—y)4 ,

for 0<y<x<1. Now, consider a simple partition of R, such that
A={z: fizg)} and B={z: f,<g},

then we have

@) X Y B)=1| (i—edut|, G- il
=P¥(A)—P¥s(4) .
Hence, the substitution x=P*(A) and y=P¥s(A) into (2.10) yields
(2.12)  P*s(A)log [P*+(A)/P"+(A)]+ P*«(B) log [P*«(B)/P*«(B)]
2200X,, Y.: B)F+ 4 0K, Y. B
On the other hand, in view of a property of the K-L information num-

ber, the LHS of (2.12) can not exceed the corresponding I(X,, Y,). Thus,
we have the following inequality

(2.13) I(X,, Y)=22[0.(X,, Y.: Bs)].’+—3— [0.X,, Y.: B)]".

Solving the inequality in d,(-) under the condition 0=<4,(-)<1 and com-
bining the resulting inequality with (2.9), we obtain (2.5), which com-
pletes the proof of the lemma.

Next, we shall state two inequalities which are helpful to evaluate
the amount of the K-L information number in the following section.
They can be obtained by estimating the corresponding infinite series of
inverse factorials. The detailed investigations have been done in [5],
so their proofs will be omitted.

LEMMA 2.2. (i) For positive integer p=2
(2.14) D loctlogpt——Lre),
=11 2p p

wheer C denotes the Euler constant and
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15 T(p)=3 Bit1

#19 D=2 oD +D D)

with

2.16) a,:%S:z(l——z)(z—z)---(r—l—z)dz, r=2),

and further that

(2.17) T(p) < T(p)< T(p) ,
here
1 1 1 1~

2.18) T(p)= — — —T(p),
@18) IO =130 5 sp-Da+)  te-De+De+d 6 P
and

TN 1
(2.19) T =505 -

(ii) For positive integer p=2,

(2.20) log p!=-;— log 27r+(p+—21—> log p—p+ﬁ—R(p) ,
where

i b
2.21 R(p)= i+1 :
(2:21) )= o Do+ @)
with '

2.22) b=1 S‘ (l—2)2—2)- - -(r—1—z)(l—z>dz . (r22),
r Jo 2

and further
(2.23) R(p)<R(»)<R(©®),
where
(2.24) R(p)= 1 _ 1
. 360p(p—1)(p+1) 120p*(p—1)(p+1)
and
(2.25) R(p)= 1 1

360p(p—1)(p+1) = 480p'(p—1)(p+1)
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3. Exact error evaluation of the normal (B),-approximation for %
sample quantiles

Let, for each n, X,,<X,,<---<X,, be order statistics of a random
sample of size » from a continuous distribution over the real line with
pdf f.(x) and cdf F,(x).

Throughout this section we assume that
(A.1) for each n, D(f,)={x: f.(x)>0} is an open interval over the real
line, say (a,, b,), where a, and b, are extended real numbers such that
a,<b,, and
(A.2) for each n, f,(x) is differentiable once over D(f,).

The assumption (A.l) assures the existence of the exact inverse funec-
tion of F,, say F,!, for each m, which is clearly a nonsingular trans-
formation from the interval (0, 1) onto the interval (a,, b,), for each =.

Let, as in Section 1, X, be the joint random variable of k=k(n)
sample quantiles based on the order statistics, and denote by Y7, the
k-dimensional normal random vector with the mean vector s,,, and the
dispersion matrix S,,. Then, for each =, the pdf’s of X%, and Y2,
are respectively given by

@) kw)={n T @} [T Fe)—Fue s @)
(a,,,=xo<x1< e <xk<xk+1=bn) ’

and

(3.2)  g¥(®w)=(27)**| Spwr| ™ exp [ - -%- (@ — 8nw0) Sty (@ — sn(k))]
(—°°<xi<°°’ 1’=1: ct k) y

where d,=n,—n;_;—1, i=1,..-,k+1 with n,=0, n.,=n+1, F(x)=0,
F(x.,)=1, and zq,=(x,---, x,).

Now, making use of the transformations U,,=F,(X,), i=1,---, n,
we shall reduce the unequal basic case to the special equal basic situa-
tion U, <U,<-+-<U,, which are regarded as order statistics from a
uniform distribution over (0, 1), for each ». Thus, for our purpose it
suffices to consider the k=Fk(n) sample quantiles U, <U,,,<--- <Upn,
in this simplified situation. We denote the joint variable by (Uanyse s
U..,). Then, for each n, the pdf of U,y is given by

k+1 k+1
@} T @—z,

i=1 =

O=z<z<""- <%<2e1=1),

B3)  hu(za)= {n! /

Where Z(k)=(zl PR zk)"
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Further, for each n, consider a random vector V,u=Vu," "+, V)
whose pdf are given by

(B4 D)= Sl [T AT )

X exp [—-;-(F,:I(zw)—s,.(k))'s;a)(z(,,)—s,,w)] ,
0<z,<1, i=1,---, k),

where we have put F;'(2w)=(F,'(z), -+, F.'(z)). It can be easily
verified that for each » the pdf of the transformed random vector
F (Vo) =F;(Va),+ -+, F7Y(V,.)) coincides with that of Y, namely
(8.2). Applying Taylor’s expansion we can rewrite (3.4) as

(3.5) Pu(Za>) =(27) 2| Loy |7* €XP [ - —;— (2> —lncio) Lingey (2> — ln(k)):l
X exp [% Wheer Ly (Zao —lnaw) — -;— wfz(h)LrT(lk)wn(k)]

XTTAAF GIIEFT @)

where L,i=01/(n+2)|[lL.(1-=lL)Il, 1=Si<j<k, and wua=(Wa," -, Wa)'
with

(3'6) Wi = gon(z:i)ﬂbn(z::i H lni) (zi —'lni)z ’ 1’= ly tt 0y k )
3.7 Pa(2)=FIFT @) (FT(2)) » (0<z<1),
(3.8) 6,23 D=L F(FT (), (0<z I<L1),

where z¥ is a certain function of 2; lying between 2; and [,; (denoted by
2% € ((z;, 1,))) in what follows), for each 1.
We are now in a position to prove the following

THEOREM 3.1. Under the assumptions (A.1) and (A.2), assume that
there exists some positive constant M independent of n such that

3.9) sup max sup max {|@.(zX)|, ¢z L)} =M
2y € O 1Zi<k 2¥; € (24, Ini))

18 satisfied umiformly for all m, where 4,={zq,: 0<2,< - <2, <1}.
Then, the condition

(3.10) dyw= min (n,—n,_,—1)=2
15isk+1

implies that

8.11) 0s(X iy, Yyt BYy<min [y(n; k), no(n; K)]

where
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. — 3 4 . 12 172 . 172
(3.12) nn; k)—E[(l+§I(n, 0) 1] " <ttn; 27,
(3.13) p(n; k)=[1—exp (—I(n; k))]*?,
here I(n; k)=I(n; k)+ L(n; k) with
(3.14) I(n; k)__{”“_l_____k}
=1 N;—N;_1 n
and
. M? M 7
G15) Imib)=p ot S S [n+1—2m |+ ST (3+-15)
1

X max n(n+1—n,) E _
=1 N;—MN;_,

ProOF. By means of Lemma 2.1 it is only required to evaluate
the K-L information. Noticing that the transformation F! is nonsin-
gular for each 7, we can easily calculate the information as

n . n —_ h’rf(X:k ) —_ hn( Un(k))
3.16 (X : Yo) =& log 2tn®! | — £ Jog D\ Enkd)
(3.16) (X Yiw) =€ | log e X&k))] [ g 2t Unw)]

=log [(2::)*%! | Loco |2 'jg (di!)]
+33 4 El10g (Uyn, ~Un, )]
+ 2 ElUnor—law) Lo Uscor—co)]
+3 E*lpn(a) L]
— 2 E WLz —laco)]
+—;-8*[w:.mL;<z>w,,m1 ,

where £*[-] designates the integral operator S‘ [-1hn(2ry)d2, and zX* €
k

((2;, l.4)), for each 1. .

With the aid of Lemma 2.2 and the method used in [2] the sum
of the first three terms in the last expression of (3.16), say I(Xz,:
Y.x), becomes

(B.17) I Xi: Yn"(k))=.k.log (1 T 411 g <1_ . >+JL

n+2> 2 n+1 2n

o4+ e 12
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-1 Z +E R(d,)—R(n)

12 S d,
i{"*‘__l__ﬁ}= I
< 2 igl Ne— Ny n 0(/”" k) ’

where T(-) and R(-) are the infinite series defined by (2.15) and (2.21),
respectively.

For other terms of (3.16) the following formulae are available (Cf.
David and Johnson [1]):

EXz—lu]=0, 8*[(zi_lni)2]=% ,

_ 3] — mﬂl(l_zlnt)(l_lni)
EXz—L)]1= n+2)(n+3)

’

EX(2i =) (21— i) = 2ln¢((];b +22l1)“()7(,,];|_ 3l)ni+l)

’

EX(zi— 1) @1 —Lui)]= m”‘(:t;ilg‘)"'(l,’)bgg)l"”l)

b

(3.18)

] VW— 6l,,(1—1,:) _ 2 M+3 —_
A O oy Py a2 e Lol

sa{ k) )

EX(2i— 1) (Zir1—luisr)]

= lni(l _l,,‘) _ . _
B (n+2)(n+3)(n+4) {6(1 21.:)(1—2,.1)

gm+l, a1, _4_M (1—1 }
+ — st ) ni? i1 —lisr)

lm‘,(l—lm'.+1) z lntlni+l(1 lm:)(l lm+l)
+2{ n+2 } + (n+2)

Then, under the condition (3.9) we can give the following estimates,
which are more accurate than the corresponding ones given in [2];

(3.19) 31 g @) (L) =3~ 3750,
where
Jt= 121 EXpn(z8) 2=l I=M ;; EX[z,—1,]=0
el €Iy

and
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2 = Z‘. EXpn(n*) (2 —l) 12 M E EXz—14]=0,
with L={1: (2;—1..,)=0, i=1,---,k} and L={i: (2,—1,)<0, i=1,---,k},
(8.20) | EXwhaw Lty (Zar —lace)] |

lni+1 ni—1 . 3
=(+2){3 e EXlpue)n(ah; ) (L)

8*[¢n(zm)¢n(zni ’ lni) (Zni _lnt)z(zﬂ-l - n¢+l)]

lni+l ln{

- ; & *[San(zi‘tﬂ)?sn(z:tﬂ ’ lnt+1) (zt - ni) (zi+1 - ni+l)2]}

5 Ly —lu

2
2ME S \pr1-2n,

< e
B (n+1)(n+2) i=1

k
1-21,,|=
2 -2

and further

(3.21)  EX[wiwLadioWna]

1
<4M*(3 .-__) -ty 1
(+ +i max i J@n‘ ——
4M* 7 1
= 3+ )maxn n+l—mn _ .
e +1),( ) N )y ——r—

Thus, the sum of the last three terms in the last expression of (3.16),
say (X, : Y ), can be estimated by (3.19)-(3.21) as

(3.22) L(Xie: Yie)SLn; k) .

Consequently, by Lemma 2.1 together with (3.16), (3.17) and (3.22), we
immediately obtain the target inequality (3.11), which completes the
proof of the theorem.

From the above theorem we immediately obtain the following asymp-
totic result which is an improvement for Theorems 4.1, 5.2 and others
in [2].

COROLLARY 3.1. Under the same assumptions as those in Theorem
3.1, the condition

(3.23) k(n)/ min (n;—n,)—0, (mn— o),
15isk+1 .

implies that

(3.24) Xty ~ Yoy (Ba (n—o0).

Remark 3.1. In [2], k(n)}/ glsigll(ni—ni_l)ao, (n—>o0) is required
1 +

for (3.24) to hold, whereas in the above theorem the requirement is
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weakened as (3.23).

Remark 3.2. In case of equal basic distributions, parallel results
with respect to X,u, can be obtained as the special cases of those in
this section. In addition, we can state analogous theorems to Theorem
3.1, when a set of spacings is chosen first and then the corresponding
sample quantiles (cf. [2]).
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