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Summary

The p-symbol partially balanced arrays of strength ¢, where p=3
and 4, are given by a method due to A. Dey, A. C. Kulshreshtha and
G. M. Saha [4]. '

1. Introduction

Suppose A=|la,|| is an nXm matrix and the elements a,; of A are
symbols (or levels) 0,1,2,---,s—1. Consider the s 1Xx¢ matrices X'=
(,, %3, -+, x;) that can be formed by giving different values to the z.’s,
z,=0,1,2,--+,8—1; i=1,2,---,t. Suppose that associated with each
tx1 matrix X there is a non-negative integer g, ,,..,, which is invari-
ant under permutations of a given set (x,, 2,,---, z,). If, for every t-
rowed submatrix of A, the s* tx1 matrices X occur as columns g, ,...o,
times, then the matrix A is called an s-symbol Partially Balanced (PB)
array of strength t with m assemblies, » constraints (or factors) and
parameters g,,,....,, which was first introduced by Chakravarti [2] as a
substitute for the orthogonal array, both serving the purpose of frac-
tional replicates of factorial experiments.

Recently, Dey, Kulshreshtha and Saha [4] have given a method of
constructing three-symbol PB arrays of strength two and three. In
this note, it is shown that three-symbol and four-symbol PB arrays of
strength t are constructed by using their method. Further, it is re-
marked that in general p-symbol PB arrays of strength ¢t are also con-
structed by the similar method.

2. Statements

A balanced incomplete block design with parameters », b, r, k and
2, is called a t-(v, k, 4,) design, if each set of ¢ different treatments
occurs together in 2, blocks. It is well known that there exist these
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- t-designs for many cases, see for example [1] and [5].
Let N=||n;|| be the incidence matrix of a t-(v, k, 1) design, where

1,  if ith treatment occurs in jth block,
n 7 =
i 0, otherwise ,

and the jth assembly of this vxb array N of (0, 1)-symbols be denoted
by a column vector, n;=(n, ny;,+++, n,;)’. Then we can define a new
column vector n} from n;, given by

(2.1) nf=nf, nf, -, 0¥,  n;+ni=2

for all +=1,2,---,v; 7=1,2,---,b.

Letting N*=||n%|, we consider the columns of the matrix A=[N:
N*] as 2b assemblies. It is shown by Chakravarti [3] that the matrix
N is a two-symbol PB array of strength ¢ with b assemblies, v con-
straints and parameters A(x,, %,,---, %,), where when z;,=1 for 1=1, 2,
«+«,r and x;=0 for ¢=r+1,---,¢,

a2, 2) =N, = ()N (P57 )N (=0 ([T,

t—r
=(—1)"""4""N,
(noting that Ny=b, N,=», N;=21; (1=2))

as defined in (3.2) of [3]. Denote by g,.,...,, the frequency of the or-
dered t-plet (x;, «,,---, ) as a column in any t-rowed submatrix of
A. It follows that ‘

when 2,=0 or 1 for 1=1, 2,---, ¢,
2.2) Hoay iz, = ATy, Ty,+ -+, )  defined above ;

when z,=1 or 2 for ¢=1,2,---,¢,

(2-3) Hrizgeeez, = HeCopdelzydeeaclz,) o
where
{ 1 y if xi=1 y
(@)= 1 R
0, if £,=2;

in particular,
2.4) 1.1 =22; ;
when 2,=0 and z,=2 for some 4, j (=1,2,---,¢),

2.5) fourpen, =0
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From the definition of matrices N and N*, it is clear that su,,.., is
invariant under permutations of its arguments. Therefore we have the
following :

THEOREM. The existence of a t-(v, k, ,) design implies the exist-
ence of a three-symbol PB array of stremgth t with 2b assemblies, v con-
straints and parameters p,.,... as given in (2.2), (2.3), (2.4) and (2.5).

The special cases of this theorem when ¢=2 and 3 are shown by
Dey, Kulshreshtha and Saha [4].

3. Concluding remarks

In the above construction of a three-symbol PB array of strength
t with 2b assemblies, v constraints and parameters gu,.,..., if n¥ in
(2.1) may be defined by m,;+n}=3, then it is clear that there exists
a four-symbol PB array of strength ¢t with 2b assemblies, v constraints
and the following parameters g,,,..., :

when z,=0 or 1 for 1=1,2,---,¢,
ﬂxlx,-nz‘zz(xlv Loyeery xt) )
when ;=2 or 3 for 1=1,2,---, 1,

Hzyzgeeoz, = Pelopezpeslay) 9

where
1 y if x£=2 y
e(x;)= .
0, if x,=3;
when 2,=0 or 1 and x,=2 or 3 for some %, j (t+#4)=1,2,---,¢,
pm;...x‘=0 .

Generally, if n} in (2.1) may be defined by n;+n¥=I—1, then
there exists an Il-symbol PB array. In the l-symbol PB array con-
structed by this method, however, the levels 2,3, ---,1—3 do not
appear completely among the [ levels. On the other hand, for the pur-
pose of the use of all the levels (for example, =6 levels), if we con-
sider a matrix B=[N: N*: N**¥] with 3b columns as assemblies defined
by N**=|n}*|, n,+n%=3 and n}+n}k*="7, then the array B contains
all the levels 0,1, 2, 3,4,5. Nevertheless, since the number of assem-
blies of the array B increases, we cannot get the point of this method
so much for the large value of symbols in an array.
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