NOTE ON THE CONSTRUCTION OF PARTIALLY BALANCED ARRAYS*

SANPEL KAGEYAMA

(Received March 31, 1973; revised Aug. 15, 1973)

Summary

The p-symbol partially balanced arrays of strength t, where p=3 and 4, are given by a method due to A. Dey, A. C. Kulshreshtha and G. M. Saha [4].

1. Introduction

Suppose $A = \|a_{ij}\|$ is an $n \times m$ matrix and the elements a_{ij} of A are symbols (or levels) $0, 1, 2, \dots, s-1$. Consider the s^t $1 \times t$ matrices $X' = (x_1, x_2, \dots, x_t)$ that can be formed by giving different values to the x_i 's, $x_i = 0, 1, 2, \dots, s-1$; $i = 1, 2, \dots, t$. Suppose that associated with each $t \times 1$ matrix X there is a non-negative integer $\mu_{x_1x_2...x_t}$ which is invariant under permutations of a given set (x_1, x_2, \dots, x_t) . If, for every t-rowed submatrix of A, the s^t $t \times 1$ matrices X occur as columns $\mu_{x_1x_2...x_t}$ times, then the matrix A is called an s-symbol Partially Balanced (PB) array of strength t with m assemblies, n constraints (or factors) and parameters $\mu_{x_1x_2...x_t}$, which was first introduced by Chakravarti [2] as a substitute for the orthogonal array, both serving the purpose of fractional replicates of factorial experiments.

Recently, Dey, Kulshreshtha and Saha [4] have given a method of constructing three-symbol PB arrays of strength two and three. In this note, it is shown that three-symbol and four-symbol PB arrays of strength t are constructed by using their method. Further, it is remarked that in general p-symbol PB arrays of strength t are also constructed by the similar method.

2. Statements

A balanced incomplete block design with parameters v, b, r, k and λ_2 is called a t-(v, k, λ_t) design, if each set of t different treatments occurs together in λ_t blocks. It is well known that there exist these

^{*} This research was partially supported by the Sakko-kai Foundation.

t-designs for many cases, see for example [1] and [5].

Let $N=||n_{ij}||$ be the incidence matrix of a t- (v, k, λ_t) design, where

$$n_{ij} \! = \! \left\{ egin{array}{ll} 1 \,, & ext{if } i ext{th treatment occurs in } j ext{th block} \,, \ 0 \,, & ext{otherwise} \,, \end{array}
ight.$$

and the jth assembly of this $v \times b$ array N of (0, 1)-symbols be denoted by a column vector, $\mathbf{n}_j = (n_{1j}, n_{2j}, \dots, n_{vj})'$. Then we can define a new column vector \mathbf{n}_j^* from \mathbf{n}_j , given by

(2.1)
$$n_j^* = (n_{1j}^*, n_{2j}^*, \dots, n_{vj}^*)', \qquad n_{ij} + n_{ij}^* = 2$$

for all $i=1, 2, \dots, v$; $j=1, 2, \dots, b$.

Letting $N^* = ||n_{ij}^*||$, we consider the columns of the matrix $A = [N: N^*]$ as 2b assemblies. It is shown by Chakravarti [3] that the matrix N is a two-symbol PB array of strength t with b assemblies, v constraints and parameters $\lambda(x_1, x_2, \dots, x_t)$, where when $x_i = 1$ for $i = 1, 2, \dots, r$ and $x_i = 0$ for $i = r + 1, \dots, t$,

$$\lambda(x_{1}, x_{2}, \dots, x_{t}) = N_{r} - {t-r \choose 1} N_{r+1} + {t-r \choose 2} N_{r+2} - \dots + (-1)^{t-r} {t-r \choose t-r} N_{t}$$

$$= (-1)^{t-r} \Delta^{t-r} N_{r}$$
(noting that $N_{0} = b$, $N_{1} = r$, $N_{i} = \lambda_{i}$ $(i \ge 2)$)

as defined in (3.2) of [3]. Denote by $\mu_{x_1x_2...x_t}$ the frequency of the ordered t-plet (x_1, x_2, \dots, x_t) as a column in any t-rowed submatrix of A. It follows that

when $x_i=0$ or 1 for $i=1, 2, \dots, t$,

(2.2)
$$\mu_{x_1x_2...x_t} = \lambda(x_1, x_2, \dots, x_t) \quad \text{defined above};$$

when $x_i=1$ or 2 for $i=1, 2, \dots, t$,

$$\mu_{x_1x_2\cdots x_t} = \mu_{\iota(x_1)\iota(x_2)\cdots\iota(x_t)},$$

where

$$\varepsilon(x_i) = \begin{cases} 1, & \text{if } x_i = 1, \\ 0, & \text{if } x_i = 2; \end{cases}$$

in particular,

$$\mu_{11\cdots 1}=2\lambda_t ;$$

when $x_i=0$ and $x_j=2$ for some $i, j (=1, 2, \dots, t)$,

$$\mu_{x_1x_2...x_t} = 0.$$

From the definition of matrices N and N^* , it is clear that $\mu_{x_1x_2...x_t}$ is invariant under permutations of its arguments. Therefore we have the following:

THEOREM. The existence of a t-(v, k, λ_t) design implies the existence of a three-symbol PB array of strength t with 2b assemblies, v constraints and parameters $\mu_{x_1x_2...x_t}$ as given in (2.2), (2.3), (2.4) and (2.5).

The special cases of this theorem when t=2 and 3 are shown by Dey, Kulshreshtha and Saha [4].

3. Concluding remarks

In the above construction of a three-symbol PB array of strength t with 2b assemblies, v constraints and parameters $\mu_{x_1x_2...x_t}$, if n_{ij}^* in (2.1) may be defined by $n_{ij}+n_{ij}^*=3$, then it is clear that there exists a four-symbol PB array of strength t with 2b assemblies, v constraints and the following parameters $\mu_{x_1x_2...x_t}$:

when $x_i=0$ or 1 for $i=1, 2, \dots, t$,

$$\mu_{x_1x_2\cdots x_t} = \lambda(x_1, x_2, \cdots, x_t) ;$$

when $x_i=2$ or 3 for $i=1, 2, \dots, t$,

$$\mu_{x_1x_2...x_t} = \mu_{\epsilon(x_1)\epsilon(x_2)...\epsilon(x_t)}$$
,

where

$$\varepsilon(x_i) = \begin{cases} 1, & \text{if } x_i = 2, \\ 0, & \text{if } x_i = 3; \end{cases}$$

when $x_i=0$ or 1 and $x_j=2$ or 3 for some $i, j \ (i \neq j)=1, 2, \dots, t$,

$$\mu_{x_1x_2\cdots x_t}=0$$
.

Generally, if n_{ij}^* in (2.1) may be defined by $n_{ij}+n_{ij}^*=l-1$, then there exists an l-symbol PB array. In the l-symbol PB array constructed by this method, however, the levels $2, 3, \dots, l-3$ do not appear completely among the l levels. On the other hand, for the purpose of the use of all the levels (for example, l=6 levels), if we consider a matrix $B=[N:N^*:N^{**}]$ with 3b columns as assemblies defined by $N^{**}=\|n_{ij}^{**}\|$, $n_{ij}+n_{ij}^{*}=3$ and $n_{ij}^{*}+n_{ij}^{**}=7$, then the array B contains all the levels 0,1,2,3,4,5. Nevertheless, since the number of assemblies of the array B increases, we cannot get the point of this method so much for the large value of symbols in an array.

Acknowledgement

The author wishes to thank the referee for his comments on clarity of the original draft.

OSAKA UNIVERSITY

REFERENCES

- [1] Alltop, W. O. (1972). An infinite class of 5-designs, J. Comb. Th. (A), 12, 390-395.
- [2] Chakravarti, I. M. (1956). Fractional replication in asymmetrical factorial designs and partially balanced arrays, Sankhyā, 17, 143-164.
- [3] Chakravarti, I. M. (1961). On some methods of construction of partially balanced arrays, Ann. Math. Statist., 32, 1181-1185.
- [4] Dey, A., Kulshreshtha, A. C. and Saha, G. M. (1972). Three symbol partially balanced arrays, Ann. Inst. Statist. Math., 24, 525-528.
- [5] Hughes, D. R. (1965). On t-designs and groups, Amer. J. Math., 87, 761-778.