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Summary

A connection between a balanced fractional 2™ factorial design of
resolution V and a balanced array of strength 4 with index set {g, z,
ts, s, pu} has been established by Srivastava [3]. The purpose of this
paper is to generalize his results by investigating the combinatorial
property of a fraction T and the algebraic structure of the information
matrix of the fractional design. Main results are: A necessary and
sufficient condition for a fractional 2™ factorial design T of resolution
2l+1 to be balanced is that T is a balanced array of strength 2! with
index set {uy, 11, tt2,**+, pu} DProvided the information matrix M is non-
singular.

1. Introduction

The theory of fractional factorial designs has found increasing use
in various fields of experimental research. It is well known that an
orthogonal fractional factorial design is desirable since the estimates of
various effects are uncorrelated. Orthogonal fractions, however, are
generally uneconomic in that they involve more than the desirable
number of assemblies or treatment combinations. Non-orthogonal or
irregular fractions, especially balanced fractions, have been investigated
by Bose and Srivastava [1], [2], Srivastava [3] and Srivastava and Chopra
[4], [6]. Among others, Srivastava [3] has established a connection
between a balanced fractional 2™ factorial design of resolution V and
a balanced array of strength 4 with index set {uy, g, o, s, 21}

Even in these recent works, investigations have been restricted to
effects up to two factors only. The study of the effects of three or
more factors will eventually become necessary or desirable.

One of the purposes of this paper is to establish the relation bet-
ween the elements of the information matrix of an irregular fractional
2™ factorial design T and the combinatorial properties of the array.

143



144 S. YAMAMOTO, T. SHIRAKURA AND M. KUWADA

Necessary and sufficient conditions for the array to be an orthogonal
array of strength ¢ and for the array to be a balanced array of
strength ¢ with index set {u, u,---, .}, are given in Section 3 in terms
of the structures of the information matrices.

Another purpose of this paper is to establish in Section 5 a con-
nection between a balanced fractional 2™ factorial design of resolution
2l+1 and a balanced array of strength 2/ with index set {g, p4,- - -, pai}-
This is a generalization of the results given by Srivastava [3].

For this purpose, some properties of a triangular type multidimen-
sional partially balanced association scheme which is defined among the
various effects of factors up to ! are considered in Section 4.

In a separate paper, we shall investigate further the structure of
multidimensional partially balanced association schemes. The decom-
position of the triangular type multidimensional partially balanced as-
sociation algebra into its two-sided ideals has provided us a powerful tool
in obtaining the characteristic roots of the information matrix of a
balanced fractional 2™ factorial design of resolution 2+1. The formula
obtained includes the ingenious results given by Srivastava and Chopra

[5].

2. Preliminaries

Consider a factorial experiment with m factors F,, F%,.-., F,,, each
at two levels. The treatment combinations or assemblies will be re-
presented by the vector (j,, J:, -+, 5.) wWhere 7,=0 or 1 represents
the. level of the factor F, for each t. The observations and their ex-
pectations of corresponding assemblies will be denoted by %(j:, 75, -, Jm)
and 75(Jy, 43, - -» Jm), Trespectively. The totality of all types of N=2"
assemblies arranged in the binary order will be denoted by

0 0---0 07

0 0---0 1

0 0---1 0

2.1) (Ngm)=9 01 1|
1 1-.-1 0

-1 1]

and the corresponding observation and expectation vectors will be de-
noted by
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y(0,- -+, 0, 0) 70, -+, 0,0)
y(Or"'vOrl) 77(0,"',0»1)
2.2)  y(2)=| y,---,1,0) and  9(Z)=| »0,---,1, 0)

y(1,---,1,1) o1+, 1, 1)

The vector of parameters or various effects, #(Z), of the 2™ fac-
torial experiment will be defined in a usual manner as

60,--.,0,0)
6(0,---,0,1) 1

(2.3) 6(Z2)=| g,---,1,0) =—I—V—D<m>7)(Z),
61,---,1,1)

where D,,=DXD®---®D (m times Kronecker products of D), and
D= [d"(o) d‘(o)] =[ 1 1]. Note that the columns as well as the rows

d(l) d@)J) L—1 1
of D, (Hadamard matrix of order 2™) are mutually orthogonal, since
pr=pp=% ]

0 2

In particular, the general mean, denoted alternatively by 6, in this
paper, is represented by (0, 0,---, 0), the main effect of the factor F},
denoted alternatively by 6,, is represented by 6(1, 0,---, 0), and the two
factor interaction of the factors F, and F,, denoted alternatively by 6.,
is represented by 6(1,1,0,---,0). In general, the k-factor interaction
of the factors F,, F,,,---, F, , denoted alternatively by 4,,,....,, is repre-
sented by O(e, &, -, en) With ¢, =¢,=-+-=¢, =1 and the remaining ¢,
are all equal to zero. In other words, according as the weight w(e,, &,
++<, &n), Or the number of nonzero elements of the vector (¢, &, - -, en)s
is either 0, 1,---, orl, 6(e, &, -, ¢.) represents either the general mean,
the main effect of the factor corresponding to the nonzero element of
the vector,---, or the [-factor interaction of the ! factors corresponding
respectively to the I nonzero elements of the vector.

Solving (2.3) with respect to 9(Z), we have

(2.4) WZ)=Dnyf(Z) ,

since 1/N-D,D(ny=1/N-D},,D¢ry=1Iy, the unit matrix of order N. The
(42" '+ 142" %+ .. . +1,+1)th row of Z can conventionally be called the
(%4, %35+ * *y tw)th row in the binary way starting from (0, 0,---,0). The
element of D, can, therefore, be represented by d/7*’/™ and be called

the ((%y, %9,°*, tm)s (J1s J2r*» Jm)) element. Then, from (2.4) and the
definition of D,,, we have
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(2'5) 7](j1’ jz; * ’Jm)_ 2 df:zj,’ ijmﬂ("'lr TR ,im)

iyigee

=i 12 dh('h)dj,("'z) 0, (Tn)0(8s, Taye ey )
Since d;(0)=1 for all j, (2.5) can be expressed by rearranging (i, %,,
-+, 1,) in the order of their weights as follows:

(2.6) (41, Jore**s Gm)

= dlld 1)...d 10;
kzo (2, t2,+ E,tk} 1‘1( ) j‘z( ) !zk( ) gty

—0¢+{t > djh(l)0h+ (t £ Ze djtl(l)dh’(l)ﬂ,l,,+ R}
where I, denotes the collection of all subsets of {1,2,---,m} with
cardinality k.

In the case where (I+1)-factor or more interactions can be assumed
negligible, we can assume the following model for the expectation of
the observation corresponding to an assembly (4, 7)) Ju) 1.€.,

(2'7) 77(j1’ jZ"' ’jm)
=0+ 3, 4 W+ = i, (D, (Do +

b, t2} € M,

'S5 2, G0 Wl

{t1,---, 0} €

3. Balanced array of strength ¢ and information matrix

Let T be a fraction of n assemblies. Then, T can be expressed
as a (0,1) matrix of size nXm whose ath row constitutes the ath as-
sembly (54, 7§,---, j%) for every a=1,2,---, n.

The observation vector y(7T') can be expressed as follows:

y(j(ll)r Sty j;:))
3.1) y(T)= z/(a("’, ., §©) |=Eb6+e,

y(J‘"’, © Jw

where E is the design matrix of T, 6'=(0,,{6.}, {6...},- -+ {0010} *)
is the vector of various effects and e is the error vector of order n
whose components are assumed to be uncorrelated and each has zero
mean and the same variance o’

The normal equation for estimating € can then be written as

(3.2) M6=E'y(T),
where M=FE'E.
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The column of E corresponding to 6,,,.... will be called the (¢, t,,
.-+, t,)th column since the columns can be arranged in any way. The
element of E'E whose row and column correspond to 4,,... and 6.,
respectively, will therefore be called the (¢, -, t.), (¢/,---, t})) element.

With respect to the elements of the information matrix of a frac-
tional 2™ factorial design T, we have the following theorem.

THEOREM 3.1. In a fractional factorial design T, the ((t,---,t.),
{t,---,t)) element e(t,,---,t,;t,,---,t)) of the information matrix M=
E'E depends on the set of indices {t,,---,t,} and {t{,---, t}} only through
the symmetric difference {t,,---,t,}{t],---,t)} of them. The element,
therefore, does mot depend on those factors belonging to the intersection
of the sets of indices.

PROOF. Since
7/(-7.(1“)’ '(2.:)’ ] .7%:))
=0,+ >3 dyo()f,+ 3 dgo()dge (1)t
{t.} e

1,t2 € 2

djgr)(l)d/ga)(l)- . .djga)(l)ehtz"'lk-*_ cee,
{t1, 22y 0+, fc} € D 2 k

we have
by tui By )= d (1) - - dyo(D)d (1) - - -d (1)

Since d;(1)=1 or —1 according as j=1 or 0 and dh,(e)dfu(e)zl if t,=t],
we have the theorem.

We, therefore, will denote e&(t;,:--,t,;,--+,¢t)) by 7q,..:> When
{tly"'9tu}e{t{""9tt,7}={i1’°",":k}'

As an example we shall illustrate the case where m=4 and three-
factor or more interactions are negligible. The parameters to be con-
sidered are 6,, 6,,---, 0., 03, 013, -+, 6. The information matrix of any
fraction T can be expressed as follows:

0# 01 02 08 04 012 013 014 023 024 034
0¢ T(¢) T(l) 7‘(2) 7’(3) r(4) 7"(!2) 7(13) T(u) 7(23) T(%) 7"(84)

0, T Tan Tan Tan T Te Tw Taw Taw Taw
0, T Tav Teo Tar Tam Tawo "o T T
A Ter Tao Tam Tawx Taw Tw Tasw Tw
0, T Tamw Taswo Too Taw 7w Tw
01 Ty Tan Teo Tan Taw  Taen
i Sym. Ter Tao Tan Tamo Taw
Ou Ty Tamo Tan Tawn
s Tw Tan Ton
02 Tw Ten

O T
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Let Ti.., be an mxt subarray composed of 4,th, i;th, ---, 7,th
columns of the array T and let 2} be the number of times the row
(pis+ -+, ) occurs among the subarray T.... Denote 7, ..., by 7%
for any subset {u,---,u;} of {i,---,14,}, where ¢=1 or 0 according
as 1; € {uy,- -+, u;} or not.

Arranging these 7 and 1 in the binary order as

8o, o

0 .ol eel
(33) : 1.:1-..%: ?ir--il and Tigors, = Tgl""t s

pr o
we have the following theorem.
THEOREM 3.2. For any mXt subarray Ti... of T we have
(3.4) Vi, = Divhiys, -
where D, is the t times Kromecker products of D.

PROOF. Since d,(0)=1, we have

Tt =T = zz‘,ld,m(l) “d (1)

3

Z fs;')(en)dji")(sz) d,gg)(st) .

From the definition of i.:}!, we have
T :j— Z‘, d,l(el) -d, ()3
Hence we have (3.4).

DEFINITION 3.1. An nXxm (0,1) matrix T is said to be an orthog-
onal array (O-array) of strength ¢, size m, m constraints, 2 levels and
index 2,, if every nXxt subarray T,,,., of T is such that every 0, 1)
vector occurs exactly 2, times as a row of T;,...;,.

DEFINITION 3.2. An nXm (0,1) matrix T is said to be a balanced
array (B-array) of strength ¢, size », m constraints, 2 levels and index
set {gm, m, -+, m}, if every subarray T;,,.. is such that every (0, 1)
vector with weight ¢ (¢=0,1,---,¢) occurs exactly y; times as a row
of T,

1igeeiy

The following theorem is said to be well known. The authors,
however, have never met with a general proof of it.

THEOREM 3.3. A mecessary and sufficient condition that every off-
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diagonal element 7i..,...,» of the information matric M of a fractional
2™ factorial design T vanishes for amy {w,,---, u;} satisfying 1=k=t,
18 that T is an orthogonal array of strength t.

PrROOF. (Necessity) From the assumption and Theorem 3.2, we
have

(3.5) Dmlil...it:[r"} ,
0

for every subarray Ti;,... Since D, is an Hadamard matrix of order

2¢, its rows are mutually orthogonal and every row except the first one

is a contrast. Thus we have 2!.}'=2, for every {i,,---,4.} and for

every (0, 1) vector (p, 72, ) 70)

(Sufficiency) If T is an O-array of strength ¢t with index 2,, then
we have ,..,=24J. for every {i,,---, 1]}, where j, is an n X1 column
vector whose elements are all unity. In this case, Theorem 3.2 shows
that

(3.6) Tipot, = A Dy Ju= [ 2025 ]

for every subset {7,,---,%]}. This means that Ty =0 for any subset
{uy,---, u,} satisfying 1<kt

We may note that if the design T is an O-array of strength 2,
and (I+1)-factor or more interactions are negligible, then the v, Xy,

(vl=1 + <71n> +ee (T)) information matrix M is diagonal and hence

all effects involving | or less factors are uncorrelatedly estimable.

THEOREM 3.4. A mecessary and sufficient condition that, for all
k<t, every element T,,....,, of the information matric M of a fractional
2™ factorial design T depends on the set {u,, u,,---, u,} only through the
cardinality k of the set, i.e., Tw..up=Ti, 1S that T is a balanced array
of strength t with index set {m, pr1,- -, pt:}-

PrROOF. If the design T is a B-array of strength ¢ with index set
{ttos 11, s}, then we have

3.7 Ay, =Koyt

for every {i, %;,+--, %}, where pg'=(p, pts,---, ) and K, is a 2°X(t+1)
matrix whose ((e;, &, -, &), J) element k,....,; is equal to 1 or 0 ac-
cording as the weight of (¢, &, -+, ), indicating the binary order of
row, is equal to j or not. Substituting (3.7) into (3.4) we have

Vigigerrt, = D,K,p
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or

(3.8) Tonn Qﬁ—g E d'(€1) “uleoceap, stts -
Since k..., ;=1 or 0 accordlng as w(el, e, +-,¢e)=7 or not and d. ()=
—1 or 1 according as (e, ¢')=(1, 0) or not, (3.8) can be reduced to

(3 9) 11, c‘_éé(_l)p(i>< t—i >ﬂ
* "1‘2 iy ..

=t =0 p/\j—i+p/’
for any (e, -+, &) with w(e,---, &)=1 (4=0,1,---,t). Since (3.9) holds
for every {i;, -, %}, 7e,...u,» depends on the set {u,,- -, u,} only through
its cardinality k, provided k<t. We can, therefore, write 7q,....,» as
7, for k=0,1,---,¢

Conversely, if 7,....,, depends on the set {u,---,} only through
k, then we have
(3.10) fil...i‘——"K(g)r s

for every {1, 1s,- - -, 7.}, where ’=("y, 7y, -+, 7;). Since we have from (3.4)

1
— D7, )

(3.11) R =5

similar arguments show that ,ZZ; .t depends only on the weight w(y,,
-, n,) irrespective of the set {i,,---, 4}, i.e.,

(3.12) r=t s st ),
I J—D/\ P
for all (y,---, ) with w(p,---, p)=1 (:1=0,1,---, ).
The relation (3.12) holds for every {i,---,%]}. Thus 2.} can be
denoted by g, for every {i,,---, 4,} provided w(y,,---, n,)=1. This means
that T is a B-array of strength ¢ with index set {g,-:-, ;).

We may note that if T is a balanced array of strength 2l with
index set {u, g, -+, #u}, and if (I+1)-factor or more interactions are
negligible, then the v, Xy, information matrix M has at most 20+1 pos-
sibly different elements 7,,7;,--+,7y. This fact has been pointed out
by Srivastava [3] for the case !=2. Formulas (3.9) and (3.12) show
general relationship between 7, and g,, i.e.,

(3.14) p=§1—; g(—l)p(jjp)(”;i)r,, i=0,1,-, 2.

Some special cases will be indicated in the following.
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Case 1. For 2l=4, from (3.13) and (3.14) we get
(7o) 1 4 6 4 1y
nll-1 -2 0o 2 1||lm

(3.15) =l 1 0 -2 0o 1|
-1 2 o0 -2 1||m
) L1 -4 6 -4 1)lpa

and
o 1 —4 6 —4 17(7,
t 1 -2 0 2 —1|n

(3.16) A =% 1 0 -2 0o 1||n
o 1 2 0 —2 —1l|n
"™ 1 4 6 4 1Jln

The formula (3.15) is given in Srivastava [3].

Case 1I. For 2/=6, we have

(K1 1 6 15 20 15 6 17 s)
-1 =4 =5 0 5 4 1@
7, 1 2 -1 -4 -1 2 1|l

3.17) 7 =l —1 0 3 0 -3 0 1 (| o
, 1 -2 -1 4 -1 -2 1|
sl -1 4 =5 0 5 —4 1||lpm
) L1 -6 15-20 15 —6 1)lu.

and
[ ) r1 —6 15 —20 15 —6 13 7))
" 1 -4 5 0 -5 4 —1||n
t 1 -2 -1 4 -1 -2 1l||n

(3.18) P 27311 1 0 -3 0 3 o —1{n
o 1 2 -1 -4 -1 2 1||n
s 1 4 5 0 —5 —4 —1||r
L 25 J [ 1 6 15 20 15 6 1)L 7]

4. Multidimensional

partially balanced association schemes

Multidimensional partially balanced (MDPB) association schemes
have been introduced by Bose and Srivastava [2] as a generalization
of partially balanced association schemes.
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Let S, S;,---, S, be m mutually disjoint non-null finite sets with
|S;|=mn; each, where |S| denotes the cardinality of a set S. Suppose
a relation of association being defined for each ordered pair of objects
(%) ;) and z,, € S, being called the ath associate of x;, € S; for some
a belonging to a set of association index n%%.

Conventionally, every object will be called the zeroth associate of
itself and 0¢ 2% will be assumed in order to make the definition of
MDPB consistent with that of the partially balanced association scheme
with n%* associate classes defined within each set S;.

DEFINITION 4.1. The relation of association defined in a collection
of sets (S, S;,++,S,) will be called an m sets multidimensional parti-
ally balanced (MDPB) association scheme if the following conditions are
satisfied : :

(i) The relation of association is symmetrical, i.e., if x,, is the
ath associate of z,,, then z,, is the ath associate of x;,.

(ii) With respect to any =, €S;, the objects of S; distinct from
%, can be divided into n“? disjoint classes and the number of objects
in the ath associate class S;(a; x,) is n¢?, for 4, j=1,2,---, m, the
numbers n“# and n{? being independent of the particular object x;,
chosen in S;.

(iii) Let S;, S; and S, be any three sets where they are not neces-
sarily distinct. Let z,, € S; be the ath associate of z,, € S; and consider
the sets Si(8; z..) and Si(y; z;,). Then the number of objects common
to the sets S.(8; x.,) and S.(y; x;,) is a number (¢, j, a; k, B, y) depend-
ent on the pair (x,, ;) and S, only through ¢, j, «, k, g and 7.

Note that the condition (i) implies 7=z and n*?=n%?, The
number n{*”=1 can be consistently defined for all 7.

Consider a 2™ factorial design in which (I+1)-factor or more inter-
actions are negligible, then the various parameters to be considered
are {0,},10.}, {0.,..},- -+, {0.p,.....}. Although the integer ! can assume
any value between 1 to m, we confine ourselves to some [ satisfying
l=<m/2 in order to simplify the description throughout this paper. Slight
modifications are necessary for those I>m/2.

Let S, be {6}, the set of general mean with |S;|=1; S, be {4,},
the set of main effects with |S,|=m; S, be {6.,}, the set of two-factor

interactions with |S2|=<g1’>; and, in general, S; be {f,,...}, the set of

i-factor interactions with ]S,.]=<?> for all ©=0,1,---,l. Then, a natu-

ral relation of association can be introduced for each pair of parameters
in those [+1 sets by defining that 0:,...., €S, and 6,..., € S, are the ath
associates if and only if
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(4.1) [{t,,- -, t} N {E, -+, t}}|=min (4, v)—a

holds. Note that (4.1) defines an association not only for any pair of
different parameters but also for any parameter which is the zero as-
sociate of itself.

THEOREM 4.1. The relation of association defined by (4.1) among the
l+1 sets of parameters {0,}, (6.}, {6.,0,},+ + s {Oeyey..e,} 18 am 1+1 sets MDPB
association scheme with the following parameters :

2 ﬂ(u’w:{ {0, 1,- - -, min (u, v)} UFEV
{1, 2,---, u} u=v,

@3 nw,w:{ min (u, v)+1 UFV
U U=7v,

oy u m—u
S <min (u, ’U)—a) <v—min (u, ’U)+a> ’
4.5)  plu, v, a;w, B, 7)
min @0)-« /min (u, v)—a)\ /u—min (4, v)+a
Eo ( k )(min(u, w)—ﬁ—k)
. <v—min (u, 'v)+a)< m—u—v+min (%, v)—a >
min (v, w)—7—k/ \w—min (4, w)+B—min (v, wy+r+k/

ProOF. The condition (i) of MDPB association scheme is satisfied,
since the relation of association defined by (4.1) is symmetrical. The
definition (4.1) shows that, for any 6,,,... € S,, the objects in S,, other
than 6,,,... , are divided into min (u, v)+1 or u classes S,(a;#,,...,) ac-
cording as v#u or v=wu, since « can take any value in the set =¥
which is given by (4.2). The number of classes n™" is clearly given
by (4.3). The cardinality n®® of the set S,(a; f.,...,) in (4.4) will be
given by counting the number of sets {t{,t,---,t)} of cardinality v
satisfying |{t:, t,,+ -+, t.} N {t, &, - -, t;}|=min (4, v) —a. Since those num-
bers are independent of the particular choice of the object 6,..., in S,,
the condition (ii) of the MDPB association scheme is satisfied.

The condition (iii) of the MDPB association scheme can be verified
by counting the number of those @, ..., in S, satisfying that each
Byrepr...ry is respectively the gth associate and the 7th associate of 6,,,....,
and 6,,...., which are the ath associates of each other. It is equivalent
to count the number of sets {t/,ty,---,t7} such that each has respec-
tively min (u, w)—a intersection with {¢,,¢;,---,¢} and min (v, w)—7
intersection with {¢/, t;,---, t;} for any given pairs of sets {t;, ¢, -, t.}
and {t],t, -, t;} having min (u, v) —a intersection. The number, there-
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fore, is given by (4.5) and it can be seen that the number p(u, v, a; w,
8, 7) is dependent on 4,,,.... , 6uy45...; and S, only through U, v, a, w, B
and 7.

The scheme thus defined is said to be a triangular type I+1 sets
MDPB (TMDPB) association scheme, since, as will be seen later, it can
be regarded as a generalization of triangular series of association
schemes (see Yamamoto, Fujii and Hamada [6]).

First, we define local association matrices A®?, (=0, 1,-- -, min (u,
v); u,v=0,1,..-,1) in order to investigate the algebraic structure of
TMDPB association schemes. Each matrix A®Y=|a%% % || of size

titgeset,ia

<ZL> X (ZL) represents the ordered relation of association from (Z") pa-

rameters 6,,,..., of S, to (’;’;) parameters 6,,,...; of S,, i.e.,

(4.6) aish =

titgesrtyia

i 1:  if 6,..; is the ath associate of 6,,,.... ,
0: otherwise .
Clearly, we have
u,v) v,uU, u,v) 5 —_ @0
AE )—AS. )’ A(- )J(,'.;)—'n,, )J(:‘)
4.7

min (%, )
(u,v) —
and E A, )—G(mx(?) ’
where G,., and j, are »xs matrix and X1 column vector of all unities,
respectively. It can also be seen that A™® (a=0,1,---,u) are the as-
sociation matrices of a T, type (the uth order triangular) association

scheme defined among <Z”> objects (see, for example, Yamamoto, Fujii

and Hamada [6]).
Next we define ordered association matrices D™ of size v, Xy, each
such that each matrix contains ({41)? submatrices. Let M®* be the

(Zj) X (Z”) submatrix in the wth row block and sth column block cor-

responding respectively to S, and S,. Then D®? is such that M=
A or 0 according as (w, 8)=(u, v) or not. Thus D™ is a v, Xy, matrix
in which all ({t,,---, ¢}, {ti,---, t}}) elements corresponding to ordered
© pair 4,,...., and fy....; are unity if and only if 6y...; is the ath associate
of ..., and the remaining elements are all zero.

The association matrices B®® which represent the relation of associ-
ation of TMDPB association scheme can, therefore, be defined as follows :

D‘('u, v) + D‘(Xv, u) (u #__ ’U)

(4.8) Bew= { |
D¢ (u=v).
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Now we have

THEOREM 4.2. The relationship algebra U ={B¥»”: a=0,1,---,u;
0=Zu<v<l) generated by (l_gg) symmetric matrices B®™ 148 a semi-

simple, completely reducible matriz algebra contaiming the unit matriz
I,. It can be represented by the linear closure [D®: a=0,1,---, min (u,
v); u, v=0,1,--+,1] of all (1+1)(1+2)(2L+3)/6 ordered association matrices
D‘(zu,v). |

PRrOOF. Since all generators of the matrix algebra 2 are symmetric,
l
the algebra 2 is semi-simple and completely reducible. >3 B{**=1I,
u=0

shows I, € %. From definitions of D{* and B{“» we have
(4.9) D®V=B&DBE D@ = BB |

(4.10) BE&DB§® = D@D 4 D D§ors) D D) D Do
and from (4.5) we have

0 if s#w,

(4.11) Dﬁ“""’Dﬁ‘»”):{
> o(u, v, a; w, B, ) D™ if s=w.

The relations (4.8), (4.9), (4.10) and (4.11) show that A=[D*?: a=0,

1,--, min (u, v); %, v=0,1,---,1].

We may note that contrary to the ordinary association algebra
(single set MDPB association algebra), the MDPB association algebra is
not in general commutative as has been indicated by Bose and Srivastava
[2]. The decomposition of TMDPB association algebra into its two-sided
ideals has provided us an important role in obtaining the characteristic
roots of the information matrix of a balanced fractional 2™ factorial
design of resolution 204+1. Details will be seen in a succeeding paper.

5. Balanced fractional 2™ factorial designs

It has been established by Srivastava [3] that a necessary and
sufficient condition of being a fractional 2™ factorial design T of reso-
lution V balanced is that T is a balanced array of strength 4 provided
the information matrix M of T is non-singular. The relation (3.15)
between index set {uo, 1, g2, 15, tu} of the array and the possible five
values 7y, 71, 72, 73 and 7, of the information matrix M of a balanced .
design has also been given there. General formula for the latter is
given in Theorem 3.4 of this paper. The following theorem is a gen-
eralization of the above mentioned results due to Srivastava [3].
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DEFINITION 5.1. Consider the case where the parameters or various
effects of a 2" factorial design to be estimated are 4, {0. 1, {0.,..},-- -,
{6..,....,}, the remaining effects being assumed negligible. If a fractional
2™ factorial design T has a non-singular information matrix M (=F'E)
of size v, Xy,, then T is called a design of resolution 2/+1.

DEFINITION 5.2. In a fractional 2™ factorial design of resolution
2l+1, if all elements of the covariance matrix M'¢* is invariant under

the group of permutation {r; 1'=<3_“(1) 3(2): :r(zm)>} of factors, then the

design is called a balanced fractional 2" factorial design.

THEOREM 5.1. A mecessary and sufficient condition for a fractional
2™ factorial design T of resolution 20+1 to be balanced is that T is a
balanced array of stremgth 2l with index set {py, s, - -, pn} provided the
information matric M of the design T is mon-singular.

PRrROOF. (Necessity) The condition that the design is to be balanced
may be stated as

(5.1) v COV (Htltl"'tu, ’ 0;;;;...;;)=COV (0,(3132...3“), 0,(;{;5...3",)) .

This means that each element of M~ is a function of two subsets {¢,,

ty,+ -+, t,} and {#], ¢;,-- -, t}} and is invariant under the permutation group
{r; f=<:(1) 3(2): :?’m)>} Since a maximal invariant of the function

of two sets {t,t,---,t,} and {t,8,---,¢)} is (u, v, [{t, &0+, 8}O
{ti, t;,---, t}]). This means that Cov (émz---t,,’ (5,;,5...,;) is a function of wu,
v and [{t;, ¢, -+, L}O{El, th,- -+, t)}|. Hence M~ can be written as a
linear combination of B®®, i.e.,

(5.2) M1'=73) b»B®» e |

As has been shown by Bose and Srivastava [2], (5.2) implies M ¢ 9.
Each element &(t;,---, t,; t{,--, t]) of M is, therefore, a function of u,
v and |{t;,---,t,}O{t,---,t}}|. On the other hand, since M is the
information matrix of a design T, Theorem 3.1 shows that e(ty, -, ty;
t,-+-, 1)) is a function of {t,,---,¢,}O{t,---,t)} only. Thus Theorem
3.4 asserts that T is a balanced array of strength 2.

(Sufficiency) If T is a balanced array of strength 2/, Theorem 3.4
asserts that M is a symmetric matrix belonging to the TMDPB asso-
ciation algebra 2. Since M is assumed to be non-singular, M~ can be
written as (5.2). The design is, therefore, balanced.

COROLLARY 5.1. A mnecessary and sufficient condition for a Srac-
tional 2™ factorial design T of resolution 2141 to be orthogonal (M s
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diagonal) is that T is an orthogonal array of strength 2l with index 2.
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