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1. Introduction

Although the theory of factorial and fractional factorial designs
has now a history of many years, it is only recently that some of its
deeper mathematical and combinatorial aspects are being exhibited and
investigated. In this connection one of the earliest papers which used
an abstract algebraic system to obtain results in confounding theory
in the case of the symmetrical prime power factorials and hence also
fractional replication is the classical paper of Fisher [3]. Subsequently,
Bose [1] utilized finite geometrical methods to discuss and resolve cer-
tain problems in the confounding and enumeration for the prime powered
symmetrical factorial. These two papers are pioneering efforts from
the viewpoint of utilizing abstract mathematical systems in the study
of symmetrical factorials.

The present paper is not only in the spirit of the above mentioned
two authors but also formulates the algebraic and combinatorial aspects
of arbitrary fractional factorial designs from arbitrary factorials, using
only the basic notions of group theory. In general, we have studied
a universal class of fractional factorial designs obtained from selecting
subsets of arbitrary cardinality from the group of treatment combina-
tions with the aim to characterize and enumerate subeclasses of designs
such that the spectra of the underlying information matrices are the
same with respect to an allowable set of parameters. In addition, we
provide a method such that these subclasses of designs generate the
whole universal class. The impetus for this development arose from a
paper by Raktoe and Federer [5] and a paper by Srivastava, Raktoe
and Pesotan [6] which were preceded by the fundamental paper of Paik
and Federer [4].

In Section 2 we introduce the concepts of faithful and unfaithful
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complexes for an arbitrary finite abelian group G and study the basic
properties of these complexes. In particular, we characterize unfaith-
ful complexes as precisely those subsets of G which are set unions of
distinet cosets belonging to a nonzero subgroup of G. We also intro-
duce here the notion of length for an unfaithful complex and obtain
criteria for an unfaithful complex to be of a given length. In Section 3
we present recursive formulae which count the cardinality of the set of
all unfaithful complexes of a given order v, and we use these formulae
to obtain the cardinality of the smallest set of complexes of order »
under translation. In the paper by Raktoe and Federer [5] the term
“ generator ” was used for both the terms faithful and unfaithful com-
plexes. In this paper we have abandoned this terminology since the
term generator has a distinet meaning in group theory. In the paper
by Raktoe and Federer [5] a formula is given connecting the cardinality
of all the main effect plans in the s’ factorial, s=p", p a prime, in terms
of the number of generators which produce s* plans and those which do
not. This formula is not true in general, though it holds for many
classes of complexes, and in Section 3 we give a counter example to
this effect. In addition, in this section we give necessary and suffici-
ent conditions under which the Raktoe-Federer formula holds. In Sec-
tion 4 we show how the theory developed in Sections 2 and 3 may be
applied to classify and enumerate designs. In particular, we show that
the class of all designs of a distinct order v may be generated by the
operation of translation followed by replication on a minimal set 4, of
complexes of order v. In addition, we describe a general classification
problem for designs of distinct order v and show how the theory de-
veloped in the previous sections helps in the resolution of this problem.

2. Characterization and properties of faithful and unfaithful complexes

Let G be a finite additive abelian group. We will denote the oper-
ation in G by the symbol +. We call a nonempty subset H of G a
complex and we refer to the cardinality of the set H as the order of
the complex H. For any g in G we mean by H+g the complex H+g
={h+g|he H}. In this section we introduce the concepts of faithful
and unfaithful complexes as particular types of complexes of G. We
establish here that unfaithful complexes are precisely those complexes
of G obtainable as set unions of distinet cosets of some non-zero sub-
group of G, that is a subgroup distinct from the subgroup of G con-
sisting only of the zero element of G. As a consequence we obtain
some results on the order of unfaithful complexes of G. In this section
we also introduce the notion of lemgth for an unfaithful complex and
study the connections between a given unfaithful complex H of G of
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a given length and the complex H¢ which is the set complement of H
in G. Finally in this section we study the action of certain permuta-
tion groups of G on a set of complexes of a given order for the par-
ticular case where G is a finite direct product of finite additive abelian
groups with the componentwise operation.

DEFINITION 2.1. A subset H of G will be called an wunfaithful
subset if and only if (i) H is the empty set or (ii) H is a complex and
there exists a g in G, g#0 (0 is the zero element [additive identity] of
G) such that H+g=H. A nonempty wunfaithful subset will be called
an unfaithful complex. Further a complex H will be called a faithful
complex if and only if for every g in G such that g+#0, we have that
H+g+H.

DEFINITION 2.2. Let H be any complex of G. We say that an
element g in G subtracts in H if and only if for each h in H there
exists a k in H with h—k=g.

PrOPOSITION 2.1. A complex H of G is an unfaithful complex if
and only if there exists a g in G different from the zero element of
G such that g subtracts in H.

The above proposition leads us immediately to:

COROLLARY 2.1. A complex H of G is a faithful complex if and
only if every g+0 in G does not subtract in H.

Let H be any complex in G. Define a binary relation p; in G by
01px9, if and only if H+g,=H+g,. It is easily verified that p, is a
congruence relation on G, that is, it is an equivalence relation on G

such that g,pxg, and fipnf; implies (g:+f))pu(g:+ ;) Where gy, g5, fi, and
f: are in G. As a consequence it follows that the set

2.1 Se(G)=1{9l|9 € G, gpx0} ,

where 0 is the zero element of G, is a subgroup of G. We will refer
to the subgroup Sy(G) as the subgroup induced by H, and generally,
we will write Sy for S;(G) when no ambiguity arises as to the group
G in question. We observe that if the complex H contains the zero
element of G, then S is a subset of H and, further, that if H is an
unfaithful (faithful) complex of G, then since G is an abelian group,
H+g is an unfaithful (faithful) complex of G for any g in G.

THEOREM 2.1. Let H be a complex of G. Then H is an unfaithful
complex if and only if H is a set union of distinct cosets belonging to
some nonzero subgroup of G.
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Proor. Suppose that H is an unfaithful complex. Then by de-
finition there exists a nonzero g in G such that H4+g=H. Hence ¢
belongs to Sy so that S is a nonzero subgroup of G. Consider the
relation p, restricted to H and pick hy, hy,---, h, such that h,e H, 1<
1=n, is a representative from each equivalence class in the quotient

set Hfpy. Then we claim that H=£} (Sg+h). Select any h in H.

Then, hpyh, for exactly one ¢ (1=<¢<n). This implies that H+h=H+h,,
that is, H+(h—h,)=H. Thus (h—h,;) belongs to Sy, and it follows that

h belongs to Sy+h;. Hence, H giL:Jl (Sg+h;). Next select any k in
LjJ (Sg+h;) then k=s-+h, for some 8 in Sy and some ¢ (1=7<n). Hence
;c_ 1belong:s to H+s. But H+s=H since s€ Sy, and, thus it follows that
H= i(_jl (Sag+h:). Select h;, and k; with 175 (1=4, j=<mn) and suppose that

(Sag+h)N(Sx+h;)#$. Then there exist s and ¢ in Sy with s+h,=t+h;
and thus (h,—h;) €Sy It follows that H+h,=H+h,, that is, h,pxh, a
contradiction to the choice of h; (1=7<n). Hence H is a disjoint union
of cosets belonging to the subgroup S; of G. Conversely suppose that

H =G (S+a;) is a disjoint union of cosets belonging to some nonzero
i=1
subgroup S of G. Pick any s in S such that s#0. Then since S is a
subgroup we have clearly that H+s=iL"J (S+a,,--|-.<>')=iLnJ1 (S+a;,)=H, that
=1 =

is, H is an unfaithful complex and this completes the proof.

DEFINITION 2.3. We say that an unfaithful complex H of G is
based on a nonzero subgroup S of G, or alternatively that S underlies
H if and only if H is a set union of distinct cosets of S.

COROLLARY 2.2. Let S be any nonzero subgroup of G of order s and
index t. Then any unfaithful complex H of G based on S has order ks
for some k (1=kZt).

THEOREM 2.2. Let H be an unfaithful complex of G. Then the sub-
group Sy induced by H underlies H. Further, H is based on a nonzero
subgroup S of G if and only if S is contained in Sy.

DEFINITION 2.4. Let ! be a natural number, [=0. We say that an
unfaithful complex H of G is of length | if and only if H is a disjoint
union of ! cosets of some nonzero subgroup S of G and H cannot be
written as a disjoint union of k cosets of some nonzero subgroup of G
with k<l. If H is an unfaithful subset and H=¢ (=empty set) we
define its length to be zero.

The next result gives the connection between the concept of length
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for an unfaithful complex H and the subgroup Sy induced by H.

THEOREM 2.3. Let | be a positive number. The following statements
are equivalent for an unfaithful complex H of G:
(1) H has length L.
(2) H 1is a disjoint union of 1 cosets belonging to S,.
(8) The order of H is l|Sy|, where |Su| is the order of Su.

The following is now an immediate consequence of Theorems 2.2
and 2.3.

COROLLARY 2.3. FEach unfaithful subset H of G has an unique
length . If H=¢ then =0 and if H+¢ the number | is the number
of distinct cosets of Sy whose union is H.

THEOREM 2.4. Let G have order m and let v be a number such that
1=<v=mn. Then there exists an unfaithful complex of order v if and only
if the g.c.d. (v, n)>1.

PropPOSITION 2.2. If H is an unfaithful complex of order » and
g.c.d. (v, n)=d, then the order of any underlying subgroup of H divides
d where n is the order of G.

Let G have order n and let v be any number such that 1=<v=n.
Suppose that the g.c.d. (v, n)=d>1. Then v=kd where g.c.d. (k, n/d)
=1. Proposition 2.2 leads us to the consideration of the following sets.
Let

(2.2) D={dl’d2""!dt}

where each d; (1<1<t) is a divisor of d and d,>1 for each i. We
assume that d,=d and that d,<d,<---<d,. Further, let d=md;, (1=
1<t) and let

(2.3) L={km,: v=kd; 121t} .
In terms of the above notation we now establish the following result.

ProposITION 2.3. If H is an unfaithful complex of order » and
length I, then ! belongs to L.

Let v and ! be any numbers such that 0=y, I<n where n is the
order of the group G. Let S be any nonzero subgroup of G. We now
introduce the following sets.

(2.4) Let F,(G) be the set of all faithful complexes of order v.
(2.5) Let U(G) be the set of all unfaithful subsets of order .
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(2.6) Let C/(G) be the set of all subsets of G of cardinality v.

(2.7) Let X, ,(S) be the set of all unfaithful subsets of length
! and order v which have underlying subgroup S.

It is clear that C(G)=F,(G)UU,(G) and further that for each v (0=
v=m) this union is disjoint. Note that X;,(S) and X, (S) are empty
sets if v and | are respectively nonzero numbers and that X, (S) is a
nonempty set and equals {¢}.

PRrOPOSITION 2.4. Let G have order =, let S be a subgroup of G,
and let H be an unfaithful subset of G of length [ and order ». (i)
If H=¢, then the set complement H*° in G is an unfaithful complex of
length 1. (ii) If H#¢, let T be the subgroup induced by H and let
t be its index. Then He X, (S) if and only if H°e X, ,,_(S). In par-
ticular, T is also the subgroup induced by H° and the map ¢ given by
@(H)=H" establishes a one-to-one correspondence between the sets U/(G)
and U,_,(G) such that ¢ carries the set X, ,(7) onto the set X,_,, (T).

The following is now an immediate corollary of the previous pro-
position.

COROLLARY 2.4. Let H be a faithful complex of order v in G and
let G have order m where 1<v<m. Then, the set complement H° in G
18 a faithful complex of order (n—v) and the map ¢ given by o(H)=H*
establishes a ome-to-one correspondence between the sets F,(G) and F,_(G).

ProOPOSITION 2.5. Let G have order n. Then H is a faithful com-
plex of order » in G if and only if (i) the g.c.d.(v,n)=1 or (ii) the
g.c.d. (v, n)=d>1 and for any nonzero subgroup S of G there exists
b in H such that S+bL H.

For any g in G we define a permutation w, on the underlying set
of G by w,(x)=2+g. Let

(2.8) AR ={w,lge G} .

Clearly ﬁ(G) is a subgroup of the symmetric group of all permutations
of G and is isomorphic to G under the map g—o,.
Let G, Gs,---, G, be finite additive abelian groups of orders s, s;,
..., 8, respectively and let s=ﬁ s;. Let K= % G; be their direct pro-
i=1 t=1

duct under the componentwise operation. For each i, (1=i=<m), let
2(G;) be the symmetric group of order s;! on the underlying set of G,
and let

(2.9) AK)= X AG)={(w1, -+, on) |0 € AG)
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be the direct product of the groups 2(G,) under the componentwise
operation of functional composition. For any a=(a,- -, a,) in K and
o=(w,"+, o,) in AK), we define o(a)=(w(a,), -, oa(a,)) and for any
complex H of K we define w(H)={w(h)|h € H}. Then for any g=(gi,
-++, g, in K the permutation w, in Q(K) is given by w,(a)=a+g=(a,+
g, ++, @m+gn), and clearly 2(K) is a subgroup of 2(K). For any a in
Q(K) we denote by 2(K)a a right coset of AK) in 2(K) determined
by a.

Y Let 2, be any nonempty subset of 2(K) and S a set of complexes
of K of a given order v (1=v<s). Let

(2.10) 0*S={a(H)|a € 2 and He S} .
If S={H}, we write 2fH instead of 2FS.

DEFINITION 2.5. We call the set 2*S the set generated by the
action of 2, on the set of complexes S. If 2,=2(K) and S={H}, we
say that any two sets in Q(K)*H are related by a permutation, and if
2,=0Q(K)a with a € 2(K), then we say that any two sets in AK)a*H
are related by a translation.

Given He C(K), (1=v<s), we now ask what are the sets SCC/(K)
which have the following two properties: (i) 2(K)*S=2(K)*H and (ii)
if 4 is any set such that $cCy(K) with QK)*J=2(K)*S, then |S|<
| 4], that is, what are the sets SSC/(K) of least cardinality such that
the class generated by the action of 2(K) on H is the same as the

class generated by the action of fJ(K )on S§?

Let R={a, -+, a,} be a set of representatives of right cosets of
the subgroup 2(K) in 2(K). For H in C(K) and a;, «; in R define a
relation ¢4 on R by

(2.11) a04a, if and only if there exists a g in K such that
o (a(H))=a,(H).

It is clear that ¢, is an equivalence relation on R. In the following
theorem using the above notation we answer the question posed above.

THEOREM 2.5. (i) For any « in 2AK) and H in C(K) the cardi-
nality of the class generated by the action of the right coset QK)o on the
complex H is the index of the subgroup S.(K), induced by «(H) in K.
(i) Let S={B(H),- -, B(H)} where k is the cardinality of the quotient
set Rloy and {8, -+, B} is a set of representatives, one from each equiv-
alence class in Rloy. Then (a) 2K)Y*H=U {AK)*B(H)|1=i<k} and
this union is disjoint and (b) If 4 is any set of complexes contained
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in C(K) such that AK)*H=2K)*4, then |S|<| 4.

PROOF. (i) Now by definition Q(K)a*H = {w,(a(H))|g € K}. Hence
oy (a(H))=w0,(a(H)) if and only if a(H)+g,=a(H)+g,, that is, if and
only if g,—g, belongs to S, (K). It follows that the cardinality of the
set of complexes which are related by a translation to H is the index
of the subgroup S.un(K) in K, that is |Q2(K)a*H |=|K/[S.a(K)|. (i)
Pick any H; in 2(K)*H. This implies that there exists an « in 2(K)

such that H,=a(H). Now .Q(K)=tLTJ 9(K)a, and hence there exists i,
=1

(1=1=7), and some g€ K such that a=w,«. Thus H,=w,a(H). Now
a; € B implies a;0,8; for some j (1=j=<k), that is, ai(H)=w,,(8,(H)) for
some g, in K. Hence H1=a(H)=co,+,,l(ﬁ,(H))e!j(K)*,B,(H). It follows

that 2(K)*H < 2(K)*S and since the reverse inclusion is clear, we have
equality. Further suppose that for some i#j (1=1, j<k), we have

[AK Y*8:(EN]IN[AK *B;(H)l#¢. Then for some g;, g, in K we have that
oy (Bi(H))=w,(8;(H)). This immediately implies that B,6,8;, and this
contradicts the choice of the 8, (1=i<k). Hence 2(K)*H is a disjoint
union of the sets [Q(K Y*Bi(H)] where 1<i<k. Next suppose that
AK*H=2K)*4 for some J<C(K). For B(H)ecS, where 1<igk,
B:(H)=a(H) for some a in 2(K), and hence g(H)=w,(H,) for some H,
in 4 and g,€ K. Consider the map ¢ from S into 4 which assigns to
each §(H) in & the complex H, in 4 such that g(H)=w,(H,) for some
¢, in K. Suppose that ¢(8(H))=¢(8;,(H)). Then for some g,, g, in K
we have that g(H)=w,,(H))=0w,,_(0,(H;)=0w,,4,8;(H). This immedi-
ately implies that B;0,8; and hence by the choice of the 8,’s we must
have that 8;=8;,. Hence the map ¢ is one-to-one and |S|<|4|. This
completes the proof.

3. On counting the number of faithful and unfaithful complexes

Throughout this section the following notation will be used: (i) We
will denote the order of the abelian group G by » and » will be a fixed
number such that 1<v<n. If X is any set, we will denote the cardi-
nality of X by [X]|. (ii) For any number q, 1<q=<mn, such that ¢ divides
n, let K(G) denote the set of all subgroups of G of order g. When it
is clear from the context which abelian group G is being considered,
we shall write K, for K(G). For any numbers q,, ¢, such that 1<¢,<
=7 and for a given subgroup T¢ K,, let R(K,,,T)={S|ScK, and S
is a subgroup of T}, if ¢, divides ¢,, and, let R(K,,, T)=¢ otherwise.
Further, let ¢s(¢)=|K,| and let ¢s(q, T)=|R(K,,,T)|- Note that
¢elgr, T)=0 if q, does not divide g,. (iii) For any numbers s and I,
(1=s, l=m), we define the set X,,(K,)={H|HeU(G), H has length [
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and an underlying subgroup S € K.}, that is, the set of all unfaithful
complexes of order v and length I which have an underlying subgroup
of order s. Since the number v is fixed throughout this section we will
write X (K,) for X, (K,). Similarly we write X,(S) for the set X .(S)
defined by (2.7).

We introduce a binary relation r in the set of complexes of order
v, namely in C/(G), as follows:

(8.1) HzH, if and only if there exists a g in G such that w,(H,)
=H, where w, is the mapping introduced in (2.8).

It is clear that = is an equivalence relation on C/(G). In this section
we will consider restrictions of = to various subsets of C,(G). When no
confusion is likely as to the group G in question we will write F,, U,
and C, respectively for the sets F(G), U(®), C(G) and we will denote
the corresponding quotient sets by F./z, U/z, and C,/r respectively.

We denote an equivalence class under = by [H].. Then, we have
clearly that

(3.2) AG*H=[H].,

that is, the class [H]. consists of complexes of order » which are re-
lated by translation to H, indeed, [H].={H'|H'e¢C,, H'=H+g, g€G}.
Further, it is clear that [H]. belongs to exactly one of F./r or U,/r ac-
cording as H belongs to F, or U, respectively.

Let S={H,, H,,---, H,} be a set of representatives one from each
equivalence class of the quotient set C,/r. Then, clearly, S is the set
with the smallest cardinality such that 2(G)*S=C/G), that is, (a) C(G)
={H,+g|1<i<e¢, ge G} and (b) if AG)*F=C,[G) for some set JC(G)
then |S|=|4|.

The main objectives in this section are the following :

(1) We provide recursive formulae which give the cardinality of the
set of unfaithful complexes of order » which have a prescribed length
and underlying subgroup. In general these formulae require knowing
the cardinalities of the sets of all subgroups of G of a given order
containing, respectively contained in, a fixed subgroup of G.

(2) In the special case such that (i) G is a cyclic group or (ii) G is a
direct product, G=(C,, X -+ + XCp) X (Cp, X -+ - X Cp) X + + + X (Cp, X =+ - X C,,,)
where C,, (1=i<m), is a cyclic group of order p, and p;, Dz, **, Pm
are distinct primes we show that the formulae mentioned in (1) reduce
to recursive formulae which allow one to calculate the cardinality ¢ of
the quotient set C,/r. Hence we have a method in the case G has the
particular forms indicated to compute the cardinality of the set S of
complexes satisfying the properties (a) and (b) mentioned above. In
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the general case, that is, for an arbitrary abelian group G, the cardi-
nality ¢ of the quotient set C,/r could be similarly computed if the car-
dinalities of the sets of subgroups of a given order containing, respec-
tively contained in, a fixed subgroup of G are known

(3) We state a formula given in Raktoe and Federer [5] which con-
nects the cardinalities of the sets U(G)/r, F.(G)/r, and C(G)/c for the
special case where G is a direct product, G=C, x---XC, where for
each 7, (1=<:i<t), s,=p° p is a fixed prime and C,, a cyclic group of
order s; and v=t(p°—1)+1. We show by an example that, in general,
the R-F formula is false. We then provide necessary and sufficient
conditions under which the R-F formula holds.

We begin by providing the basic setting in which the results of
this section will be formulated.

Suppose that the g.c.d.(v,n)=d and let D={d,, d,,---,d}, L=
{km,: 1=<i<t} be the sets introduced in (2.2) and (2.3). Recall that
1<d,<d,<---<d,, and d,=d, and d=m.d, for each i (1<i<t). Set
b;=km;, (1<1=<t). Then by Proposition 2.3 the various possible lengths
for unfaithful complexes of order » occur amongst the set {b,,b,,
«-+,b}. Let r,=n/d;, (1<i<t), and set r,=r, b,=b. Note that b,>
b2> e >bt .

LeMMA 3.1. For each i, (1=1<t), we have the following: (a) The
set X, (S) is precisely the set of all unfaithful complexes of order v and
length b, which have induced subgroup S if and only if the order of S
ts d;. (b) The set X,(K;)=U{X,(S)|S€K,} and this set union is
patrwise disjoint. In particular the set X, (K,) is precisely the set of
all unfaithful complexes of order v and length b, which have an induced
subgroup of order d;. (c) If He X,(S), where S is some monzero sub-
group of G, then [H].C X, (S).

LEMMA 3.2. The set of all unfaithful complexes of order v, namely,
U=U{X,,(K;)|1=i=t} and this set umion is pairwise disjoint.

LEMMA 3.3. For each i, (1=<i<t), and a given subgroup S of G such
that |S|=d;, let D,(S) be the set of all unfaithful complexes of length 1,
where 1<b;, and underlying subgroup S, Then we have that

3.3) DS)=X, (S)ULU (X, (Ty)|i+1=j<t and 1<y=uz,}]

where for each j, (i+1<j<t), the set {T;, Ty, -, T,.} is the set of all
subgroups of order d, which contain S. Moreover, this representation
of D(S) as a set union is pairwise disjoint.

LEMMA 3.4. Let T be a subgroup of G of order d, and let i be any
number such that 1<1<j<t. FEach unfaithful complex H ¢ X, AT) gives
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rise to exactly ¢o(d., T)=|R(K,,, T)| representations of H as disjoint
unions of cosets belonging to some subgroup of order d,. Hence the total
number of distinct representations of the members of the set X, (K,) as

disjoint set umions of cosets belonging to subgroups S of order d, is given
$a(dy

)l
by E Sl’a(dirij)le,(TJv)lv where {T;,|1=y=¢e(d,)} is the set of all
subgroups of G of order d;.
We now in the next result derive a recursive formula giving the

cardinality of the set of complexes of order v and length ! which have
a fixed subgroup S as their induced subgroup.

THEOREM 3.1. For each i, (1=1=t), the cardinality of the set of all
unfaithful complexes of order v and length b, which have an induced
subgroup S of order d;, that 1s, the cardinality of the set X, (S) where S
18 a subgroup of order d,, is given by the following recursive formula :
For 1=t so that d,=d, b,=b and r.,=r we have

(3.4) | X(S)|=C7
and for 1<i=<t—1 we have
t Z5
(3.5) 1% (S)[=Cit— 33 5 | Xo (Ts)
where for each j, (i+1=j<t), {T), -+, T;.} 1s the set of all subgroups
of G of order d, which contain S.

THEOREM 3.2. For each i, (1<1=t), the cardinality of the set of all
unfaithful complexes of order v and length b, which have an induced
subgroup of order d., that is, the cardinality of the set X, (K,) is given
by the following recursive formula: For i=t, so that d,=d, b,=b and
ro=r:

(3.6) | X,(K2) | = $e(d)Cs
and for i such that 1=i1=<t—1:

t  gadp
3.7 Ing(Kdg)l=¢G(di)Cb’;‘_j§_1 E a(ds, Tjw)|Xb,(Tju)|

where {T,,|1<y=<¢qs(d,)} s the set of all subgroups of G of order d, and
[ Xo(Ty)| ((+1=7=t) is given by (3.4) and (3.5).

For each 4, (1=1<t), let ¢,=| X, (K,)/z|, that is, let ¢; be the num-
ber of equivalence classes into which the set X, (K,) is decomposed
under the relation r. We let ¢;=0 in case X, (K,;)=¢.

THEOREM 3.3. For each i, (1=Z1<t), the number of equivalence classes
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c; into which the set X, (K,,) is decomposed under t is given by c,=(/r,)-
| X, ,(Ky,)|. Hence the least number of unfaithful complexes of order v,
length b, and induced subgroup of order d,, which will gemerate the set

X, (K,,) under the action of 2G) is given by 1/r) | X, (Ka)).

COROLLARY 3.1. The cardinality of the quotient set U, [z is given by
St_,‘lrllX,,i(Kd,)[ where for each i, (1=i1<t), the number |X, (K,)| 18 given
=17

by the recursive formulae (3.6) and (3.7).

THEOREM 3.4. The cardinality f of the quotient set F,[r is given by
—— 1 n d — 1 n
(8.8) f——[C, - cm]——[Cv —1U.1.
n =1 n

Thus, in particular, the set consisting of faithful complexes of order v
one from each equivalence class in F.[t which generate all of F, under the

action of the group 2G) has cardinality f, given by formula (3.8).
COROLLARY 3.2. The cardinality c of the quotient set C,[t is given by

(3.9) =l[c,"—z cm] e
n i=1 i=1

where for each i, (1=i<t), ¢;=(1/r)| X, (K.,)| and the number | X, (K,)|
18 given by the recursive formulae (3.6) and (3.7). Thus, in particular,
the set comsisting of complexes of order v, one from each equivalence class
in C.|r which generates all of C, under the action of the group XG), has
cardinality c¢ given by (3.9).

In the next result we obtain a formula which counts the number
of complexes of order v which contain the zero element of G.

THEOREM 3.5. (i) The number of unfaithful complexes of order v
(»=2) in G which contain the zero element of G is given by izt} ¢b,.  (ii)
=1

The number of faithful complexes of order v (v=2) in G which contain
the zero element of G is given by fv where f=|F,[c|. Hence the total
number of complexes of order v (v=2) in G which contain the zero of G

18 given by gc‘bt+fu and in particular g}tlc,b,+fu=C,"_:‘.

Proor. (i) Pick any unfaithful complex H in U, containing the
zero element of G. Then by Lemma 3.2, He X, (K,,) for exactly one
1 (1=4=t). Thus there exists a group S of order d; which is the group
induced by H such that H=SU(S+a,)U--- U(S+a,,,), a disjoint union.
Clearly the sets H, H+(—a,), H+(—a,), -+, H+(—a,,,) are all distinct;
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otherwise, in case H+(—a;,)=H+(—a,), it follows that a,—a; € S=Sy,
and thus S+a,=S+a,, a contradiction to the choice of the a,. Further
these sets H, H+(—ay), -+, H+(—a,,;) all belong to [H].. Hence there
are exactly b, sets in each equivalence elass [H], which contain the zero
of G. Now by definition ¢;=| X, (K,)/r| and hence it follows that there
are exactly cb; unfaithful complexes in X, (K, ) which contain the zero

of G. Using Lemma 3.2 we immediately obtain that there are 2 ¢.b;

unfaithful complexes of order v containing the zero element of G (ii)
Pick any H in F,, and suppose H={a,, a,,---,a,}. Then clearly the
sets H+(—a,), H+(—a,),: -+, H+(—a,) are all distinet, since H is faith-
ful, and each contains the zero element of G. Hence in each equiva-
lence class [H]. with H in F, there are precisely v faithful complexes
of order v each containing the zero of G. Since |F,/z|=f, it follows
that there are precisely fv faithful complexes of order v in G contain-
ing the zero element of G, and (ii) is established. Finally consider the
set G'=G— {0} where 0 is the zero element of G. There are exactly
Cr! sets of order v—1 in G'. If v=2 then each of these sets in non-
empty and lacks the zero of G. Adding the zero element of G to each
of these sets gives C7' sets of order v in G containing the zero element

of G. It follows that Zcib¢+fu_ L

COROLLARY 3.3. If the g.c.d. (v, n)=1 and v=2 then U,=¢ and the
cardinality f of the quotient set F,/r is f=C3/v. If v=1, then f=1.
In particular if the g.c.d. (v, n)=1, then v divides C 7' and n divides C”.

Suppose that K is an abelian group such that K is a direct product,
K= >< C;, where for each i (1=i=<a) C; is a cyclic group and the order

of each C; is a fixed prime p. Then |K|=p°. The following formula
giving the number of subgroups of K of order p’ is well known, for
example, see Carmichael [2]:

3.10 ()= =D =) =p)
(610 PO = D —p) =)

In the next result G, will stand for either a cyclic group of order
n or an abelian group of order n» of the form Go—(Cplx xCpl)x(C,,,x
< XCp)X -+ X(Cp X -+ XC,,) where for each ¢, (1=i1=m), C,, is a
cyclic group of order p;, p,---, p, are distinct primes and the group C,,
occurs a; times. Thus in this case n=p pp- - p""‘.

Let G;=C, xXC, X - XC, so that Gy=G;XG;X -+ XG,. Then it is
clear that the number of subgroups of G, of order s=pipf...pim is
the number ¢q,(s)=¢6 (D) ¢6, (D5 - - ¥5,. (D) Where ¢ (p*) is given by
the formula (3.10).
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Note further that any two subgroups of- G, of the same order are
isomorphic. For each 1, (1=1<t), let S, be a subgroup of G, of order
d; and for any j such that 1=<i1<j<t let ¢4,(d;, S;)=a;. Then by the
remark just made if T is any subgroup of G, of order d, we have im-
mediately that ¢4(d:, S;)=¢6(d:, T)=a.; for each ¢, j (1=1<j<t). In
the next result we show that the formulae (8.6) and (3.7) reduce to
formulae involving the numbers a,, in the case the group G has the
form of G,.

THEOREM 3.6. For each 1 (1=<1<t) the cardinality of the set of all
unfaithful complexes of G, of order v and length b, which have an induced
subgroup of order d, is given by the following formula: For i=t so that
d,=d, b,=b and r,=7,

(3.11) | Xo(Ka) |=¢(A)C3
and for 1=5i<t—1

(3.12) | XolKa) | =40 d)Cis— 33 0y X, (KL
and Aiy= ¢a,(dt ’ Sj)'

We illustrate some of the ideas developed thus far in this section
with the following example:

Erample 3.1. Let G= >7< C; be the direct product of seven cyclic
i=1

groups C; each of order 2. Then |G|=n=128. Let v=8 so that the g.c.d.
(v, n)=d=8. Hence the set of divisors of d distinct from 1 are D=
{2,4,8}. Let d,=2, d,=4, d;=8, then b,=4, b,=2, b;=1 so that the
set L={1, 2, 4}, and r,=64, r,=382, and r;=16. Let S, and S; be sub-
groups of G of orders 4 and 8 respectively. Using formula (3.10) we
now have that (i) ¢4(2)=127, ¢.(4)=2667, ¢(8)=11,811 and that (ii)
062, 8))=3, ¢s(4, S))=T, ¢a(2, S;)=T7. Now using Theorem 3.6 the num-
ber of unfaithful complexes of length 1 is | Xi(K,)|=|X\(Ks)|=pe(8)Ce.
The number of unfaithful complexes of length 2 is | Xy(K,)|=(¢s(4))C
—[¢e(8)C*1¢e(4, S;)=0. The number of unfaithful complexes of length
4 is | X(Ky)| = ¢e(2)C—| Xy(K)) | ¢6(2, S))—| Xi(Ka) | #6(2, S;) = 79,369,920.
Hence using Lemma 3.2 the total number of unfaithful complexes of
order 8, that is, |[U;|=|X|(Ky)|+]|Xy(K)|+|Xi(K:)|=179,558,896. Using
formula (3.8) of Theorem 3.4 the cardinality f of the quotient set F/r
is f=1/128[C;*—|U;|]1=11,168,930,418. Using Corollary 3.1 the cardi-
nality » of the quotient set Uy/r is u=|X\(K;)|/16+| Xy(K})|/32+ | Xu(Ky) |/
64=1,251,966. Finally using formula (8.9) of Corollary 3.2 the cardi-
nality ¢ of the quotient set Cyr is ¢=f+4=11,170,182,384. Hence if
one selects ¢ sets one from each equivalence class in Cy/r the resulting
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set is the set of least cardinality such that the action of 2(G) on it
generates all of C;.

Paik and Federer [4] proposed the name “generator” for both
faithful and unfaithful complexes of a group and this term was sub-
sequently used by Raktoe and Federer [5]. We have departed in this
paper from this terminology because the term generator has a distinct
meaning in group theory. Raktoe and Federer [5] gave the following
formula relating the cardinalities of C,, F,, and U,:

(3.13) (Pe(WNa+f-s'=CH

where (1) G=>2 C,,, a direct product of ¢ cyclic groups C,,, each of
i=1

order s;=s and s=s,=p* for each ¢, p is a fixed prime, and a=1 is a
fixed number, (2) v=%t(s—1)+1, (8) a=index of a subgroup of order v,
and (4) f=cardinality of the quotient set F/z.

The theory developed thus far shows that the R-F formula is not
true in general, since the formula assumes that all unfaithful complexes
of order v are of length one, that is, it assumes that all unfaithful
complexes of order v are subgroups of G or cosets belonging to a sub-
group of G of order v. Since unfaithful complexes of length other than
one do exist in general, it is clear that the number f in formula (3.13)
merely provides an upper bound to the cardinality of F,/r. A compari-
son of formula (8.13) with formula (3.8) which gives the cardinality of
F/r illustrates that those unfaithful complexes of order v and length
other than one have not been taken into account in formula (3.13).
We now present a counter example to formula (3.13) by exhibiting an
unfaithful complex of length other than one in a particular case.

FExample 3.2. Let G= >5< C; be the direct product of cyeclic groups
i=1

C; where for each 1, C;={0,1} under addition mod.2. Hence in this
case 8f=2% and v=6. Since there are no subgroups of order six in G,
we have that ¢,(6)=0 so that according to formula (3.13) f(2%)=C¥
which implies that 2°=32 divides C®. This, however, is impossible.
Further there are unfaithful complexes of order six. For example,
take H={(0,0,0,0,0),(@1,0,0,0,0),(,1,0,0,0),(1,1,1,1,1),(0,1,1, 1,
1),(1,1,0,0,0)}. Then H is an unfaithful complex of length three
whose unique induced subgroup is {(0, 0, 0, 0, 0), (1, 0, 0, 0, 0)}.

We now give necessary and sufficient conditions under which the
formula (3.13) holds where we remove the restriction placed on v as
given in (2) and allow v to be any given number such that 1<v<s'.
The following lemmas will be useful,
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LEMMA 3.5. Suppose that C,={0,1,2,---,8—1} is a cyclic group
under addition mod.s and let s=p* where p is a prime and a 18 any
number such that a>1. Then for each i, 1<i<a, there exists an un-
faithful complex of order p' and length p in C,.

LEMMA 3.6. Let G=_>_"2 C., be a direct product of cyclic groups C,,

of order s, where for each i, 1<i<m, s,=s=p° p a fixed prime and a
any number such that a>1. Suppose that m>1. Then for any k, 1=
k<m, there exists an unfaithful complex of order s* and an unfaithful
complex of order s*p in G each of length p.

LEMMA 3.7. Let G=G,XG, be the direct product of two monzero
finite abelian groups G, and G,. Let K be any subgroup of G, and let
H be any unfaithful complex of length | in G,. Let S be the subgroup
induced by H. Then H,=KXxH 1is an unfaithful complex of length 1
and the subgroup induced by H, is KXS.

PROPOSITION 3.1. Let G= >t< C,, be a direct product of eyclic groups
m=1

C,, each of order s=s, where for each m, s=s,=p", p a fixed prime,
t=>1, and « is any number such that a>1. Then for each i such that
1<i<a t there exists an unfaithful complex of G of order p* and length

p.

LEMMA 8.8. Let G= X C,,j be a direct product of cyclic groups C,,j
j=1 4

of order p=p,, where for each j, p;=p and p is a fized prime. Suppose
that m=2 and let K be any subgroup of G such that K+G. Then for any
x ¢ K the cyclic subgroup S of G generated by x is such that SN K= {0}.

PROPOSITION 3.2. Let G= Q C,, be a direct product of eyclic groups
j=1

C,, each of order p,=p where for each j, p;=p is a fixed prime such
that p#2. Suppose that m=8. Then for each 7 such that 1<i<m
there exists an unfaithful complex in G of order p‘ and length p.

PROPOSITION 3.3. Let G=X C, be a direct product of cyclic groups
j=1

C;, where for each j, C;={0,1} is a cyclic group of order two under
addition mod. 2. Then (i) there exists no unfaithful complexes in G of
length two, (ii) if m=4 then for each 7 such that 2<t<m there exists
an unfaithful complex of order 2¢ and length four, (iii) if 1=<m <3, then
every unfaithful complex of G is either of length one, that is, it is a
coset belonging to some subgroup of G, or it is of length three.

In the next result we provide criteria under which formula (3.13)
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holds when the restriction placed on v is removed and we allow v to be
any number such that 1=<v<s'.

THEOREM 3.7. Formula (3.13) holds for a given v such that 1=<v=s"
if and only if one of the following conditions is satisfied: (i) the g.c.d.
(v, p)=1, (i) v=¢', (iil) v=p, (iv) G=C;XC;XC, and v#6 where () s=
p*, p a fized prime, a=1, t=1 and (b) C,={0, 1} is the cyclic group of
order two under addition mod. 2.

PrOOF. Let v be a number such that 1<v<s‘. Suppose that for-
mula (3.13) holds, that is, suppose that ¢q(v)a+fs'=C;* where f=|F/z],
a is the index of a subgroup of G of order v and G=C,X:-- XC; (¢
factors). Then since fs'=|F,| and C}'=|C,|, it follows that ¢s(v)a=|U,|
so that if (3.13) holds then every unfaithful complex of G of order v
must be a coset belonging to some subgroup of G of order v. Thus if
(3.13) holds then every unfaithful complex of order » has length one.
Now suppose that the conditions (i), (ii) and (iii) fail to hold. We de-
duce then that (iv) must hold. Suppose then that the g.c.d. (v, p)=
d>1. Let v=mp’ where p'is the highest power of p dividing ». Then
the g.c.d. (m, p)=1. Suppose now that m>1. Let K be any subgroup
of G of order p‘. Since we assume that the condition (ii) fails, we
have that v=mp'<s‘=p*. Hence the index of K is larger than m.
Let H=KU(K+a,)U---U(K+a,_;), e union of distinct cosets belonging
to K. Then H is an unfaithful complex of order v=mp‘. Further H
cannot be a subgroup of G since m>1 implies that » does not divide
the order of G. Thus H has length m>1 and this is a contradiction
to our assumption that (3.13) holds. Hence m=1 and as a consequence
y=p'. Again since v#p, v#s'=p* we must have that 1<i<at. If a>
1 then by Proposition 3.1 there exists an unfaithful complex of order
p* and length p which would contradict our assumption that (3.13) holds.
Thus a=1 and 1<i<t, which means that ¢=3. Again if p#2, then by
Proposition 3.2 there exists an unfaithful complex of order v=p' and
length p contradicting our assumption that (3.13) holds. Hence we
must have that p=2, so that v=2! t=3, and 1<i<t. Now if t=4,
then by Proposition 3.3 there exists an unfaithful complex of order 2¢
and length 4 which would contradict our assumption that (3.13) holds.
Hence we must have that t=3 so that 1<i<t implies that 1=2. This
means finally that G=C,xC,XC, and v=2!=2% that is, v#6. ‘Hence
condition (iv) has been deduced. Conversely, if conditions (ii) or (iii)
hold, it is clear that (3.13) holds. If condition (i) holds, that is, if the
g.c.d. (v, p)=1, then by Proposition 2.4 we have that U=¢ so that C,
=F, and it follows immediately that (3.13) holds. Finally suppose that
G=C,xCy,xXC, and v#6. Then |G|=8 so that if v is any number such that
1=v=<8 and the g.c.d. (v, 2)=1, then again by Proposition 2.4 U,=¢ so
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that F,=C, and (3.13) holds. If v=2 then all unfaithful complexes of G
of order two are of length 1 and if v=8, then F,=¢ so that in either
case (3.13) holds. Finally if v=4, then again by Proposition 3.3 all un-
faithful complexes of G of order four are of length one and the for-
mula (3.13) holds. This completes the proof.

4. Application to fractional factorial designs

In this section we show how the theory developed in the previous
two sections can be used to classify and enumerate designs. The main
objectives of this section are the following: (i) to show how designs
may be identified with the concepts of faithful and unfaithful complexes
and to use this idea to exhibit a method for the construction and enu-
meration of a class of designs and (ii) to describe a classification prob-
lem for a class of designs and then to show, in general, to what extent
the theory developed in the previous two sections helps towards a re-
solution of this problem. We conclude with a practical example to
illustrate the ideas mentioned in (i) and (ii) above.

We now provide the basic setting in which the ideas of this section
will be formulated.

Let G= X C,, be a direct product of groups where for each i, 1=
i=1

i=m, C,={0,1,2,---,8—1} is a cyclic group under addition mod. s,
and let n==s;. We call the elements of G treatments and by a design D
of G we mean a collection of treatments of G where it is understood
that any given treatment in D may possibly, though not necessarily,
be repeated more than once. With each design D of G we associate

a complex D of G consisting of the set of distinct treatments in D.

We call D the underlying complex of the design D. It is clear under
these definitions that any complex of G is a design and further that
any given complex H of G generates an infinite class of designs D whose
underlying complex is H. It is also clear that the class of designs D
with underlying complex H is known once H is given. We say that a
design D has distinct order v, 1<v<mn, if and only if the underlying

complex D of D has order ». It now follows from the foregoing that
the construction and enumeration of the class of designs of distinct
order v reduces to the study of the set C, consisting of the complexes
of G of order v. The study of the set C, of complexes of order v in
G can be further reduced by the consideration of a subset 4 of C, con-
sisting of complexes of order v one from each equivalence class in the
quotient set C,/z. Such a set 4, as remarked earlier is characterized by
the properties that (a) 2(G)*4=C, and (b) if ScC, such that 2(G)*S
=C, then | 4|=[S].
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The following two general remarks can be made: (a) recall that
C,=F,UU, a disjoint union of the set F, of faithful complexes of order
v and the set U, of unfaithful complexes of order v. Thus, clearly, we

can write the set 4 mentioned above as a disjoint union $=4,U4,
where 4,2 U, and consists of unfaithful complexes of order v one from

each equivalence class of the quotient set U,/r, and, 4, F, and consists
of faithful complexes of order v one from each equivalence class of the

quotient set F/r, (b) in constructing the subsets 4, and 4, of U, and

F, respectively, it is clearly enough to list complexes in 4, and 4, re-
spectively which contain the zero element of G.

Let v be any number such that 1<v<n. Then the set C, has car-
dinality C" and in the light of the previous two sections the construe-

tion of the sets 4, and 4, mentioned above may be considered under
the following two cases depending on the number u.

Case 1. Suppose that the g.c.d. (v, n)=1. Then by Proposition 2.5
there are no unfaithful complexes of order v so that U,=¢ and C,=F,.
Let f=|F,/z|. Select f faithful complexes one from each equivalence

class in F,/r and let 4,={H,, H;,--+, H;} be the resulting set. Then
clearly every complex H in C, is of the form H=H,+h for exactly one
h in G and exactly one 7 such that 1<¢<f. Finally by Corollary 3.3
the number f=|F,/z| is given by f=C23'/v if v=2 and f=1 if v=1.

Case 2. Suppose now that the g.c.d.(v,n)=d>1. We first con-
struct the class U, of unfaithful complexes of order v. Let D= {d,, d,,
..+, d,} be the set given in (2.2), namely, the set of all divisors of d
distinct from one and suppose that d,<d,<:--<d,. Let v=kd, d=m.d,,
r;=n/d; and b;=km, where 1<¢<t. Then by Proposition 2.3 the vari-
ous possible lengths for unfaithful complexes of order v is in the set
L={b;, b;,---, b} defined in (2.3). Note that b,>b,>:-->b,. Also by
Lemma 3.2 U,= U {X, (K,,)|1=1<t}, where the sets X, (K,), consisting
of unfaithful complexes of length b, and induced subgroup of order d;,
are pairwise disjoint. Thus to build the set U, it is enough to restrict
ourselves to constructing the set X, (K,). Let 1<i=<t and recall that
c.=|X,,(Kz)/r|. We begin by listing the set K, of subgroups of G of or-
der d;,. Next list all those unfaithful complexes H of G which are unions
of b, distinct cosets belonging to some subgroup in the set K,,. This
is precisely the set of all unfaithful complexes of G of order v whose
underlying subgroup belongs to the set K,,. Reduce this set by remov-
ing those unfaithful complexes in it which have length smaller than b,.
From the resulting set which is X, (K,,), construct the set 4; of cardi-
nality ¢;, where by Theorem 3.3 ¢,=(1/r;)| X,,(Ky,)|, consisting of unfaith-
ful complexes of order v one from each equivalence class in the quotient
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set X, (K,)/r. Let $o=U 4., then , has cardinality =3¢, and the
set $,={H,, H,,---, H,} generates U, under the action of the group
2(G). Next consider the set C,—U,=F, and let 4,={H{, H/, --, H/}
be a set of faithful complexes one from each equivalence class in the
quotient set F\/r where f=|F,/c|. Finally the set 4=4,U Y4, consisting
of ¢c=f+u complexes of order v is the set with least cardinality such

that the action of the group £(G) upon it generates the set C..

In addition let 4 be the set consisting of the complexes of order
n—yv which are set complements in G of the complexes in the set 4
mentioned above. Then according to Proposition 2.4 we must have that

the set 4 is the subset of C,_, of smallest cardinality which generates

the set C,_, under the action of the group £(G). Thus the enumeration
and construction of the set 4 which generates C, under the action of

the group £(G) also leads to the construction of the set 4 which gen-

erates the set C,_, under the action of the group Q(G), and conversely.

Let v be any number such that 1<v<n. Let H be a complex
of order v, and let (r,)..r be any sequence of positive numbers. We
say that the design D of G is obtained by replication from the pair
(H, (rs)rex) if and only if the underlying complex of D is H and each
treatment % in H is repeated exactly r, times. In this case we write
D=(H, (r)rer)- It is now clear that each design D of G of distinct

order v is of the form D=(D, (r3)ic5) and conversely given a pair (H,
("w)ren), Where H is a complex of order v, there exists exactly one de-
sign D of distinct order v such that D=(H, (*,),cx). The process of
obtaining the unique design D from the pair (H, (7,)..x), we will call
the replication operation. Note, in particular, that if H is any complex
of order v, then H=(H, (7w)scx) With 7,=1 for each h ¢ H.

In terms of the replication operation we may summarize the above
ideas in the following way. Let 4 be the class of all designs of G and
for each v, 1<v<n, let 4, be the class of all designs of G of distinct
order v. Then, clearly, 4=U {4,|]1=<v=<n} and this set union is pair-
wise disjoint. It follows then that the study of the set 4 reduces to
the study of each of the sets 4,. From the above we have seen that
the study of the class of designs of distinct order v may be reduced to
the consideration of the set 4, of complexes of order v which has least
cardinality with respect to the property that Q(G)*g,:C,. Further, the
number ¢ which is the cardinality of the quotient set C,/r is given by
formula (3.9) of Corollary 3.2. Now, let D be any design in 4. Then,
D belongs to 4, for exactly one v such that 1=<v=<n, and D is obtained

by replication from its underlying complex D. Of course, D belongs
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to C, and hence, there exists exactly one H in 4, and exactly one &

in G such that D=H+h, that is, D is obtained by translation from a
unique complex in 4,. Hence, we have established that the class of
all designs 4 of G is generated by the operation of translation followed

by the operation of replication on the set U 4, of complexes of G.

Let D, and D, be any two designs in A Let p be a fixed set of
parameters and let M, ,, M, , be the information matrices of D, and
D, respectively with respect to p. We say that D, is similar to D,
with respect to p, in symbols, D,=, D, if and only if the information
matrices M), , and M,, , have the same spectra. A general classifica-
tion problem for the designs in 4, would be to obtain a description of
the equivalence class [D]~, of the quotient set 4,,=, consisting of all
designs similar to D with respect to p. While no such description is
available at the moment, the theory developed so far combined with a
result in a recent paper by Srivastava, Raktoe and Pesotan [6] helps
in giving a description for some of the members, though not neces-
sarily all, of the equivalence class [D]~, with respect to a suitable choice
of parameters p.

For each j, 1<j<m, let o, be a permutation on the underlying
set of the cyclic group C, of order s and consider the group 2(G),
introduced in general in (2.9), consisting of permutations w=(wy, -, @)
on G defined by (b, -, bn)=(w(by)," -, on(b,)) for any (b;,--+,b,) in
G. For any complex HC G let o(H)={w(h)|h € H} and let a design D
in 4, be given, Suppose that D=(D, (r3);c5) where D is the underlying
complex of D. We now define

(41)  AG*D={D\|D,€ 4,, Di=(w(D), (rua)ics) and o€ 2AG)} .

We call the set 2(G)*D, the set of designs of distinct order » gener-
ated by the action of the group 2(G) on the design D in 4,. It is
now clear that by the replication operation applied in turn to each

member of the set 2(G)*D one obtains the set 2(G)*D. Hence the
study of the set 2(G)*D reduces to the study of the set 2(G)*D where
D is the underlying complex of D. Now, 2(G)*D is a subset of C,.
Hence using the fact that 2(G)*4,=C, and Theorem 2.5 we know that
there exists a set of complexes S5, depending on D, contained in 4,
such that 2(G)*S;=2(G)*D. Thus we have established that for each
Dec 4, there exists a set S;C4, such that 2(G)*S;=2(G)*D. Now,
suppose that 4,={H,, H,,---, H.}; let 4,={H,,---, H,} be a subset of

4, of least cardinality such that 2(G)*4,=C,. Then, by the foregoing,
for each j, 1<5<k, we have that there exists a set § Hijgg,, such that
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QG)*H,=AG)*Sx, . 1t follows that
4.2) C.=2G)*F,=(AG)*Sx, )U - - - U(AG)*Sh, )

and this union is clearly pairwise disjoint. Further, we have that 4,
=8 PAIVERE us Hy, 8 pairwise disjoint union. The importance of the de-

composition of the set C, of complexes of order v as a disjoint union of
the sets 2(G)*S #yp 1<j<k, depends on the result obtained recently in

a paper by Srivastava, Raktoe and Pesotan [6]. We give here a brief
summary of this result.

Let us associate with each of the cyclic groups C, a formal symbol
A; and with each treatment combination (%, %;,---,4,) in G let us as-
sociate the formal symbol A/ Aj2-.-A, = which we call an effect and a
formal symbol Y;,...;, which we call an observation. With any design
D of G we associate an observation vector Y, which is a column vector
whose entries are the observations Y ...,, with (¢;,---, %,) in D arranged
in some arbitrary order. Let p, be the set of all effects. We place
the lexicographic order on G and induce it on p,, that is, we define
A Ape . Ain < AP Afr- - - AJ= if and only if for the first I, 1<I<m such
that 4,#j, we have that 7,<j,. If p is any nonempty set of effects,
we denote by p the column vector obtained by arranging the effects
in p in the order defined on p,. Let X=N,®-:-® N,, be the Kronecker
product of matrices N;, N,,---, N,, where for each 1, 1<¢<m, N, satisfy
the following requirements: (a) N, is a real orthogonal s, Xs; matrix,
(b) the first column of N; has the same entry, namely 1/4/8;, so that
(c) the sum of all terms in any column of N, but the first is zero.
Further, let z:G—{1,2,..-.,n} be a map given by «(k,,---, k,)=7 if
and only if (k,,---, k,) is the jth element of G in the lexicographic
order in G. '

Let D be a given design of G and p a column vector of effects.
Suppose that the observation vector Y, is displayed as

Yilloxl,

22052

4.3) Y,= y"x".n LY
Yy .xd,

Then we define for any permutation » in 2(G) a new observation vector
determined by D and o as

Yugd..al,
(4.4) Y, =| Yad-

Yuy..ax
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where (U,---, lL)=(o)k]),- - -, 0n(kL)) for 1<j<N and o=(w,,- -, o).
Further, suppose that the column vector of effects p is displayed
as below :

Af ... Adn

it ... AN
(4.5) p=| A Ad

.K .K
ASF . AR

We now define the matrix X,, as an N XK submatrix of X in the
following way : Corresponding to the entry yu....s in Y, and A/t A/ ..
A, in p with «(ki,---, ki)=mn;, 1<i<N, and (3}, - -, jh)=t, 1<I<K,
define the (i, l)th entry of X, , as the (n,, {,)th entry of X.

For any design D and a given column vector of effects p we call
the matrix M, ,=X} X, , the information matriz of D with respect
to the set of effects »p where for any matrix A the matrix A’ is the
transpose of A.

A collection of effects p will be called allowable if and only if when-
ever Al Aj2---A,lm belongs to p and ¢,#0, 1<j<m, then A}..-A4; j1
A A e Atm belongs to p for all I#0 in C,j. In the paper by
Srivastava, Raktoe and Pesotan [6] the term “admissible” was used in
place of allowable. We have abandoned the use of the former term
here, since the term admissible has special meaning in statistics.

In the paper by Srivastava, Raktoe and Pesotan [6] the following
theorem was established :

THEOREM. Let Y, be an observation vector associated with a design
D and let p be a cllumn vector associated with an allowable set of effects
p. Then each matrix in the set {My, ,|o € 2(G)} of information matrices
generated by the design D and o in AG) has the same spectrum.

Applying the above theorem we observe that if p is any allowable
set of effects and D is any design in 4, then the set 2(G)*D defined
in (4.1) is such that 2(G)*DC[D]s,, the equivalence class in the quotient
set 4,/~, determined by D and p. Further, applying this theorem to
the decomposition of C, given in (4.2) we observe that for each j, 1=
j<k, the information matrices corresponding to the designs in the set

.Q(G)*SHU with respect to an allowable set of effects p have the same
spectra.
The following example illustrates some of the ideas mentioned above.

Example. Let G=C,XC;xC; be a direct product of cyclic groups
where C,= {0, 1} is a cyclic group of order 2 under addition mod. 2 and
C;={0, 1,2} is a cyclic group of order 3 under addition mod.3. For a
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saturated main effect plan we need to take v=(2—1)+(8—-1)+(8—1)+1
=6 treatments of G. Then since |G|=18 we have that the g.c.d. (6,
18)=d=6. The divisors of 6 distinet from 1 are then d,=2, d,=3, d,
=6 and the various possible lengths for unfaithful complexes of order
6, using Proposition 2.3, are given by b,=3, b,=2, b;=1. Now the car-
dinality of the set of complexes of G of order v=6 is |C,|=|Cs|=Cs®=
18,564. Using formula (3.10) we see that the number of subgroups of
G of orders 2, 3 and 6, respectively, are ¢4,(2)=1, ¢(38)=4 and ¢4(6)
=4. Using formula (3.12) of Theorem 3.6 we now obtain the following :
(i) the number of unfaithful complexes of order 6 and length 1, namely,
| Xi(Ke) |=| X, (Ka,) |=(¢6(6))CP=12, (ii) the number of unfaithful com-
plexes of order 6 and length 2, namely, | Xy(K;)|=|X,,(K.,)|=(¢e(8))Cs—
(12)(1)=48, (iii) the number of unfaithful complexes of order 6 and
length 3, namely, |Xy(K,,)|=|X,,(K,)|=(¢4(2))C5—(0)(48)—(1)(12)="72.
Hence the number of unfaithful complexes of order 6, namely, |Us|=

23] | X,,(K4,)|=132 and by Corollary 3.1 we have that [U/r|=20. Further
i=1

using formula (3.8) we have that the cardinality of the quotient set
| Fo/r|=(Cg®—132)/18=1024. Let 4,CC; be a set consisting of complexes
of order 6 one from each equivalence class of the quotient set C/r.
Then by formula (3.9) we know that | 4s|=1024+20=1044. Thus the
1044 complexes of order 6 in 4, will generate under translation the
18,564 complexes in C; and then further by replication all the designs
of G of distinct order 6. Let us write J,=43UJ: where 4! consists
of all unfaithful complexes of order 6 and 4; is the remaining complexes
in 45 which must necessarily be faithful. Then from the above | 4:|=
20 and |4:|=1024. We follow the procedure outlined earlier in this
section to give a listing of the 20 unfaithful complexes in 4. There
is one subgroup of order two in G, namely, S={(0, 0, 0), (1, 0, 0)}. There
are four subgroups of order three, namely, S,={(0, 0, 0), (0, 1, 0), (0, 2,
0}, S.={(0,0,0),(0,0,1),(0,0,2)}, S;={(©,0,0),(0,1,1),(0,2,2)}, and
S,={(0,0,0),(0,1,2), (0,2,1)}. Finally, there are four subgroups of
order six, namely,

T,={(0, 0, 0), (0, 1, 0), (0,2, 0),(1,0,0),(1,1,0),(1, 2,0},
T,=1{(,0,0),(1,0,1),(1,09,2),1,0,0),(,0,1),(0,0,2)},
T;=1{(0,0,0),(0,1,1),(0,2,2),(1,0,0),(1,1,1),(1, 2,2},
T,={(0,0,0), (0,1, 2), (O, 2,1),1,0,0),1,1,2),(1,2,1)} .

Then the set {7\, T;, T;, T} is a set of complexes of order 6 and length
1 which generates the set X, (K,,)=X,(K;) under the action of the group
2(G). We now list 8 unfaithful complexes of order 6 and length 2 with
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induced subgroups of order 8 which generate the set X, (K.)=Xy(Kj)
under the action of the group 2(G). These are,

T,= {(0, 0, 0), (0, 1, 0), 0, 2, 0), (0, 0, 1), (0, 1, 1), (0, 2, 1)} ,
T,= {(0, 0, 0), (0, 1, 0), (0, 2, 0), (0, 1, 2), (0, 2, 2), (0,0, 2)} ,
T,= {(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 2), (0, 1, 0), (0, 1, 1)} ,
T,= {(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 2, 1), (0, 2, 2), (0, 2, 0)} ,
T,={(0, 0, 0), (0, 1, 2), 0, 2, 1), (0, 0, 1), (0, 1, 0), (0, 2, 2)} ,
T={(0, 0, 0), (0, 1, 2), 0, 2, 1), (0, 1, 1), 0, 2, 0), (0, 0, 2)} ,
T,,= {(0, 0, 0), (0, 1, 1), 0, 2, 2), (0, 1, 2), (0, 2, 0), (0, 0, 1)} ,
T={(0, 0, 0), (0, 1, 1), 0, 2, 2), (0, 2, 1), 0, 0, 2), (0, 1, 0)} .

Finally we list 8 unfaithful complexes of order 6 and length 3 which
generate the set X, (K,)=Xy(K;) under the action of the group 26).

These are,
Ts={(0, 0, 0), (1, 0, 0), (1, 0, 2), (0, 0, 2), (1, 2, 0), (0, 2, 0)} ,
T.={(0, 0, 0), (1, 0, 0), (1, 0, 2), (0, 0, 2), (0,1, 0), (1, 1, 0)} ,
Ts={(0, 0, 0), (1, 0, 0), (1, 0, 2), (0, 0, 2), (1, 2, 1), (0, 2, 1)} ,
Ts={(0, 0, 0), (1, 0, 0), (1, 0, 2), (0, 0, 2), (1, 2, 2), (0, 2, 2)} ,
T.={(0, 0, 0), (1, 0, 0), (1, 0, 1), (0, 0, 1), (1, 2, 0), (0, 2, 0)} ,
Ts={(0, 0, 0), (1, 0, 0), (1, 0, 1), (0, 0, 1), (0, 1, 0), (1, 1, 0)} ,
T.={(0, 0, 0), (1, 0, 0), (1, 0, 1), (0, 0, 1), (1, 2, 1), (0, 2, 1)} ,
Tyw={(0, 0, 0), (1, 0, 0), (1, 0, 1), (0, 0, 1), (1, 2, 2), (0, 2, 2)} .

Hence the set Ji={T;|1<i<20} will generate the set of all unfaithful

complexes of order six under the action of the group 2(G). Further,
to obtain a complete listing of the set 4, one would have to list 1024
faithful complexes of order 6 which are not related by a translation;
each such faithful complex of order 6 in 4, will produce 18 complexes
under translation. Since we selected the parameters p to be the main
effects and the mean then, clearly, p is an allowable set of effects.
Thus if D is any design of distinet order 6, then the class of designs
generated by the action of the group 2(G) on D, namely the class
2(G)*D, is spectra invariant with respect to the set of main effects p.
Also, in the list 4, of 1044 faithful and unfaithful complexes if we
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select a complex H and obtain through it a design D=(H, ("»)nen), then

the class of designs generated by the action of .(}(G) on D is as well
spectrum invariant relative to the set of main effects p. Finally, one
might measure the efficiency of this process by observing that we have
discarded 17,520 complexes of order 6 so that this process has a dis-
carding efficiency of 94.29 in this case.
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