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Summary

Asymptotic formulas for the distributions of the likelihood ratio
statistic, Hotelling’s statistic and Pillai’s statistic for multivariate linear
hypothesis are derived under the assumption of n,=ne, n,=nh (¢>0,
h>0, e+h=1) and 2=0(n), where n, and =, are the degrees of free-
dom for the error and for the hypothesis, respectively and £ is the
non-centrality matrix. New asymptotic formulas are given in terms
of normal distribution function and its derivatives up to the order n~.
We give also some numerical results of our asymptotic approximations.

1. Introduction

Let S, and S, denote the independent p X p matrices with the central
Wishart distribution Wy(n,., 2) and the non-central Wishart distribution
Win,, 2, 2), respectively. The likelihood ratio statistic, Hotelling’s sta-
tistic and Pillai’s statistic for multivariate linear hypothesis are ex-
pressed by W= — {n.+(n,—p—1)/2} log |S.(S,+S.)!|, T=n,.tr S,S;* and
V=(m.+n,) tr S,(S,+S.)~!, respectively. Then 7, and 7, mean the de-
grees of freedom for the error and the hypothesis. The asymptotic
expansions for the non-null distributions of W, T¢ and V with respect
to n, up to the order =;?% assuming that =, is a fixed number and 2
is a fixed matrix, are available in the literature (Sugiura and Fujikoshi
[11], Siotani [9], Fujikoshi [8], Muirhead [6] and Lee [4]). Sugiura [12]
has obtained the asymptotic expansions of the non-null distributions of
these statistics under the assumption that 2=0(xn,) and =, is a fixed
number.

In this paper we study the asymptotic distributions of these statis-
tics in the situation that =, is also relatively large. We derive the’
asymptotic expansions for the distributions of W, T? and V assuming
that n.,=ne, n,=nh (¢>0, h>0, e+h=1) and 2=n6 where 6 is a fixed
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matrix. New asymptotic formulas are given in terms of normal dis-
tribution function and its derivatives up to the order n™' by using the
similar line as in Sugiura [12]. Here we note that it is realistic to
assume that =, is relatively large, in some multivariate linear hypothesis,
e.g., in testing the interactions in multivariate multi-way classification
design with relatively large levels and small cell frequencies. In Sec-
tion 4 we also attempt to test numerically our asymptotic approxima-
tions. In the following we may assume X=1I and 2=n6=n diag (6,, 6,,
---, 0, since we treat the distributions of invariant tests for multivari-
ate linear hypothesis.

2. Preliminary lemmas
Let T, and T, be the statistics defined by
2.1) T,=ym(S/m—pel) and T.=vm {S;/m—p(hI+26)} ,

for m=p'n—r where g and r are fixed numbers. Then, by the same
technique as in Fujikoshi [2], it is easily seen that the statistics T, and
T, converge in law to p(p+1)/2 variate normal distribution with mean
0 as m tends to infinity. Put

(2.2) A5=p tr [eA0:+ {hI+2(a+ B)O) B3]

for any given diagonal matrices A and B where 9, and 9, are defined by
@3) .= (% (1+ai,)a/azg;>> and  8,= (% 1 +a¢,)a/azg';>)

for any symmetric matrices 4,=(4?) and 4,=(4{?) of order p. We write
42 as d, which does not depend on the operators o, and 3,. We need
the following lemma similar to Sugiura [12].

LEMMA 1. Let S, and S, have W(n,, I) and W (n,, I, 2) respectively.
Suppose f(4,, 4,) is an analytic function of two positive definite matrices
A, and 4,. Then the following asymptotic formula holds:

(2.4) E[f(S./m, Si/m) etr {$(AT.+ BT,)}]
=etr (—dit") [L+m ¢ {1 +4dsg?/3} + m ™ {3+ (L + I7/2)¢*
+2(d,+2d,01/3)¢' + 8d:p"[9} + m ™ ¢ { [+ [y +([5+ 1]y
+4d,1[34I7(6)¢" +2(8ds/5+2duI /3 +duls +dal7[3)g*
+8(dsdy[3+dil1/9)¢° + 32d3¢° 81} +m ™~ {(45)}[2+ 2(4) 4ip*
+2(4})'¢*/8+the lower order derivatives}
+OM )] f (Aey An) |4, per, 4, =ucnzs20) 5

where ¢=1it (i=+v—1) and I'; are defined by
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@5) L=24i+rd,, [L=8+rL,
Iy=48+rd,, L=4ptr{eAd+(hI+46)Bs2} +8p tr 66,B3,+2r4:
I=84+4rdy/3 . ’
Proor. By expanding f around S,/m =pel, S,/m = p(hl+26) in

Taylor’s series and evaluating the expectations with respect to S, and
S, by using the formula (Anderson [1])

(2.6) E [etr (4TS,)]=|I—2iT| ™" etr {2i2 TI—2i T)™"}

for any symmetric matrix T=((1+4,,)t;;/2), we can express the left-
hand side of (2.4) as follows:
(2.7) exp {——m‘“’¢d1—4‘3}|I—2m“‘/2(¢A+m“/zae)["‘""‘*"/2

. |I_2m—l/2(¢B+ m—l/zan) [—ph(m+‘r)/2 etr [2y(m1/2+,’.m—1/2)6

- (9B+m0,) (I~ 2m ™V (gB-+m™9,))

* f(/l,, Ah) I/‘¢=pel,Ah=p(hI+28) .

Applying the ‘asymptotic formulas, —log|l—n"'A|= Z‘, n~ tr A%ja+
O(n~**) and (I—n"'4)™! 2 n~"A*+0(n~“*") which hold for large n, to
(2.7), we obtain (2.4).

Let G[r(T,, T;)] be an abbreviated notation for
(2.8) e Er 7, [MT., T)) etr {¢(AT,+BT,)}] .
The following lemma is useful for our asymptotic expansions.

LEMMA 2. Let R, S, W and Z be any fired diagonal matrices of
order p. Then the following identities hold :
(2.9) G]l=14+m"2g(rd;+4¢'ds/3) +m™'¢* {r(d,+rd3/2)
+2¢%(d,+2rd,d,[3) +88'd;/9} +O(m~*?) ,

G[tr RT.ST,] (re)™*
=a(R, S)+4¢*rea+m ' *¢[2¢(R, S; A)+r{da(R, S)
+4pe tr RSA} +4¢*{d;a(R, S)/3+4pe tr RSA*+rd,pea}
+16¢*pedsa/3] +0(m ™) ,
G[tr RT.ST,](¢e)™
=4¢*8+2m~"2¢[r tr RS(AL+BM)
+2¢*{2 tr RSAB(AM+ BN)+rd, 8} +84'd,8/3] +O(m™) ,
Gl[tr RT,ST,]p™
=c(R, S; M)2+4¢ur+m™*$[2{c(R, S; BM)
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+2a(R6, SB)+2a(RB, S6)} +r{d,c(R, S; M)/2
+4p tr RSBLM} +44* {die(R, S; M)/[6
+4p tr RSBMN+rd,pr} + 164 pdsr /8] +O0(m™)

Gltr RT.STWT.](pe)™
=26b(R, S, W; A)+8¢'e tr RSWA'+0(m™"") ,

Gltr RTSTWT.](¢e)™"
=2¢a(RWBM, S)+8¢*ze tr RSWA*BM+0(m™"?) ,

Gltr RT.ST,WT,](p'e)™
=2¢c(RSA, W; M)+8¢*: tr RSWAB'M*+0(m™"?) ,

Gltr RT,ST,WT,lp™
=¢{b(R, S, W; BM*)+c(RM, SM, WM ; BM )}
+8¢'u tr RSWB'M*+O0(m™"") ,

G[(tr RT.ST.)'}(re)*
—a(R, S)+2a(R?, S?)+2a(RS, RS)+8¢*ue {4 tr (RSA)?
+aa(R, S)} +16¢'(zea)’+0(m ") ,

Gltr T¢ tr (RT.)"] (e)™
=(p"+p+4)a(R, R)+4¢'pe{(P'+p+8) tr (RA)
+a(R, R) tr A%} +16¢'(ue)® tr A* tr (RA)*+0O(m™"%) ,

Gltr RT.ST, tr WT.ZT,](¢'¢")™*
=4¢*{4 tr RSWZABM+ Ba(R, S)} +16¢*uea+0(m™""?) ,

Gl(tr RT.ST,) (i)™
—¢(R, S, R, S; M)+8¢%u tr R'S*eA*+ B:M)M
+16¢4%ef 4+ O(m12) ,

Gltr RT,ST, tr WT.ZT,] (%)™
—o(R, S, W, Z; M)+8¢u tr RSWZ(eA*+ BM)M
+164'2epB+0(m™"7) ,
Gltr RT.ST, tr WT,ZT,](ze)™"
—a(R, S)e(W, Z; M)[2+28uleac(W, Z; M)+2a(R, S)7}
+16¢*Peai +O(m™"?) ,

Gltr RT.ST, tr WT,ST,](¢e)!
=2¢*(8 tr RSWZABM*+Be(W, Z; M)} +16¢*upi+O0(m™""?) ,
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Gl(tr RT,ST,))p
={c(R, S; M)2+a(RM?, SY)+a(R:, SIM?)} /2
+a(R*M, S'M)+a(RSM, RSM)+a(RSM?, RS)
44 {8 tr R'S'B'M*+10(R, S; M)} +16¢*(ur)*+0(m=17) ,

where a=tr RSA’, B=tr RSABM, f=tr WZABM, r=tr RSB'M?, 7=
tr WZB'M?, L=hI+26, M=hI+46, N=hI+66, a(R,S)=tr RS+tr R-
trS, bR, S, W; Q=3 tr RSWQ+tr RSQ tr W+tr SWQ tr R+tr RWQ tr S,
¢(R,S;Q=c(R,S,,I;Q) and cR,S,W,Z;Q)={4tr RSWZQ+tr RZQ-
tr SW+tr RWQ tr SZ+tr SZQ tr RW+tr SWQ tr RZ}/2.

Proor. The first identity is obtained by putting f(4,, 4,)=1 in
Lemma 1. Putting f(4., 4,)=tr R(4,—pel)S(4,—pel) in Lemma 1, we
can reduce G[tr RT,ST.](re)™" as follows:

(2.10) [tr 03 +2¢°ue(tr A3,)*+m™"*p{4 tr Ad:+rd, tr 32+ 2rpe tr Ao, tr o,
+2¢%2d, tr 33/3+4 pe tr Ao, tr A%, +rd,pe(tr Ad,))
+8gtdype(tr A3,)'} +0(m™")] tr RAS4, .

Let E,; be the pXp matrix defined by (1/2)(1+44;,)(d/049)4.. We have

i 1

(2.11) tr 63 tr RASA,=2 ‘/% 6, tr RE,,SE,,=c(R, S; 6)/2 ,

(2.12) tr 6o, tr I'6, tr R4,S4,=2 1%1 0.1; tr RE,SE,;;=2 tr ROSI",

where 6=diag (4,, 6,,---,8,) and I'=diag (71, %,***,7,)- Hence we ob-
tain the second identity. Similarly we can derive the other identities
by using Lemma 1 and Lemma 2.2 in Sugiura [12].

3. Derivation of the asymptotic expansions

We shall obtain the asymptotic expansions for the distributions of
(i) W=—mlog|S(S,+8S.)7"|, (il) T¢=m tr S,S;! and (iii) V=m tr S,(S,
+8,)~ with respect to m=p 'n—r assuming 2=n6 where 6 is a fixed
matrix. In derivation of expansions we assume only that the correc-
tion factors p and r are fixed numbers. The expansions for the distribu-
tions for traditional statistics are obtained by choosing (i) g '=(1+e)/2,
r=(p+1)/2, (ii) g '=e, r=0 and (iii)) z'=1, r=0, respectively.

3.1. Expansion for the distribution of W

From (2.1) S, and S,+S, are expressed in terms of 7, and T, as
mpe{I+m™"*(pe)™'T,} and mu(I+26){I+m " (14+26)"(T,+ T.)} respec-
tively. Hence we can express the characteristic function of {W—m-
log |e"}(I+26)|}/vm as follows:
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(1)  Bletr ({(AT.+BT)} {1+m™a(T)+m 9(a(T)
+60(T)'/2)}]+0(m™?) ,

where A=B—(pe)™'I, B=p"'(I+26)™" and

3.2) a(T) = (o) br T2 —tx (B(T.+ TV],

a(T)= —% [(e)™ tr T —tr {B(T,+ T)}] -

With the help of Lemma 2 and noting d,=0, we can simplify (3.1),
getting

exp (—7't}/2) [1+m ™ {gv,+ ¢*vs} +m™ é Fwy, +O0(m ™)) ,
where *=2u"(ple—s;) for s,=tr ([4+-26)~ and
(3.3) =0y {p(p+1)e—2(p+1)s+si+s},

v, =2(3¢") " {p/e*+28;,—3s,} ,

wy=v}/24+(2") " {p(p+ 1)/ +2(p+1)s, — 48,8, — 4(Dp+2)8;+ 5}
+4s,8;+5s,} +"'ﬂ_l {—ple+s:},

w, =003+ 2(3°) " {pfe’ —3s,+125;,— 1055}
We=132 .
Inverting this characteristic function, we have,

(3.4) P ({W—mlog |e{(I+26)|}]/(r¥/m)<x)
=0(x) —m™* {v,@V(x)/z +v0¥(x)/'}

3
+m—l 2 w2a¢(2a)(x)/1.2u +O(m—3/2) ,
a=1
where @’(x) denotes the jth derivative of the standard normal distri-
bution function @(x). The coefficients v, and w; are given by (3.3).

The null distribution of W is obtained by putting ©=0 in (3.4) and
the result is

(3.5) P ({W+mplog e}/ (tv/m)<x)
=0(x)—m 2{9,0V(x) /7 + 0,0 (x)/7*}

+m—l é ,ibza¢(2¢)(x)/%2n+0(m—3/2) ,
a=1

where 7=2ph(pe)™ and
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(3.6)  v=pp+Dh(2pe)!,  TB=2ph(1+e)(re)”3,
Wy =p(p+1)h {p(p+1)+4(1+e)} (e) */8—7ph(pe)™ ,
W=ph{p(p+1)(1+e)h+2(1+e+e)}(xe)/3 ,
We="3/2 .

3.2. Expansion for the distribution of T¢

The characteristic function of {TZ:—me™tr (h[+26)}/ym can be
expressed by (8.1) for A= —(ue*)"'(hI+26), B=(pe)™'I and

3.7 a(T)= —(ue)2{tr T, T,+pe tr AT?} ,
a(T)=(pe)* {tr T, T2 +petr AT} .

By using Lemma 2, we have after inversion and arranging each term
with respect to t,=tr (I+26)

(3.8) P ({T2—me tr (hI+26)}/(cy/M)<2)
=@(x) —m ™ {0, @0V (x)/r+ 0,0V (x)/7*}

_I_m—l é wza@(2a>(x)/,tza+0(m—s/2) ,

where 7*=2(pe*)"'{—pe+t,} and
(8.9) v=(ue")'(p+1)(—pet+t),
v, =4(3%¢°) ' {pe’ —3et, + 2t} ,

w, =032+ (") {p(p+1)e(e—3) — 2(p+1)et, + 11+ (3p+ 4)t.}
+r(pe’) " {pe—1ty} ,

w,=v;+2(¢e") " {pe’(2—e) +4e’t, — 10et, + 5.}
Wy=232 .
Similarly we have under 2=0,

(3.10) P ({T¢—mphe™'}| (tv/m) <)
=0(x) —m ™ {B,0V(x)/T+ 0,0 (2)/7’}

+m—1 ﬁ ®2a¢(2a)(w)/i'.2a+0(m—3/2) ,
a=1

where 7'=2ph(pe®)™ and

(B.11) B=p(p+h(ue)™",  B=4ph(2—e)(3ple))™",
= p(p+1) {(0*+ D+ 8)hY/2-+ Bhe) (e!) " — rph(pe’) ™,

W, =2ph{2p(p+1)h(2—e)[3+€' —be+5} (1) ",
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Ws="D3/2 .

3.3. Expansion for the distribution of V
The characteristic function of {V—m tr (h[4+26)(I+26)7'}/ym can
be expressed by (3.1) for A= '{eC*—C}, B=p"'eC* and

(3.12) a(T)=—p ' tr (AT, +BT)UT.+T)) ,
Q2(T)=I“—z tr (ATc+ BTh) {C(T¢+ T'h)}g ’

where C=(I+26)"!. By the same technique as in the case of W and T?
we have

(3.13) P ({V—m tr (hI+26)(I+26)"'}/(cy/m) <)
=0(x) —m ™ {v, @V (x)/r+v,0V()/7}

+m™ E_jj; Wy, P(x)[c* +O(m ")

and in a particular case 2=0,
(3.14) P({V—mph}/(Zym)<zx)
=0(e) —mBOV@)F+m 3 B, (@) +O(m )
where t*=2eu'{s;—es,} for s;=tr C’/, *=2phep™" and
(3.15) wv=ep'{—(p+1)s;+88,+8s} ,
v =(4/3)ep*{ —8;+ 3es; €8s — 3e’sy}

W, =v}/2+ ey *[es}/2 —es,8;+2(p+1)8;— 28,8, — s}
+ {(p+1)e— 3} 8, —es;8, — 4e(p+2)s; — 268,58, 1+ 4es, 8+ 3es;s,
+es3/2 4 8esg] —rep'(s,—es,) ,

W, =v,0;+ 2ep~[s,— Bes,— 4e’s, —e*(e — 14)8;+ 8e’s, — 12¢%s,,] ,
We=032 ,
(3.16)  %,=(4/3)phep*(e—h) ,
W, = —phep~*(p+1)—rphep™,
Wy=2phep Y E+h*—3he) ,  Wy="2 .

Sugiura [10] and Nagao [7] have given the expansions similar to
(3.5), (3.10) and (3.14), which are obtained by putting p=1, r=0 in
(3.5), (3.10) and (3.14), respectively, in connection with the expansions
for the distributions of test criteria for equality of two covariance
matrices.
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4. Numerical accuracy of the approximations

In a special case of p=2 Pillai and Jayachandran [8] have computed
the exact 5% points of 2,=|S.(S,+S,)7!|"%, 4=trS.S;' and 2,=tr S,(S,
+S,)* and their powers under certain alternatives for some n, and n,.
Hence it is possible to test the accuracies of our asymptotic results.
Table 1 gives the numerical comparison between the exact and approxi-
mate 5% points. Our asymptotic percentage points were computed
from the formulas (c.f. Sugiura [10]) obtained by applying the general
inverse expansion formula to (3.5), (3.10) and (3.14) with the correction
factors such that (i) g'=(1+e€)/2, r=(p+1)/2 for W, (ii) g'=e, r=
p+1 for T? and (iii) px'=1, r=0 for V. The values in the brackets
() for 2, mean the percentage points when the traditional correction
factors p'=e, r=0 were used. Table 1 shows that to choose p~'=e,
r=p+1 for the correction factors of T; can be recommended rather
than the traditional correction factors. Table 2 gives the numerical
comparison between the exact and approximate powers when p=2. Our
approximate powers were computed from (3.4), (3.8) and (3.13) by choos-

Table 1 Comparison of approximations to the upper 5% points of
A1, A2 and s for p=2

A1 22 A3
Ne np
exact approx. exact approx. exact approx.
13 7 .4460 .4458 2.880 2.851(2.614) 1.039 1.042
13 .3194 .3196 4,941 4.874(4.475) 1.035 1.035
33 13 .5959 .5959 1.424 1.419(1.399) .7863 .7871

Table 2 Comparison of approximations to the powers of W, 7¢ and V
for p=2 and significance level, a=0.05

w T? 14
Ne nr wy w2
exact approx. exact approx. exact approx.
13 7 0 1 .0826 .0843 .081 .091 .0826 .0831
.5 .5 .0839 .0857 .081 .089 .0858 .0863
13 0 1 .0694 .0704 .068 .055 .0698 .0700
.5 .5 .0699 .0710 .068 .054 .0710 0712
33 13 .5 .5 .0784 .0787 .077 .081 .0788 .0785
0 1.5 .0941 .0942 .094 .099 .0934 .0931
63 7 0 4 .3242 .3242 .330 .332 .3167 .3159
2.5 2.5 4241 .4241 .419 .422 .4279 .4273
13 2 2 .231 .2328 .230 .233 234 .2344
0 5 .284 .2852 .292 .294 .265* .2753

(* It seems that this value is incorrect.)
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ing the same correction factors as in Table 1, and using the exact
significant points given in [8]. Exact powers for #,=63 and 7,=7 in
Table 2 were extracted from Lee [5]. From Tables 1 and 2 we can
see that our approximations except for T? are good still in the case of
the small values of #, and w,. Further, it may be pointed that our
approximations are excellent when #, and =, are both large and o, are
large.
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