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Introduction

Several parametric families of distributions have been characterized
by the properties of their order statistics. See, for example, Ferguson
[4] and David ([3], p. 19). An interesting non-parametric result is due
to Chan [2] and Konheim [6]: Let X), X;,--- be independent random
variables with common distribution function F. Let X;,<..--<X,, be
the order statistics of X;,..., X,. If E|X,| is finite then F is deter-
mined by the sequence {E (X,,): n=1,2,---} (and likewise, by {E (X,.):
n=1,2,---}). Wang [12] showed that for any k=1, the sequence
{E(Xin): n=Fk,k+1,---} (and likewise, {E (X, 141..): =k, k+1,---})
determines F, also assuming the finiteness of E|X;|. In this paper we
show that under lesser restrictions on the moments of X, the distri-
bution F is characterizable by more general sequences.

1. Characterization by a tail sequence

Throughout this paper we shall let {k(n): n=1,2,..-} denote a
sequence of integers with 1<k(n)<n. {k(n)} is said to satisfy property
(A-m) if furthermore

(1) k(m)sk(n)<k(m)+n—m for all n=m.
We note that each {k(n)} automatically satisfies property (4-1).
LEMMA 1. If {k(n)} satisfies (A-m) for some m, then

(2) S: F(@)xE ™11 — gy dg=0 , n=m, m+1,---

implies f(x)=0 a.e. (0, 1).

PROOF. Letting g(x)=f(z)a*™Y(1—x)"*™ and P (x)=a*m+o-km,
A —g)i-FmFotrm §=0,1,.--, we may write (2) in the form
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(3) || o@P(@xz=0, i=0,1,:-

It follows from (A-m) that P,(x) is a polynomial (of degree %) and
therefore (3) is equivalent to S: g(x)x'de=0, 1=0,1,--.. It is well known
(see Sz.-Nagy [11], p. 331) that

(4) S:g(x)x‘dxzo , 1=0,1,---=g(x)=0 a.e. [0, 1] .

Hence f(x)=0 a.e. [0, 1].

In other words, the lemma asserts the completeness of a certain
subfamily of the beta distributions. Since E (X,,)=E[F~'(Y)], where
Y is the beta random variable with parameters (k, n—k+1), F'~' is the

inverse function of F' (see Moriguti [7] and Hajek and Sidak [5]) defined
by

F(s)=inf {x: F(x)=s} 0<s<1,
it leads to the following application.

THEOREM 1. Let X ,<---=<X,, be the order statistics from the
distribution function F. If the sequence {k(n)} satisfies the property
(A-m) for some m and E|Ximn|<oo, then F is uniquely determined
by the sequence of numbers

(5) (E (Ximn): n=m, m+1,---}.

ProoF. We first show that each term in (5) is finite. By (4-m)
it follows that for n=m, k(n)=k(m) and n—k(n)=m—k(m). Thus

E IXk(n),nl =Cn S: |F-l(s) |sk(n)—l(1_s)n—k(n)ds
1
éC,. So |F'l(8) Isk(m)—l(l_s)m-k(m)ds
=C,C' E | Ximm| < oo,

where C‘=k(i)(kz:i)>' Now suppose G is a distribution function whose

order statistics Y, , satisfy
E (Xk(n),n)=E (Yk(n),n) y n=m, m+1’ ctt .

It is equivalent to

S: [F(s)— G (s)]s*™ (1 —s)" *™ds=0 , n=m, m+1,---.
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From Lemma 1 it follows that F-'=G™ a.e. Finally, it follows from
the left continuity of F~! that F=G. This completes the proof.

We wish to point out that, in order to characterize a distribution
F via the sequence (5) it is necessary that each term in (5) is finite.
Clearly, there are infinitely many distributions having, say,

EIXn,n|=°°, n=1,2,.--.

Thus the sequence {E (X,,)} will not characterize, for example, the
Cauchy distribution nor the Pareto distribution defined by

(6) Fx)=1—27", x>1.

Of course, one notices that E (X, ,) is finite for the case of (6) and thus
Theorem 1 is applicable with the choice m=2, k(2)=1.

It is also possible to characterize a distribution for which none of
its order statistics has a finite mean. For example, let X be distributed
by F(x)=1—(log #)™!, x>e. Stoops and Barr [10] showed that not only
is E|X[=o for all >0 but also E|X,,[=c for all (k,n) and all
6>0. Consider the random variable Y=Ilog (log X). We see that Y is
exponentially distributed and E (Y,,) is finite for all k, n. Thus one
can characterize the distribution of Y via {E(Y,,)}, which in turn
characterizes the distribution of X.

In general, if X~F and ¢ is a measurable 1-1 function on the
support of F, to characterize X it is equivalent to characterize Y=¢(X).
If furthermore ¢ is monotone increasing then Y, ,=(HX))=¢X:.n)
and thus E |¢(Xim,m)| <0 =E |H(Xim,n)| <o, n=m for those {k(n)}
satisfying (A-m). For monotone decreasing ¢ the situation is analo-
gous except for interchanging #(X;,) and ¢(X. i.1,.). A simple applica-
tion of this idea leads to the following result:

COROLLARY 1. Let r be a positive odd inmteger and let E|X,|* be
finite for some 6>0. If {k(n)} satisfies (A-m) for some m=1, and if
ré ' Sk(m)Sm+1—rs7", then F is determined by

(7) {(E (Xiny,n): n=m,m+1,---}.

PROOF. Since ¢(x)=x" is a monotone increasing function there is
no ambiguity about the meaning of (7). Clearly, (7) determines F as
long as each term there is finite. It remains to show that this is im-
plied by the finiteness of E|X;|’. That this is true is the consequence
of the following lemma which was proved by Sen [9] for absolutely
continuous distribution F. His proof continues to hold for arbitrary
distribution function F with appropriate modifications.
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LEMMA 2 (Sen). If E|X,[’<c for some 6>0 then E | X, ,|"<o for
all n and k satisfying ré'Sk<n+1—ré\.

COROLLARY 2. Let E|X||<oo. If for some m, either {k(n): n=
m, m+1,---} or {n—k(n): n=m, m+1,---} is non-decreasing, then F is
determined by (5).

Proor. It suffices to show that {k(n)} satisfies (A-m,) for some
m,. Suppose k(n) is non-decreasing. There exists m,=m such that
my—k(my)=n—k(n) for all n=m,. Thus (A4-m,) is satisfied. It thus
follows from Theorem 1 that F is determined by the subset of (5):

{E (Xew,n) 1 m=my, my+1,---} .
The case with non-decreasing n—k(n) is analogous.

Wang’s result (and, a fortiori, Chan’s) is a special case of our next
corollary, which is itself a special case of Corollary 2.

COROLLARY 8. If E|X,|<co then F 1is determined by (E(X,,):
n=m, m+1,---} for any k and any m=k (and, likewise, by {E (X,_xs1.n):
n=m,m+1,.--}).

Chan’s result is a special case of our next corollary.

COROLLARY 4. If E|X||<co then F is determined by {E (Xim.n):
n=1,2,.--} for any {k(n)}.

Proor. This is a special case (m=1) of Theorem 1. As was men-
tioned before, the constraint (A-m) in Theorem 1 is vacuous when
m=1 since all {k(n)} are supposed to satisfy 1=<k(n)<n.

2. Characterization by a subsequence

It seems natural to ask: Is F determined if more than finitely
many terms are removed from the sequence {E (Xi.): n=1,2,--:}?
Under some conditions the answer is affirmative. For instance, by us-
ing (4) alone it can be seen that for any fixed positive integers k, a
and b, the equally spaced subsequence {E (X.,): n=a, a+b,a+2b,---}
does determine F. This is a special case of our next theorem, whose
proof depends on a generalization of the uniqueness theorem (4). The
following lemma is proved in Boas ([1], Theorem 12.4.4, p. 235):

LEMMA 3 (Miintz). Let f e L(0,1). If

(8) S f@erds=0, i=1,2,---,
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where n, are distinct positive real numbers with f‘_, n;i'=co then f(x)=0
i=1
a.e. (0, 1).

THEOREM 2. Let E|X, ,|<oo for some k and n (say, =n,=k). Then
F is uniquely determined by
(9) {E (Xin): n=m, g, --},
for any sequence of integers my, My, .- such that n,<n,<my<--- and
g”t' '=oo (and, by {E(Xaii1n): N=01, Ny} provided E|X, _iiinl
< ). , _
ProoF. The proof is essentially the same as in Theorem 1. Instead
of (4), we now have the stronger Lemma 3. It suffices to point out
that %(ni—nl)“ diverges if and only if iﬁ};n;‘ does. The parenthetical

remark is proved by interchanging x and 1—z.
We note that Corollary 3 is also a special case of Theorem 2.

The result of Lemma 3 appears self-strengthening in that if k(n)
keeps taking on a fixed value “often” enough, then

(10) [ f@zo =2y wds=0,  n=m,m,--

implies f=0 a.e. For instance, let {k(n.)} be bounded and let i nl=
i=1

0. It follows that there exists a subsequence {m c {n} such that

k(m,) is constant (say, =k*) and >} m;'=co. By (10) we have S g(x)x"dx

=0, n=my, My, -+, where g(x)=f(1—2z)z™*(1—x)*"'. Thus we see by
Lemma 38 that g=0, and so is f. Indeed, the boundedness of {k(n)} is
not necessary. It suffices to have {k(n)} bounded “sufficiently often”
in the sense that the sum of n;' over {i|k(n)=c or n,—k(n,)<c} for
some constant ¢ diverges. In terms of application, this means that F
is then characterizable by sequences of form

(11) {E (Ximyn) : B="1, Ng,- -} .

Inasmuch as k(n) need not be a constant function (or even bounded),
(11) appears to be more general than (9).

This “strengthening ”, however, is illusory. It amounts to the de-
tection of a subsequence of (11) to which Theorem 2 is applicable (and
simply ignore the rest of the terms). In other words, the question is
whether or not F is already determined by some subset of (11). Since
(10) demands more than (8), it is thus anything but a strengthening.
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COROLLARY 5. Let {min {k(n), n—k(n)}} be bounded on {n]} with
> n;i'=co. Then F is determined by (11).

Remark 1. Without the constraint of min {k(n), n—k(n)} being
bounded “sufficiently often”, the sequence (11) will not characterize F.
Take, for example, two symmetric distributions F and G with the same
mean (say, =0). It is clear that the expected values of their medians
are all identical, namely, E (Xu,15.)=E (Yeurppa)=0 for n=1,3,5,--..
Thus {E (Xwi1s.): »=1,8,5,---} does not characterize F.

Remark 2. We wish to conclude this paper with a question: Is
Theorem 1 true without the extra constraint (A-m) on the sequence
{k(n)}? Let {k(n)|n=m} be such that for each m,=m the property
(A-m,) is violated. This means that there exists at least one value
of n (>m,) such that either k(n)<k(m,) or n—k(n)<me—k(m,). If there
are “sufficiently many” such »’s, F will be determined by virtue of
Corollary 5. It is when there are, for each m,, some but not “ many
enough” such n’s that we do not know the answer. Our conjecture
is that (4-m) is not really needed in Theorem 1.
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Addendum

After this paper was accepted for publication it came to our atten-
tion that Corollary 4 was obtained also by Pollak [8] via a different
argument.
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