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Summary

The object of the present investigation is to study some properties
of a class of Spearman rank statistics and to apply these results in
studying the properties of a sequential procedure proposed in Section 3.
The problem is one of bounded length confidence intervals for simple
regression coefficients in linear models where both variables are subject
to error. It is shown that the proposed procedure is asymptotically
¢ consistent’ and ‘efficient’ in the sense of Chow and Robbins [3].

1. Introduction

Let {X;, i=1,2,---} and {Y;, 1=1, 2,---} be two independent sequ-
ences of independent and identically distributed random variables (iidrv).
Define the sequences {Z,(b)=Y,—bX,, i=1,2,---} of iidrv for all real
b. Let R,u be the rank of X, among X,,---, X, (1£1<m; n=1), ie.

RM———-}-E w(X,—X;), 1=i<m, where u(t)=1, 1/2 or 0 according as t>,
=, or <0 Similarly let R{,,(b)——+2 wZb)—Z,b), 1=i<n, n=l.

Then the Spearman rank correlatlon coeﬁic1ents between the first n X’s
and Z(b)’s (n=1) are defined by

L) SB)=—2— (122 )i(RM L) (R -2
n=1, b real.

In Section 2, we shall study some properties of the class of statis-
tics S,(b). In Section 8, we start with a linear regression model where
both variables are subject to error. The problem is to find a bounded
length confidence interval for the regression coefficient with prescribed
confidence coefficient. The results of Section 2 are utilized there in
studying the asymptotic properties of the proposed procedure.
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2. The properties of S,(b)

Let &, denote the o-field generated by R,,---, R,, and G,b) the
one generated by R;,(b),- - -, R,.(b). Let K .(b)=F.NG.b). Clearly {F,,
nz1}, {4.b), n=1} and consequently {.4(,(b), n=1} are non-decreasing
sequences. Further, from our set up, &, is independent of &,(0) for
all n=1. Define now

n=1, b real.
We first prove the following theorem. 7
THEOREM 2.1. {(T.(0), 4 (0)), n=1} forms a martingale sequence.

ProoOF. It is sufficient to show that E[T,,,| % .(0)]=T, (since 9(,(0)
is 7 in n). But

E [T.4(0)| 4(0)]
_%l [ i1, iB8n41,4(0) l '_4[”(0)] _ ’I'LT-I-].

= el R P
it 18on+1,n41(0) e e () _n+l
[ (n+2) ]+§E[ (n+2) Iﬂ"(o)] 4
n+1,n4+1 r’l+l,n+l(0) i Rn+1,i
[ n+2 ] [ n+2 ]+¢§="‘1E( ")
L, 4(0) '"'+1
E( 2dl) | 2,(0)) -
_1 R.(1—-R,/(n+ 1))+(Rm+ 1)-B./(n+1)
T2 2 +¢21 n+2
. B0 (A= R(0)/(n+1))+(R:(0)+1)- R/ (0)/(n+1) m+1
n+2 4
R..R;(0)
121 (n+1y Z
=T (0) .

The above result is now utilized in finding the asymptotic distribution
of T,(0) where the sample size N is random. More precisely, the fol-
lowing theorem is proved.

THEOREM 2.2. Let {N,} be a sequence of random variables (can be
viewed as stopping variables) assuming values 1,2, such that N,— oo
a.s. as r—oo. Also let {n,} be a sequence of positive integers— o as
r—oco. If
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2.2) 2’*—»1 in probability as r— oo ,
then,
2.3) N}”Sy (0) is asymptotically mormal (0, 1).

ProoF. It is well-known (see e.g. Kendall [8] or Hoeffding [5]) that
(2.4) V7 S,(0) is asymptotically (as n— oo) normal (0, 1).

In view of (2.2), (2.4) and Theorem 1 of Anscombe [1], it is now suf-
ficient to prove that the sequence {S,(0)} is uniformly continuous in
probability with respect to {n~'?} i.e. for every positive ¢ and 7, there
exist a & (>0) and a positive integer n, such that for all n=n,, and
n' assuming integer values,

(25) P{ sup |nH(S.(0)=S(0)|>7) <

To prove this, first note that

(2.6) VS, (b)=n""T(b)+O0(n""?), for all real b.
Hence, for all »' satisfying |n'—n|<én,

2.7) VR (8,(0)—S(0)) =" T,(0)— To(0)) + O(n ™) .

Thus, all we need prove is that for every positive ¢ and z, there exist
a & (>0) and an n, such that for all n=n,, and n' assuming integer
values

2.8) P{ sup, |n7H(T(0)— T,(0)|>7} <.

We prove the situation when 0<n'—n<én as the case when n—
dn<n'<n can be tackled similarly.

From Theorem 2.1 and the Kolmogorov inequality for martingales
(cf. Loéve [7], p. 386), it follows

2.9) P{ sup [Tu(0)—T(0)|>7m")
=P { max | Ti(0)=T(0)| >}

1sks(8
([on] bemg the largest integer contained in on)

S(pn) " B [T3om(0)— T2(0)] .
But

) n}(n—1)" o=rm=1 _
ET2(0)= T 1y E S 0)= it 1y =n+0(1) .
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Hence, E T, ;:m(0)=n+[on]+0(1), and the right-hand side of (2.9) is
bounded above by (8/7)+O(n™!). Thus for any positive 4 and 3, & (>0)
and 7, can be so chosen that (2.8) is satisfied. This proves the theorem.

The above result is comparable to an analogous result of Koul [9]
concerning the asymptotic normality of random rank statistics. Koul’s
statistics are different from ours as is his method of proof. The pre-
sent author, however, feels that even in his (Koul’s) case, an analogous
(to Theorem 2.2) and simpler proof can be constructed using the mar-
tingale inequalities and uniform continuity in probability.

The next theorem proves the asymptotic almost sure (a.s.) linear-
ity of the class of statistics S,(b). Roughly it means that for a suit-
able range of b, /% (S,(b)—S,(0)) is asymptotically a linear function of
b a.s. The result will be utilized in the following section for const-
ructing a bounded length confidence interval for the regression coefficient
in the problem mentioned earlier. The result, however, has some in-
dependent interest in as much as it proves an important asymptotic
property of the Spearman rank statistics. Similar findings for other
rank statistics are available in Ghosh and Sen ([4], [10]).

Before proving the theorem, the following representation of S,(b)
is needed. We can write (see e.g. Hoeffding [5])

3 n—2
- n _—— n . 4 n ’ 11 ’
(2.10) S.(b) | W.(b)+ i U.(b) for all real b

where

Wih)=—s 3133 san (Xi—X,) sgn (Z0)— Z,0)

1
nn—1)(n—2) 2 21 21 3 sgn (X, — X)) sgn (Z,(b) — Z,(b)) -

Then, for all real b,

(2.11) VRS, (0)=vn U (6)+0(n"?) ,
(since [U,(0)|=1, |W,(b)|<1).

Also, E U,(b)=3[4G(b)—1], where G(b)=P {X,>X,, Z(b)>Zyb)}. We
assume

(A) G'(b), G"(b) exist and are bounded for all real . Then, from the
Taylor expansion, G(b)=G(0)+bG'(0)+(b*/2)G"(6b) 0<8<1. Now, G(0)=
1/4. Hence, for, |b|=<Cn " log n,

(2.12) v/ E U,(b)=12y/nbG(0)+O(n " (log n)?) .

U.b)=

The following theorem is now proved.
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THEOREM 2.3. Under assumption (A), for every >0, there exist
K., K,, 6, (<1/4) and m, (all depending on &) such that for m=n,,

(2.13) P{ sup /7 |Ub)—U(0)—E U,(b)|2Kn™" log n}

|b]SCn—-1/210gn

< Kgn_l_a .

Before proving the theorem, we study some of its implications. An
immediate use of Borel-Cantelli lemma gives from (2.13),
sup /7 |Ulb)— U 0)—E U,(d)|=0(1) a.s. as n—oo .

16]<Cn-1/210gn

Since E S,(0)=0, one gets from (2.11), ‘
(2.14) sup &/ [S,(b)—S,(0)—E {S.(b)—S.(0)}]=0(1) a.s.

|bl<Cn-1/210gn
as n—oo .

This is the so-called asymptotic linearity property of S,(b). By virtue

of (2.12), one may also write

(2.15) " Sup V7 [S.(b)—S,(0)—12bG'(0)] =0(1) a.s. as n—oo .,
sSCn—1/2logn

Since, we know that 47 S,(0) is asymptotically normal (0, 1), for any

real b such that |b|<Cnlogn, v [S,(b)—12bG'(0)] is asymptotically

normal (0,1). This gives the non-null asymptotic distribution of the

Spearman rank statistics.

PrOOF OF THEOREM 2.3. One can rewrite U,(b) as

(2'16) Un(b)':(n) IZEZ%(Xu Xj!Xlln!Yjv Yl)
3 1sisj<isn

where ¢,(X;, X;, X, Y1, Y,,Y,) reduces on simplification to 6 sgn (Z,(b)—
Z,(b))=6sgn(Y,— Y,—b(X,—X,)), (X,=max(X,, X, X,), X,=min(X,, Xj,
X))). Thus U,®d) is | in b. Put now m,=[n"], the largest integer con-
tained in n", 7z,,=(r/m,)(Cn*logn), r=—m,,---, —1,0,1, .-+, m,.
Then, for ﬂr—l,nébéﬂnm (’l’= —m,+ 1; ct mn)v Un(’?r,n)— Un(O)_E Un(ﬂr—l,n)
S U, () — U,0) — E U,(0) < Un(9,-1,,) — U(0)—E Us(,,.). Hence, [U.(b)—
Un(O)—E Un(b) l éjg}ﬁfcr IUn(nj,n) - U,,(O)—E Un(vf,n) I +E [Un(ﬂr—l,n) - Un(”r,n)]'

But from (2.12) it follows that E [U(9,_1,.)— U.(9..)]=—(12Cn~"" log n/
m,)G'(0)+O0(n*(log n)*). Hence,

(2.17) sup |Uy(b)— U(0)—E U,(b)|

|b1<Cn—1/21lcgn

é max m | Un(’?j,n) - Uﬂ(o) - E Un(’?jv”) !

J=—Ma, e, —1,0,1, 00,

+0(n**logm) .
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But
@18  P{_ max |Ufpn)—U0)—E Uy, >t}

j=—mm,eee, -1,

< 33 P U552 — U0)—E Uy,.0) | >t} -

=—Mn

Now for each j=-m,,---, —1,1,---, m,, Uly,;.)— U 0)—EUyy,.) is
a U-statistic (with a kernel of degree 3) minus its expectation, while
for =0, the above expression vanishes. Since (X;, Zi(3,.)), 1=1,2,---,
n are n iid pairs of rv’s, using Hoeffding’s [6] result on exponential
deviations of U-statistics, one gets,

(2.19) P {U(n5,2)— Un(0)—E Up(9;,.) >t}

g([ Hin ]"""“"[ 1—p,, ]l_l‘lm—ln>[n/8]
Mttt 1—pyn—ta

for 0<tn<1_ﬂj,ny #j,an Un(”j,n)’ j= — My, —1’ 1’ e, My The ]-Og'
arithm of the right-hand side of (2.19) can be expressed as

2.20) —[ﬁ] [(;z,,n+t,.) log <1+ b )+(1—p,,,.—t,.) log <1__tn_)]

3 Hin 1—py.
for 0<¢t,<1—p,,. But from (2.12), g, ,=12y,.G'(0)+O(n"(log n)*). Thus,
ti2=0(n""?log ») uniformly in j. Hence, putting t,=Kn"*%logn,
we see that (2.19) is valid for large n uniformly in j. Also if C is so
chosen that |K,/CG’'(0)|<1, then t,<|p,.| for large n uniformly in 7,
and the logarithmic expansion in (2.20) is valid. (2.20) reduces now to

A S W Y SN
[3 2\ 1—pyn /! 6\ (A—py.) g/ 12\ (A—p;.)" e

4. } =—K/n'"*¥1]og n+O0(n"*~*: log n), where K/ is some constant >0.

It is easily seen that a similar inequality holds for P {U,(b)— U,(0)—
EU,(b)<—t,}. It follows now from (2.18)-(2.20) that

(2.21) P{ max |Un(91,5)— Un(0)— E U(;,,)| > Kin™""" log n}

J=—mp,eee,—1,1,000,
=2m,2 exp (— K/n'*"*) log n+0(n'*~% log n)
<4n’ exp (— K/n'*"¥) log n(1+0(n~" log n)) .

This shows that for every 4,>0, K, K;, 6, and m, can be so chosen
that (2.13) is satisfied. Hence, the theorem.

3. Construction of bounded length confidence intervals

Applications will be made of the above results in the following
problem :
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Suppose we have a sequence {(Y;, X;), 1=1, 2,---} of pairs of ob-
servations on a random vector (Y, X) satisfying the linear regression
model Y=a+pBX+e, X being distributed independently of e. Our prob-
lem is to find a confidence interval I,.=(§L,,,, /ém) for B (based on a
sample of size n) such that P{el}=1—¢ and 0<,§U,,.—/§L,,,§2d. If
the joint distribution of (Y, X) say Fl(y, x) were known, the classical
least square approach for such a problem would be to consider the least
square estimator

fr=3 K- X (V- T [3 (X Xy
(X’,.=n“ ié_l X, Y.=n" izi_‘{ Y,)

for B based on a sample of size n and consider the interval (8%—d, 8¥
+d). The sample size n is so determined that P {g¥—d=p=pF+d}=
1—e.

Now BF can be interpreted as the solution for b on equating the pro-
duct moment correlation coefficient between X; and Z,(b)=Y,—bX, (1=1,
2,-.-,m) to zero. A natural question would be whether similar estimator
can be obtained by equating the Spearman correlation coefficient S,(b)
(defined in (1.1)) to zero. Fortunately for us, the answer is in the
affirmative. To see this, first observe that S,(b) is | in b. This follows
from the representation (2.10) if each W,(b) and U,(b) is | in b. We
have already shown that Uyb) is | in b, while for W,(b) the same is

obviously true. Then defining ,§,,1=sup {b: S, (b)>0}, ,é,,2=inf {b: S,(b)<0},

1§,.=(.ém+ ﬁnz)/2 can be defined as the point estimator of 3. Roughly this
is the solution for b by equating the Spearman statistic to zero. So a

procedure would be to take (ﬁ,,—d, ,é,,+d) as the proposed confidence in-
terval and determine n eventually. A more direct approach in finding
the confidence interval would be as follows:

S,(b) is | in b and S,(B) has a known distribution symmetric about
zero. Hence, there exist ¢, and S, . such that '

(3.1) P, {—8,.<S8i(B)<S.}=1—¢e, (—1—c as n—oco).
Define
(8.2) Bra=inf {b: S,(0)<—S,.}  Br.=sup (b: S.(b)=S..} .

Then P; {f;.<B<Bu.}=P;{—8,.<SB)<Se)} =1—¢,. (The distribu-
tion of S,(8) being discrete, it is not possible to achieve P, {1§L,n<ﬁ<
,é,,,,,} =1—¢ for all finite n.) The above procedure is not the same as
other procedure of taking the confidence interval as (8,—d, f,+d) for
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finite samples. But both agree for large samples (see the comments
after (3.9)).

If F' is unknown, no fixed sample size procedure for our problem
seems valid for all F. A sequential procedure for this problem is pro-
posed in the same fashion as of Chow and Robbins [3]. We define the
stopping variable N=N(d) to be the first positive integer m>=3 for

which 0< ,§U,,,,—— BL,,,,§2d. The proposed confidence interval for g is

(3-3) IN<¢)=(}§L,N(d), .éU,N(d)) .

- Some properties (mostly asymptotic i.e. as d—0) of the above pro-
cedure are provided in the following theorem.

THEOREM 3.1. Under the assumption (A)
(I) N (=N(@)) is a non-increasing function of d (>0); N(d)< a.s.,
E N(d)<oo for all d>0; lim E N(d)=oo;

(II) lim N@)sd)=1 a.s.;

(ID) 13;51 P, (B¢ Iy} =1—¢ for all F;
Iv) 13;1} E N@)(d)=1,

where Wd)=1",/144d[G'(O)}.

One more lemma is needed for proving the theorem. This we prove
below.

LEMMA 3.1. For every 0>0, there exist C and n, (all depending on
8) such that for nz=n,,

(3.4) P {fy..>B+Cn " log n} <n=-;
(3.5) P {fr.<B—Cn"logn} <n'-.
PrROOF. We prove only (8.4) as (3.5) follows analogously. We have

(3.6) P {fy..>B+Cn """ log n}
' =P {S,(8+Cn?log n)>—S,..}

<P { 3W.(B+Cn "2 log n) > —lSn,.}
n+1 2

+P {U,,(ﬁ+Cn-1/2 log m)> —%s,,,,} .

But (3/(n+1))W,.(8+Cn"*log n)=0(n""), whereas 4/ S,(8) being asympto-
tically normal (0, 1), for large n, +/% S, .=7.,, the upper 100(¢/2)2% point
of a normal (0, 1) distribution. So it is sufficient to consider only
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@7 P { U(8-+Cn""log m)> —%sn,,}
=P { U,(8+Cn"*log n)—E U,(8+Cn " log n)> —%S,,,.

—E Uy(8+Cn " log n)} .
Now,
E U,(8+Cn "2 log n)=12Cn"""log nG'(0)(1+O(n""* log n)) .
Also, for large =, S,.=0(n""?). Put

t = % S, .—E U,(8+Cn"2log n)
=12Cn""2log n(— G'(0))(1+O(log n)™)

for large m, and so ¢,>0 for large n». Hence, for large n, Hoeffding’s
bounds (cf. (5.7) in [6]) majorize (3.7) by

(8.8) exp [—- z(g':/_ 33];‘2:] <exp [__ (n —5- 42)t3, ]

_ (n—2)K*n"'(log n)* _s
L (1+0(og )|

=exp [

where K is a constant depending on C. Hence, for any given >0,
C can be so chosen as the expression on the right-hand side of (3.8)
<n7'"’. Hence the lemma.

In view of Theorem 2.3, an immediate implication of Lemma 3.1
is that as n— oo,

VTS (By.) — VI SA(B) —12¢/ 7 (By..—B)G'(0) 0 a.s.
VESuBrn)— VTS — 12V T (Br..—H)G'(0)—0 a.s.
Using (8.2) it follows now on subtraction that
—2y7S,.— 12V (By,n—Br.n)G'(0)—0 a.s.

From the fact /% S,.~z., a8 n— oo, one gets,

3.9) VI (Boa—Bra)— — 6(;;?0) a

(G'(0)< 0 since G(b) is | in b).

It can also be similarly shown that ,/'T@'(ﬁ,,,,,—ﬁ,,)—» —17,,/12G'(0) a.s.,

x/W(f?L,,,-—ﬁ,,)a +7.,/12G’(0) a.s. so that the comments made after (3.2)
are true as roughly for large samples, the point estimator is taken to
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be the midpoint of the confidence interval.

We are now in a position to prove the main theorem.
(I) It is true from definition that N is a non-increasing function of
d (>0). Also,

P (N=o00)=lim P (N >n)<lim P (8y,,— f...>>2d)
=lim P (V% (Bo.n—fr.)>2dym)=0  from (3.9).
Hence N <oo a.s. and also E N<oo. Again from definition hm N(d)=o0

a.s. and the Monotone Convergence theorem implies that hm E N(d)=o0
(II) We have .Bu,ma)—ﬁL,N(¢)§2d<ﬂU,N<¢)-1—.BL,N(d)_t- Hence,

lin"ilﬁsoup 2dV N(d)< lin"inUD ﬂ/m—)—(ﬁu,md)A - .éL,N(d)—l) = #/(20)

hm 1nf 2dx/Td)>hm 1nf~/ N@) (o vr—Br.va)= —5 G"/(ZO) a.s.
Hence (II) is proved.
(III) It follows from Theorem 2.3, Lemma 3.1 and the result that
V% S,(B) is asymptotically normal (0,1) that J%‘(ﬁ,,,,.— B) is asympto-
tically normal (—r,,/4G'(0), 1/16[G’'(0)]*). Also, from Theorem 2.3, and
the uniform continuity in probability of {S.(8)} wrt {n~%} it can be

shown easily that {,é,,,n} is uniformly continuous in probability wrt {n~/%}.
Hence, ¥ N (8y.x— ) is asymptotically normal (—r.,/12G/(0), 1/144(G'(0))?).

Similarly, v N (ﬁ ,~— B) is asymptotically normal (z,,/12G'(0), 1/144(G'(0))?).
Hence,

lim P (8 € I} =1im [P {8=<fy.v} —P (8=fs.x}]

=lim P { - 12G'(0)<‘/W(‘§ vy =B)F 1227(0) ) == "’2}

tlim P {_ 12G’(0)<‘/_ﬁ(‘§ ey =)= 12(57(0) > = "”}

2 2

(IV) In view of (II) all we need prove is that {Nd%} .., is uniformly
integrable. From Lemma 3.2 of Bickel and Yahav [2], it is sufficient

to prove that S‘_. sup P {N(d)d*>m} <oo for some d;>0. Writing m(d)

m=10<d<dy
=[m/d"],

P {N(d)d*>m} =P {N(d)>m(d)} =P (B, mw>— B ma>> 24}
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<P {By.mo>d} +P (Br.mw<—d}
= P {Sm(d)(d) > - Sm(d), c} + P {Sm(d)( - d) < Sm(d),t} .

We consider only P {S,(d)>—Snw,} as the other probability can be
tackled similarly.

(310) P (Sud>~Sund SP | B WaioD> ~ 55

+P { Uno(d)> _';— m(dJ,c} .

Since for large m, S, .=0(m™"?), while (3/(m(d)+1)) W .\ (d)=0(m™),
the first term on the right-hand side of (8.10) can be neglected, while,

@11) P (Um<.,,(d)> —%smm,.)
=P (U,M(d)—E Uniod)> —é-s,,.w,.—E Umm(d)) .

Using Hoeffding’s bounds once again, one gets
(3.12) P {Un(d)—E Upo(d) >t} Se @ |
where

t=t(m, d)= —% mcw,e—E Unca(d)

valid for large m. But for large m, S, .=dO(m"?) while E U,(d)=
12d(—G'(0)(14+-0(d))), for 0<d<d,; we can find a 6 (>0) such that ¢>ds.
Hence, the right-hand side of (3.12) is bounded above for m=M (say)

by e7*, Since f‘, e~ converges, the uniform integrability of {Nd*} ..,
m=M

follows.

We have remarked at the summary that the procedure is asympto-
tically ‘consistent’ and ‘efficient’ in the sense of Chow and Robbins
[3]. By asymptotic consistency we mean that as d—0, the coverage
probability of the confidence interval —1—a (the prescribed confidence
coefficient). This is guaranteed by (III) of the theorem. Asymptotic
‘efficiency ’ roughly means that the average sample number (ASN) is
asymptotically the same as the sample size one would have asympto-
tically obtained had F been known and a fixed sample size procedure
were used. To see this we need recall (3.9) which says

V—ﬁ(lév,n—.ér,,n)—’ —#/(’0) a.s. as n—oo .,

Since the width of the confidence interval is needed to be <2d, n is taken
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to be the smallest positive integer =[—1.,,/12dG'(0)]*=1?,/144d*[G'(0)].
Thus (IV) of Theorem 3.1 guarantees asymptotic efficiency.

The expression for u(d) depends on the form of the parent distri-
bution. When (X,Y) has a bivariate normal distribution with means
t, ta, standard deviations ¢}, o} and correlation coefficient p, one gets,

GO)=1+-Lsin (1<)

2
where
Then,
2 o o, 0
Hence, »

wd)= topdn’ai(4—p") _ m'tin0i(4—0%)
144d%%(1—¢%)? 36d%3(1—p)
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