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Abstract

In this paper, we assume the existence and consistency of the
maximum likelihood estimate (MLE) in the independent not identically
distributed (i.n.i.d.) case and we establish its asymptotic normality.
The regularity conditions employed do not involve the third order de-
rivatives of the underlying probability density functions (p.d.f.’s).

1. Introduction and summary

The asymptotic normality of the MLE in the independent identi-
cally distributed (i.i.d.) case is well established under a variety of con-
ditions. For example, Cramér [3] assumes, among other things, the
existence and boundedness of the third derivative of the underlying
p.d.f., while Gurland [4] and Kulldorff [7] give regularity conditions,
which involve the behavior of the first and second order derivatives
only. The same problem has also been looked into by Huber [6] who
established the asymptotic normality of the MLE under non-standard
conditions. Recently non-i.i.d. cases have been considered by some
authors. We mention Silvey [10] who treated processes with dependent
random variables satisfying general regularity conditions; Billingsley [1]
and Roussas [9] who dealt with Markov processes, which are stationary
and ergodic; and, in particular, Bradley and Gart [2] who studied the
i.n.i.d. case. The latter authors established asymptotic normality of
the MLE under regularity conditions which include the existence and
boundedness of the third derivatives of the underlying p.d.f.’s. Finally,
in an interesting recent paper, Hoadley [5] established consistency and
asymptotic normality of the MLE in the i.n.i.d. case. In this paper,
we prove the asymptotic normality of the MLE in the i.n.i.d. case
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under assumptions which involve the first and second order derivatives
only. Our assumptions are related to those of Gurland [4], Hoadley [5]
and Roussas [9].

In this note, by an MLE we mean a specified measurable function
of X;,---, X, which is a root of the log-likelihood equation with P,-
probability tending to 1, as n— oo, for all § € 8, the underlying param-
eter space.

In Section 2, the assumptions to be used in this paper are spelled
out, and the main result is stated in Section 3. Its proof is deferred
to Section 5, after some auxiliary results have been established in Sec-
tion 4. The paper is concluded with Section 6, where some simple
examples are discussed for illustrative purposes.

In order to avoid unnecessary repetitions in the sequel, all limits
are taken as m— oo through positive integer values, unless otherwise
explicitly specified.

2. Notation and assumptions

Let 6 be an open subset of R* and for each #¢6, let p,,, j=1
(integer) be probability measures on (R;, B,), where (R,, B,)=(R, B),
the Borel real line. We assume that there is a o-finite measure g on
B such that p,, &y, 66, j=1, and we set fy(-; 0)=dp, ,/dp for a spe-
cified version of the Radon-Nikodym derivative involved. Set (2¢, )
=(R~, $~) and let P, be the product measure of p,,, 7=1, induced on
A. Then, if X,, j=1, are the co-ordinate random variables (r.v.’s),
it follows that, for each #¢ 6, these r.v.’s are independent, and the
p.d.f. of the jth r.v. is fy(-; 6).

The asymptotic normality of the MLE will be established under the
following assumptions.

ASSUMPTIONS

(Al) 6 is an open subset of R*.

(A2) For each j=1 and every 6€6, the r.v. X, has a p.d.f.
Ji(+; ) with respect to a o-finite measure gz on B, and the set {x ¢ R;
Sfi(x;8)>0} is independent of 4.

(A3) Let 0:. be the MLE of the parameter ¢ based on X,,---, X,.

Then 63,.&0, for every f€6.
(A4) (i) For almost all [¢] ;€ R and for all 6€86, ¢,(0)=0/d0,-
log fi(x;; 6) and ¢,,(0)=—45%06,30, log f,(x,; 6) exist, r,s=1,---, k, j=1.
(ii)) For almost all [¢] z,€ R, every 6 €6 and each r,s=1,-.-,k,

¢Jﬂ[0+1(t_0)]_’¢jn(0) as t—4¢ ’
uniformly in =1 and 2¢€[0, 1].
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In some interesting cases, the uniformity assumption (A4)-(ii) is
either not easy to verify or does not hold. For such cases, we purpose
the following Lipschitz-type condition as a possible useful replacement.

(ii’) For every 6¢€6, there exist a neighborhood of it N, in 6
and r.v.’s Z,;,,(6) such that

|95 (®)— 1O =t =011 Z,(0) ,  EEN,

and
{%{ /é Z,,,(O)} is bounded in P,-probability ;

that is, for every ¢>0, there exist M,(0,¢) and N,(9,¢), positive in-
tegers, such that

P, [.717 ,21 Z,,(0)= M6, s)]<e for all n=N,.(8,¢),

r, s=1,---, k.

In the sequel, the notation ¢,,() and ¢,,(8) will also be used for
the r.v.’s resulting from ¢,,(6) and ¢,,(d) when z, is replaced by X;.

Let ¢,(6) be the kx1 random vector and let ¢,(¢) be the kxk ran-
dom matrix given, respectively, by

2.1) $/(0)=[$,1(6),- -, 60, jz1
and
S[’fl_l(ﬂ) ttt 91’11{:(0)
2.2) o0)=| A
¢’m(0) tte ¢1kk(‘9)

Then

(AB) Eie,(0)]=0 and E[4;(8)¢/(0)]=CEsl¢;(6)] for each j=1 and all
feb.

For each =1, n=1 and every 6 €6, define I';(6) and I,(6) by
2.3) LO=ElpO#0],  Lo)=— 3T0) .

Then

(A6) For every 0¢€8, I(0)—I(6), some I'(#) which is positive de-
finite, and the convergence is convergence in any one of the usual
norms for matrices.

(A7) For every h € R* and every 6 € 6, there exists § (=d(h, 6))>0
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such that
_1

RO E Es|W'e0) [ —0 .
(For example, this happens if &|h'¢,(0)’<M (=M(h, §))<oo.)

(A8) For every €6, there exists  (=d())>0 such that
S RGO ElgON =0, rs=1e ke

Under either one of the sets of Assumptions (A1l)-(A4)-(i), (ii)-(A8)
or (Al1)-(A4)-(i), (ii")-(A8), one may establish the asymptotic normality
of the MLE.

3. Main result
The main result of this paper is the following.

THEOREM. Let 6, denote the MLE of 0, based on X;, j=1,---,n
which are assumed to be i.n.i.d. r.v.’s with p.d.f.’s fi(x;;0). Let 6, be

the true (but unknown) value of the parameter 6 and let I'(6,) be as in
(A6). Then under either ome set of Assumptions (Al)-(A4)-(i), (ii)-(A8)
or (A1)-(A4)-(i), (ii')-(A8),

LIV (6,—6,)| P, ]= NO, I'(6y)) ;

(that s, as m— oo, the sequence of r.v.’s {J%(én—ﬂo)} converges in dis-
tribution, under P,, to an r.v. which is distributed as N(O, '1(6,))).

4. Some auxiliary results

The proof of the theorem will be given after some auxiliary results
have been established. ’ ’

PROPOSITION 4.1. Let 6, be the MLE of 4. Then under either one
of the sets of Assumptions (A1)-(A4)-(i), (ii)-(A8), or (Al)-(A4)-(i), (ii')-
(A8), and for each §¢ 6, and each r,s=1,..-,k, one has

%,2, (G504 20— 0)] — @)} -0 uniformly in 2€[0,1];

that is, for each €6, each r,s=1,---,k and every ¢>0, there exists
N@, r,s;5¢), to be denoted by N(e) since 8, r, s remain fixed, independ-
ent of 2¢€[0, 1], such that

X

L S Wl +26,~0)1=,0(0) |<e)>1—e,  nzNG.
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PrROOF. Suppose first that (A1)-(A4)-(i), (ii)-(A8) hold. From (A4)-
(ii), one has that for each 6#¢®, each r,s=1,.-.-.,k and every &>0,
there exists d(4, r, s;¢)>0, to be denoted by d(¢) since 4, r,s remain
fixed, independent of 7=1 and 1€ [0, 1], such that

(4.1) I¢m[0+1(t—0)]-—¢m(0)l<e v 1E=011<5(e) -

On the other hand, by (A3), 6, -—»0 so that for the above () >0 there
exists Ny(6(s))=N(e) such that

Pﬂ [”01;_0”<5(€)]>1_5 ’ ngN(e) .

Thus, if A.(6;¢), to be denoted by A,(c) since # remains fixed, is the
set for which [|§,—8||<d(c), then

(4.2) P, [Ae)]>1—e, n=NE),
and on this set A4,(c),
(4.3) 16,—011<d(), n=NE).

Relations (4.1)-(4.3) imply then that on the set A,(¢) with P,[A.()]>
1—¢, provided n=N(c), one has that, for each 6 €6 and each r,s=1,
oo, k,

(4.4) | 610:[0-4 (60— 0)] — ¢,,,(8) | <&

simultaneously for all =1 and all 2¢[0,1]. From (4.4), it follows then
that on the same set A,(¢) with P,[A,.(¢)]>1—e¢, provided n=N(e), one
has that, for each ¢ and each r,s=1,-..,k,

(4.5) L 3 il + 16— 0)]= 91O} | <

simultaneously for all 1€ [0, 1].

Now, since the set of points of ¥ for which (4.5) is valid, clearly,
contains the set A,(c), we have that, for every ¢>0 there exists N(e)
independent of 2¢[0, 1] (but perhaps depending on 6, r, s which remain
fixed throughout the proof) such that

P,( 1
n ji=t

S {0+ 26— )] — 6,0} 1 < ) Sl—e, n2NE),

simultaneously for all 2¢€ [0, 1].
This establishes then the desired result.

Next, suppose that (A1)-(A4)-(i), (ii')-(A8) hold. Then, by (A3),
6, N, on a set which depends only on % and 6 and whose P,-probability
tends to 1. Therefore on the above mentioned set, one has by means
of (A4)-(ii"),
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(4.6)  |¢snl0+20,—0)]—4;,.(0) | <11 20u—0) || Z,,(6) 116, — 011 Z,..(6)

for each 8¢, each r,s=1,---,k and simultaneously for all j=1 and
all 2¢[0, 1].

From relation (4.6) and once again by means of (A3) and (A4)-(ii’), one
has that for each 6 € ® and each r,s=1,---,k,

% by (DrlB+ 20, —0)] — 4, O)} -0

uniformly in 2 €0, 1].
This completes the proof of the proposition.
Let ¢,(9) be given by (2.2), and for each 2¢[0, 1] and ¢ sufficiently
close to 6, so that [#+A(t—0)] € 6, define ¢,[0+(t—6)] by
@) B0+t —0)] =2 34 I0+1¢—0)]

Then we have the following result.

PROPOSITION 4.2. Let $,[0+1(6,—6)] be given by (4.7), where 8, is
the MLE of /. Then under either one of the sets of Assumptions (Al)-
(A4)-(1), (ii)-(A8) or (A1)-(A4)-(i), (ii")-(A8), and for every 4 € 6, one has

G [0+16,—0)]2-F(6)  uniformly in 2¢[0,1].

PROOF. Since I,(0)—1(0), 6 € 6, by (A6), it suffices to show that

Jn[0+1(§,.—0)]—1—’,.(0)—1—3’—»0, 6 € 8, uniformly in 1¢[0,1]. By means of
(4.7), (2.2) and (2.3), this last convergence is equivalent to the follow-
ing convergence

n N Py
(4'8) % g {¢jra[0+1(0n_0)]_€0¢jn(0)}—_1"0 y
0 € 8, uniformly in 2€[0,1], »,s=1,---, k.

The left-hand side of the relation in (4.8) is written as follows
@9 L5 0+10.-01-€19,.0)
=L 3 G nl0+ 10— = fy0i O+ 3 [91i0) = EapynlO)]
But for every €6 and r,s=1,---,k,
(4.10) % ,21 (6,0 [0426u—0)]— §,()} 20 uniformly in A€ [0, 1],

by Proposition 4.1, and
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(4.11) L 50— Eupion 0

by the Weak law of large numbers (see, e.g., Loéve [8], p. 275) which
applies here on account of (A8). Relations (4.9)-(4.11) establish (4.8)
and hence the proposition itself.

This section is closed with the following result.

PROPOSITION 4.3. Let ¢,(6) be given by
(4.12) ¢,.(0)—— Z‘. $,060), 0¢€6,

‘where ¢,(0) is given by (2.1). Then for every 6 €6,
L14,(6)| P= N0, I6)) .
Proor. It suffices to show that for every 0+##h € RF,
LW (0)| P]= N0, WT(0)h), 6¢€86.
For each & as above, set ¢%(8)=(1/v7)h'$,(6), 1<j<mn. Then h'$,(6)=

Z¢,.,(0) by (4.12), and ¢X(6), 1=j=<n are independent r.v.’s with
€o¢ (0)=0, by (A5). Next, by means of (A6)

E ai[¢X(0)=h'T(O)h—h'T(6)h>0 ,

so that A
n 1 n
sf,+ g‘. o PrA0) [ = po n‘”"’/’ §J o| W' 86) [+ —0

on account of (A7). Therefore Liapounov’s condition for the Central
limit theorem to hold (see, e.g., Loéve [8], p. 275) is satisfied and hence

LW $.(6)| P]= N(O, K'T(6)h) ,

as was to be seen.

5. Proof of the main result
We are now ready to give the proof of the theorem.
PROOF OF THE THEOREM. We wish to show thét
(5.1) LIV 7 (6,—6,)| Py ]= N, T-'(6,)) .

Expanding ¢,(6) around 6, according to Taylor’s formula, we obtain
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(5.2) 8,0)=0,00—{ [ 9100+ 20—80102}0—00 .

In (5.2), we sum over j, 1<j=<n, divide through by 47 and replace
0 by 6,. Then by also utilizing (4.12) and (4.7), we get

~ A ~ 1_ A — A

3:09=5:0)— || G0+ 20— 0012}y G,—00) .
But q?,,(é,,):O with P,-probability tending to 1. Thus with P, -probability
tending to 1,

1 —_— A —, A ~

(5.3) 1 ¢n[a.,+z<o,.—ao)1dz}«/n(o,.—aa>=¢,,(0o) :

By Proposition 4.2, ¢,,[0o+2(0 00)] F(0o) uniformly in 2€[0,1] and
I'(6,) is positive definite, by (A6). Hence

(5.4) S Ful0o-+ 26, —00)1d2 20 T(6,) .

From this result and (5.3), it follows that with P,-probability tending
to 1, one has

A 1 _ N -1
(5.5) V7 6,—0)={{ Bloot26,—001d2} G0 -
By taking now into consideration the fact that [ [q”s,.(oo)|P,,,]=>N(0, r'6,))
(Proposition 4.3) and (5.4), relation (5.5) gives

LIV (G.—00)| P]= NO, I(6,)

by the standard Slutsky’s theorems. The proof of the theorem is
complete.

6. Some examples

For the sake of illustrating the validity of the assumptions made
in this paper, we discuss the following simple examples.

Example 1. Let X,, j=1,---,n be independent r.v.’s such that
the r.v. X, is distributed as N(4,6, ¢*), where ¢ and 2;=2,(n), 1<j=<n
are assumed to be known. We also assume that the 2’s satisfy the
following conditions

nm 3P0,

6.1) 12250 and
n j=t

(For example, these conditions are satisfied if 2,=j/n.)
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I . A n n A P,
Here it is easily seen that 0,,=<1 /2 1§> >12,X;, and hence 0,.——”+0,
i=1 j=1

on account of (6.1). Next, ¢,(0)=(4,/¢*)(X,—2,6) and ¢,(6)=2}/d*, so that
both (A4)-(ii) and (A4)-(ii’) are, trivially, satisfied. Furthermore, &,4,(6)
=0 and &,¢U0)=2}/*=E,¢,(0), so that (Ab) is satisfied. Assumption
(A6) is also satisfied on account of (6.1). Next, it is easily seen that

&

2 V3
Lx-20| s 4,

so that, by means of (6.1), (A7) holds true with 6=1. Finally, (A8) is,
trivially, true, so that (A1)-(A8) are satisfied in the present example.

Example 2. Let X,, j=1,---,n be independent r.v.’s such that
the r.v. X, is distributed as N(y;, 6), where p;, 1<j<n are assumed
to be known.

It is easily seen that é,,:l/n:V‘_,(X,-p,)z, so that én—})—”>0. Next,
j=1
6,0) = [(X,—p, 0 —01/26" and ¢,(6) = [2(X,—p,}—0]/26". Thus for >0
(such that 6—<>0) and t € (f—¢, 6+¢), we have

194040\ 1~01 [ 20kt CEPACLPET (x, ]

and

20+e¢ (0+e)2+(0+e)0+0 z 9 .
Al Y (A A 2( —nyzM|<

for sufficiently large M. Hence (A4)-(ii’) is satisfied. Furthermore,
Eep)(0)=0 and &,¢%(0)=1/26=E,¢,(0), so that (A5) is true. Assumption
(A6) is, trivially, true. Next, it is easily seen that

&, | (X;— ﬂj) - é_z_%

which implies that (A7) is satisfied with 6=1. Finally, we have

el timgr=e]

which implies that (A8) also holds true with d=1.

Example 3. Let X,, j=1,---,n be independent r.v.’s such that
the r.v. X; has the negative exponential distribution with parameter
4,0, where 2,=2,(n)>0, 1=<j<n are assumed to be known.

It is easily seen that 4,=1 / <1/n-i 2,X,> and hence é,,—l—pi»(i. Next,
j=1
$,(0)=1/0—2,X; and ¢;(0)=1/¢". Hence |¢,[6+ At —0)]—¢,(0)] is easily seen
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to be bounded above by |§—t|((6+¢)/6") for t>60 and by |0—t|((30—t)/6°t?)
for t<6. Therefore (A4)-(ii) is satisfied. Also, for ¢>0 (such that —«
>0) and te(@—e, 0+¢), |9,(0)—¢, ()| <|0—t|((20+¢)/6*(0@—¢)?), so that
(A4)-(ii') is satisfied as well. Furthermore, &,¢,(0)=0 and &,¢%0)=1/6¢*
=&,¢;(8), so that (A5) holds true. Assumption (A6) is, clearly, satisfied.
Next, it is easily seen that &,|1/6—2,X,;|’<16/¢*, so that (A7) holds true
for 6=1. Finally, (A8) is, trivially, true, so that (A1)-(A8) are satisfied
in this example.

Example 4. Let X,, j=1,...,n be independent r.v.’s such that
X; is distributed as Py1,0), where 0<2,=14n), 1<j<mn are assumed
to be known and to satisfy the following conditions

n

(6.2) 1 4;—2>0  and
, n =1 n =1

(For example, these conditions are satisfied for 2,=2,(n)=j/n.)
o . . AR n I
Here it is easily seen that 6,=3 X,/ >14;, so that 0,,—"-0, on ac-
j=1 =1

count of (6.2). Next, ¢,(0)=(X;—2,0)/6 and ¢,(0)=X,/6*. Thus for ¢>0
(such that §—e>0) and ¢ € (0—¢, 6+¢),

20+¢
19404 DI Sl0—tF s X,
and
20+¢ id
]?[492(0—5)z PRy ]<e

for sufficiently large M and sufficiently large =, by (6.2). Hence (A4)-
(ii") is satisfied. Furthermore, &£,¢;(6)=0 and &,¢%8)=2,/0=E,¢,8), so
that (A5) is true. Assumption (A6) also holds on account of (6.2).
Next, it is easily seen that

80\ Xj—ljﬂ 8
g

<L @rer610+1,),

2

so that, by means of (6.2), (A7) is satisfied with 6=1.
Finally,

X;—2,0 ) _4

e XA ) =4

so that, by means of (6.2), (A8) holds true with §=1.

&
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