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Summary

Fraser [3], [4] and Fraser and Haq [5] discussed a comprehensive
multivariate model : a model with an error variable internal to the sys-
tem with a known multivariate distribution and a positive affine trans-
formation which generates a response vector from an error vector.
Here a multivariate model, with the error variable having a multivari-
ate normal distribution with intra-class covariance structure, has been
considered. The analysis of the responses has been carried on in the
framework of a transformed structural model and it produces structur-
al distribution for the location parameters and the scale parameter, and
the marginal likelihood function for the intra-class correlation coefficient.

1.  Introduction
Consider the set of responses
(1'1) Xazﬂa"l"aUa (azl, 2:"';1’) y

where the responses are assumed to have been obtained from the error
variable U, by different location change, but the same scale change.
The U,’s are assumed to have a p-variate normal distribution with
E (U,)=0 and covariance matrix of U, as

1 p LR p
ol -t p

1.2) Cov (U., U)=2=| " , [pl<1,
pp -1

which has an intra-class covariance structure. For a sample of size n the
responses constitute a sample from Ji(g, ¢°2). Inferences concerning
the parameters of such a statistical model, mostly, have been based on
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standard statistical procedures. The works of De Lury [1], Olkin and
Prat [9], Geisser [6], Srivastava [10], Mehta and Gurland [8] may be
mentioned in this respect.

Fraser [3], [4] and Fraser and Haq [5] discussed a comprehensive
multivariate model and made structural probability statements about
the parameters of the model. But when the covariance matrix of the
model is of intra-class covariance structure the results are not applica-
ble. However, by a suitable transformation the error variables may
be transformed into uncorrelated variables, and the responses can be
analysed in the framework of a transformed structural model. The
method has been discussed by Fraser [2], [4]. Haq [7] followed the
method to make inference about the parameters of a first order auto-
regressive stochastic model.

2. The transformed structural model

Consider n responses from the multivariate model described in Sec-
tion 1, which may be written as:

¢X£!=f‘t+autj ’ 7'=1: 2;"‘!1’! .7=19 2,--.,m
@.1)
or X=pul'+sU;

where X and U are pXn matrices, g#'=(p, t,-++, 1t,), and 1 is the n-
dimensional unit vector.

Let I" be an orthogonal transformation with initial row=(p~'2, p=12,
«++,p"") such that I'QI"=D, where D is a diagonal matrix with first
diagonal element y=1+(p—1)p and the remaining diagonal elements
¢=(1—p). Applying the transformation I" to (2.1) one gets

2.2) I'X=rul’'+el'U or Y=ml'+6E .
Under the transformation, the probability distribution of E reduces to
23)  P(E)E=(2x) " (y)™(g) "

1 n 1 P n . n
X exp [“2;,%":“_‘2}',%%6’"} 1T TI de;. -

Clearly expectation (E)=0 and covariance matrix of E=I,QI'2]" where
I, is the identity matrix with » elements and & denotes the direct
product of two matrices.

Let

1 0---0
(2.4) =] M o --- 0

m, 0.0
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be a transformation belonging to a group of transformations

‘ 1 0 .--0 ‘
2.5) G a ¢ -+ 0 —ocoLa; <0
. e eee e l ¢c>0
a, 0 ..+ ¢

and suppose that the transformed response Y is obtained from the
transformed error variable E by the transformation 4 to E in the fol-
lowing manner : >

1 1 ---1 1 1 0---0 1 1 ---1

Yy Yo oot Yy |=| My 0 --- 0 én €3 *°* 6

Ym sz"'YImJ mp O-.-o' epl ep2 Y e}’"
(2.6)
' 7 _ _
or [§]=0[}E or Y=06E .

For a sample of size n=p+1 the group of transformations G on
the sample space 4 of the transformed response Y is unitary (G is
unitary on Y if for g, and g, € G and y € Y, gy=g,y implies g,=g;). The
transformed model has two parts: (i) the structural equation (2.6)
and (ii) the probability element of the error variable (2.3). Thus for
a known value of p the model is a structural model. For a detailed
discussion of structural models see Fraser [4].

An element g of G puts the transformed response into its orbit

GY={gylgeG}. Let D(Y) be a reference point on the orbit. The

point ¥ on the orbit can be obtained from the reference point D(Y)
by a suitable transformation usually known as a transformation variable.

Let T(Y) be such a transformation variable. Then
2.7 T(Y)D(Y)=Y.

Let Y* be another point on the orbit. Then there exists a g in G
such that g¥=Y*. Also Y* can be reached from D(Y) by the trans-
formation T(Y*)=T(gY). Thus we have

2.8) gY=gT(Y)D(Y)=T(¢Y)D(¥)=Y*.

Thus a transformation variable is a mapping from 4/ to G such that
T(gY)=gT(Y) for all g in G and all ¥ in 4J. Any such transformation

variable will determine an unique reference point on the orbit:
2.9) D(Y)=T(Y)Y
=T (Y)g'gY
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=(@T(Y))'gY
=T gY)gY
=T (Y*Y*.

Consider the following transformation variable:

1 0 -.-0
(2.10) T(Y)=| % & '+ 0
yp 0 -.- S,
where
’.‘IJ—EE?IJ«-/”, .7"'1,2: ,p7
and

The transformation variable (2.10) induces the unique reference
point on the orbit:

1I ll
1) D(Y)=T’*<?>Y=[yi,—mHei,-ai}

s, S,
1=1,2,---,p; 7=1,2,:

Let dm be the invariant differential on 4 and dg and dv be the
left and right invariant differential on G respectively and 4 be the cor-
responding modular function: du(g)=4(g)dv(g). Then using the Jacobian
results of the effect of transformations G on 4 and G one obtains

dm(E)=dE[s,
dp(g)=dg/c™*",
du(g)=dg/c ,
A(g)=dp(g)/dv(g)=c7.

Using the results of these invariant differentials and following

Fraser ([4], Chapter 2), the conditional distribution of T(E) (for known
p) on the orbit is obtained as

(2. 13) ¢P(D(E)) (2”)—np/2 —n/ZE—n(p—l)/anp-p-l

X exp [—%{-—el —? é +83Rp(d)}]dT(E) ;

(2.12)
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12 1 &
where, R,(d)=— z‘{d e 2 Sdi;
77 a= =2 a=1

dT(E)‘:dél’ déz" ) @p’ dse ’
and ¢,(D) is the normalising constant .

It is observed that e, é&,---,¢€, and s, are independent and also inde-
pendent of D(E), for a known value of p. Integrating over the variables
of T(E) the normalising content ¢,(D(E)) is obtained as

(2 . 14) pr(D) — 7)11/214('1__1)177](11.--1)/25(71-1)(p—1)/2[1.3p(d)]p(n—1)/2

where A,=2z""*/I'(f/2) is the area of the unit sphere in R’.
Further, we have the structural equation

(2.15) T(Y)=T@OE)=0T(E) .

This structural equation along with the probability element (2.13)
describes a structural model. Since it gives a reduction from R™ to
Rr* it is known as reduced structural model. The derivation of these
results is completely based on the information contained in the trans-
formed structural model.

3. Structural inference for the parameters

The reduced structural model obtained in Section 2 yields through
the structural equation T(E)=6"'T(Y) the structural distribution & for
given value of Y. On using the results of the right invariant differ-
ential on G and the modular function 4 obtained at (2.12) and following
Fraser ([4], Chapter 2), the structural distribution of ¢ is obtained as

(3.1) n?? A(n_msf,"""“ [ Rp(d)]p(n—l)ﬂ

(Zn)nplzanp-l-l 1/25(1)—1)/2

@—m+ 2 3 @ m) SR |

Xexp[ 2a2{

where dd=dm,dm,.--dm,ds. This structural distribution is derived on
the assumption that p is known.

3.1. Inference about p

On integrating (3.1) with respect to ¢ the marginal distribution of
my, My, - -, M, is obtained as

3.2 __n%;%_ —1/20 £\~ (p—1)/2
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[ et ] .
[+ gy @ k@ S| dm

The inverse of the orthogonal transformations I deseribed in Sec-
tion 2 can be used to obtain the marginal structural distribution of
f, -+, iy, and is obtained as

3.3) % ()~V(g)~@-vr

n. 2
xﬁ+ﬂﬂﬂ( P

2 —"pﬂd .
( ) 7~ ( j‘#/)] ¥

where gi@)=2 31 (@, ~ &)+ % ) 3 (@0 — .~ BB,
)7 a= =] a=

x =jixja/p! a=1’2""!’n;
=1

x; =§ T, i=1,2,--+,p;

i M’s

PADIEN
Tﬁe derivation of (3.3) uses the following relations:
2 @—v)'=p 3 (E.—2),
p _ .
2 2 (Yia—Yy)
j=2 a=1

; (7.~ %) pE(x —Z)— nZ‘(xf —Zx)

M= ?Mu
M= “M’

(mj.~51.—57.a+:7:)2 .

[
-

J 1

I

For p=0, the structural distribution of s, g,,---, g, reduces to

/2 A n » —np/2
3.4 1" A {1 %, — 2} d
(3.4) sy A + O E( 5. — 1) ©

p n _ o —
where 8”2”(‘)=j2—1 gl (w,,,—w)z—ng‘{ (x;.—x).

3.2. Inference about o

On integrating over m the expression (3.1) the marginal structural
distribution for ¢ for a known value of p is obtained as

A("_Dpsg(n—l)(RP(d))p(n—l)IZ exp {

(2ﬁ)p(n—l)/20.p(n—l)+l

(3.5)

7sz,,(¢)}
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which when expressed in terms of the observed response X reduces to

(3.6) Aot GOV exp [ — ok gita) Jdo -

(Zﬂ)p(n—l)ﬂa,p(n—l)+l
For p=0, the structural distribution of ¢ is obtained as

A-v,855 " 1
(2”)1’((n—ll))/2;(p()1!—l)+l €xp [—ﬁsﬁ(,)]da .

3.3. Inference about p

In Section 2, the conditional distribution of T(E) on the orbit in-
dexed by D(E) has been obtained by using the property of invariant
differential and not by integrating (2.3) with respect to the orbital vari-
ables D(E). So division of (2.3) by the conditional probability element
(2.13) adjusted by the factor m**® necessary to measure the Euclidean
volume in R™ must yield the probability distribution of D(E). Thus
the probability distribution of the orbital variables D(E) is obtained as

et pps [RA@] T VAE
3.7 A 1 ¢ 1)/2& (n-1)(p l)/zsg (np—p—1) [_p_ ke :
S A me). - dVm 6),

_.__A(—"l_l)pyi—(n-—1)/25—(n-—l)(p—l)/zs;-(np—p—l)[Rp(d)]—p(n—l)/z .
This marginal probability element at Y becomes
. (3.8) Aall_l)pn—(n-l)/Z(e)—(p—l)(n—1)/28;(m—p—1)[RP(d)]—p(n—l)/ld,v .

The Jacobian of the inverse transformation from Y to X is unity.
The same transformation changes the differential d(v 7% %,),- - -, dv ™ ¥, ds,
along the inverse image of the orbit to d(vmx.),-- -, d(vVn Z,)dé,(x).
So in terms of the observed response the probability element cross-
sectional to the inverse image of the orbit is obtained as

3.9) AGL ()0 £)~ DDA g2 ()] HAD/2

This probability element depends on p and thus yields the marginal
likelihood function of p as

L(p| X)=R+(X )y~ =bry(g)= b0l ptn=0(g5)
=R (X )y~ Prg)~ L[~ P(x)+£7'Q(2)] TPV

where
Po)=p3 (@2}, Q@)= ,‘é 3 @)=y Bu B

and R*(X) is the map that carries that point X into the single entity
*+=(0, o). The marginal likelihood function thus obtained provides
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the basis of inference about p. Olkin and Prat [9] derived an unbiased
estimate of p which is a function of P(x) and Q(x). It is interesting
to note that the likelihood function here depends on P(x) and @(x) as
a function of X.
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