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1. Introduction and summary

In a previous paper [6], the author has derived the asymptotic
expansion of the distribution of the likelihood ratio (=LR) criterion for
testing the equality of covariance matrices under the fixed alternative,
the first term of which is a normal distribution. On the other hand
Box [2] gave the asymptotic expansion of the null distribution in terms
of y-variates. In fact this limiting non-null distribution degenerates
at the null hypothesis. Therefore we shall investigate the distribution
under local alternatives. In the univariate case the author [7] obtained
the asymptotic expansion of the distribution under local alternatives by
using the normal approximation of log y*. In this paper, giving a natu-
ral extension of the asymptotic normality of log y* to the multivariate
case, we shall derive the asymptotic expansions of the non-null distri-
butions under local alternatives for the LR criterion and the test pro-
posed by the author [8], the first terms of which are non-central ’.

Recently based on the solution of a differential equation with respect
to the hypergeometric function ,F; type due to Muirhead [5], the asymp-
totic distribution of the LR criterion for the two sample case has been
derived by Sugiura [10] under local alternatives.

2. Preliminaries

Let the px1 vectors X,,, X.;,- -+, X.~, be a random sample from a
p-variate normal distribution with mean vector g, and covariance matrix
3. (@=1,2,--+, k). For testing the hypothesis H: 2,=23,=..-=23, (=2)
against all alternatives K: X,#J3; for some a and 8 (a«#p) with unspe-
cified p., the modified LR test is given by

nf2

2.1) A= ﬁlIS,,/n, |"«/2/ zk; s.n|™,
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where S.= z(xa,, X)(X.,—X.), X,:Nu-l;vzf‘.'x,,, n,=N,—1 and n=
=1

E My Espec1ally in the case k=2, this test was shown to be unbiased

a=1

by our previous paper [9]. For the above problem the author [8] pro-
posed the test statistic

2.2) aw=L S, tr { S, (.1_ S S,,) ‘—I}z ,
2 a=1 Ny \ M a=1
and derived an asymptotic expansion for the null distribution of 2,.
As in Chevally ([3], p. 14) we can define the logarithm for a real
positive definite matrix. So we shall give a multivariate extension of
the normal approximation of log y*.

LEMMA 2.1. Let S (pXp) be distributed according to the Wishart
distribution W(Z, n). Then under the assumption X=I+n"'"9, the p(p+
1)/2 random variables y,; (i<j) of the statistic Y=(y,,)=+n/2(log Sjn—
log 2) are stochastically independent as m— oo. ¥, converges in law to
N0, 1) and y,;; (¢:<J) converges in law to N(0, 1/2).

PROOF. Let U=(3-*S3-2—nl)/¥/2n. Then the statistic U has an
asymptotically normal distribution. (See Nagao [6], p. 201.) Since J=
I+n7'"9, we have log S/n=n""0+ (n/2)" U+ Oy n'). Thus Y=U+
O,(n""?). Hence we can obtain the desired conclusion.

Finally we shall consider the distribution of the statistic Z,=+m,/2
-log S./m,, where S, (pXp) has the Wishart distribution W(2,, n,) and
m,=pn, with p=1+4o0(1). Since S,=m,exp (¥2/m.Z,), expressing the
characteristic roots of the matrix Z, as ch,(Z,), the Jacobian as in Jack
[4] is given by

a_S“ =(2m, )PV etr [ ‘/—— ] 11 SQR)—f (11)
« m

2.3
( ) « >7 2; Xj

where f(1)=e* with A,=+2/m.ch,(Z,). Since we are interested in ob-
taining asymptotic expansions, we note that the last term in (2.3) can
be expanded for large m, as

o 0= 1y L

trZ+

{(311 — 6p+2) (tr Z,,)’+ P tr Zj} +0(mz*)

Since |e*|=etr A for any square matrix A, the “asymptotic” distribu-
tion of Z, can be expressed as

-2

m,

1
2.5) c*-et [_
(2.5) cf-etr 2

2 7 M 510y <
M, 2
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1
-1
1+

)
+p tr 22} +0(mz™)]

where 4,=(n,—m,)/2 and

)p(2mr—p—1+4la)/4

(2.6) c:‘={ﬁr[—;—(m,+1—ﬁ+24,)]}"(";«

”—p(p—l)ﬂ I Za l-(ma+24a)/2 .

3. Asymptotic distribution of the modified LR criterion

From the statistic (2.1), we have

3.1) —2plog 4=

—~ 3 m, log |S./m.|

where m,=pn,, m=ﬁ m, and a correction factor p as in Anderson ([1],
a=1
p. 255) is given by
Eoo )\ 2p+38p—1
3.2 =1—<2 noi—n 1>_____ .
@2 =1 6o+ D) (k=D

Since the statistic —2plog 2, remains invariant by the transformation
S,—AS,A’ («a=1,2,---,k) for any non-singular matrix A, we may as-
sume X,=1I without loss of generality. We consider the distribution of
—2plog 2, under the sequence of alternatives K, : Y. =I+m™, (a=1,
. k). Put Y,=vm.2(log S.,/m,~log %,) (a=1,2,---,k), then by
Lemma 2.1 Y, is asymptotically normal. Thus we can express the sta-
tistic (8.1) in terms of the Y’s with the fixed p,=m./m (a=1,2,---,k)
as
(8.3) —2plog 4=q(Y)+m ’g(Y)+m 'g(Y)+0,(m™") ,

where

3.4) qo(Y)=tI'a§=:_,: (Y,-}-\/%Ba)z_tr {é («/p,,Y +~/— X ,)}z

3.5) q(Y)=—+ tr 2 p0i+tr 2 6 Y*+‘/32 tr z:}l YV 0.

—tr z_:l V20, Y.+ p.8.) g (Y24+v2p,0.Y.)

X - 3
+_§. tr {gl (\/Zpar Y¢+pa0ﬂ)} ’
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1 k 1 kK 1 k
(3.6)  a(Y)=Ftr 3o+ tr 3 (0.~ tr 33027
a=1 a=1 a=1
L S0 4t 5 Y,
a=1 a=1

—tr 33 V2, 1c.+,w.,){“’——ZL i_ V0.0

1 k
+ o 2 YaoaYa
3 a=1

+%i0, %i‘. ’0+“/2 S Yo

+-;—tr{2k‘.(~/_Y .)} {«/?gl«/EﬂaYa
+VE NV Y0423 vl

a=1

1 k —_— k 2 2
—_tr{FEJpao Y+-‘/=2= Vo Vbt Ya}

a=1
_Z tr {g (V2p. Y,+p,0,,)} .
Thus we can express the characteristic function of —2plog 2, as follows:

3.7) Ct)=E [exp (itau( Y))[1+m"/”(it)q1( Y)+m-

@)+ L@yl ]]+om .

Then using the distribution of Z, in (2.5), we can evaluate each term
in (3.7). To explain the method of its calculation, the matrix exp (v2/m,
-Z,) in (2.5) can be expanded asymptotically as

3.8) exp <\/m72> -

a

2 1 V2
Z, Zi 4=
m, + m, + 3m.v m,

Z}+0(m") .

1

+ 6m?

Rewrite ¢(Y) in terms of Z,=(z?) under K,. Furthermore, arrang-
ing the resulting expression in the exponential part in (2.5) according
to the power of m™'”* and combining the term (it)q(Y), the first term
containing Z, in the exponential part is given by

(3.9 (L-2it) tr 3} Z:+2(i) tr(é JEza)z—J‘z‘ tr 33V 0.2,

=@— )11 —2it) " G—17)+ 17} Lperal 2 —p2)
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1 k
——tr Hr——————tr (0.—0)

2 2ip iz 2 D Z‘. Pl Y,
Where zl=(z§;)s ct zgz;;)y ZE:,}), Ty ngl,py Tty zﬁc)’ ct zg;;)’ zg)y Tty z(k—)l,p)y r’=
Wi, ¥or, s Vou) Lgop=diag@,1,---,1,1/2,1/2,- -, 1/2) having mul-
tiplicity p of 1 and multiplicity p(p—1)/2 of 1/2 and the symbol & de-
notes the Kronecker product. Also the component 49 of kp(p+1)/2x1

vector g corresponding to the vector z is given by p#9=+p,./2 (0%;’—2it5i,)
with 6,=(6) and 6= (0”) 2 p8.. Hence from (3.9), we may regard

the variable z as having a kp(p+ 1)/2 dimensional normal distribution
with mean vector p and covariance matrix V=(¢{%2) with ¢2=(1—
20t) 740, — 20tV 0,05) (0140 1+ 040 ,;)/2. The terms of order m~2 and m™
are performed by calculating moments. Also the two terms in (3.7)
can be obtained by tedious calculations. Thus we can obtain the char-
acteristic function of —2plog 2, under the sequences of alternatives K, :
2.=2+m'*9, (a=1,2,---, k) as follows:

3.10) C(t)=(1—2it)~" exp [ tr Ag] [1+m-v2{ Cke tr 4, +(),

2(1— 2 it)

1 1

<——trAs 1

—tr 0Az> +§ tr A,+— tr BAZ}

7 3 ha (O, | +0(m )

where (t),=(1—2i)"", f=(k—1)p(p+1)/2 and the coefficients h,, with

C.=(6.—6)3", A,=pﬁ 0:Csy G=3p6., G=65 and B=3)p,@C.)} are
=1 a=1 a=1

given by

3.11) h3=712—(tr A,

he= _i(tr Ay)(tr Ag+tro4,) +—;— tr A4—711- tr A;

+Ltr02Az—_6trB

h4=7L2(tr A)(13 tr A, +24 tr 6Az)—_;_ tr A4+% tr A2

+Lwiay-tuia-ura+dous

—% @4+1) tr Az—% é o trC)
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hy= —T12—(tr A)(2tr A+5 tr5A2)+% tr A4—% tr A2

—-‘lz(tr 5A,)2+% tr EA,,+% tr 5"A2+13—6 tr B

+ L @D tr Ak B ptr G

=%(tr Ap)(tr Ag+3 tr EAz)-—-:é— tr A4+—i- tr A2

+—%—(tr GA,)—tr 07A3——‘11- tr §2A2——;- tr B—% tr A4, ,

where 4=(n—m)/2. Inverting this characteristic function, we have the
following theorem :

THEOREM 3.1. Under the sequences of alternatives K,,: 2,=3+m™'0,
(a=1,2,---, k), the distribution of —2plog A, with the correction factor
o given by (3.2) can be expanded asymptotically for large m (=pn) as

(3.12) Pr(—2plog 4,=x)

— P, + m-m{%(tr AYP, () + (—_;_ tr 4, —% tr 5A2> P, )
1 —
+ <§ tr A,,-I—-% tr 0A2>P,(52)}

4
+m™! % haoPyi3q(8%)+0(m =)

where the symbol P,(0*) stands for the distribution function of noncentral
x¢ variate with f=(k—1)p(p+1)/2 degrees of freedom, and moncentrality

parameter 52=i— trfk‘_. p.{(0.—6)2}* and the coefficients h,, by (3.11).
a=1

We remark that this formula (3.12) agrees, in the case k=2, with
the expansion obtained previously by Sugiura [10]. Also it may be
interesting to note that each sum of the coefficients of order m~'*
and m™! is zero.

4. Asymptotic distribution of the test criterion 1,

Using the same method as above, the asymptotic distribution of 2,
can be obtained. The final result is given in the following:

THEOREM 4.1. Under the sequences of alternatives K, : ¥,=3+n""%,
(«=1,2,---, k), the distribution of A given by (2.2) can be exrpanded
asymptotically for large n as
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@1) Pr(h<z) =P,(6’)+n“/’{%;— (tr AP, o) +%(p+ 1)(tr E)P,, ()
1 1 — 1 2
+ [-—_2_ tr Ay— 3 tr0A— 2 (p+D) tr EI}PM((S )
+ (% tr A+ % tr 5A2) P,(aZ)}
8
+nt a 92.P f+za(52)+0('n—m) ’

where f=(k—1)p(p+1)/2 and 6*=(1/4) tr A;. The coefficients g,, with E,=
ﬂi‘, Cs, ﬁ=ﬁ‘, o' and the same motation as Theorem 3.1 are given by
=1 a=1

4.2) gn= %(tr Ay,

gm_.}f trA4—l trA§+——(p+1) tr E tr 4, ,

o= —le—(tr A)(tr Ay +tr8A,) +2—14(p+ 1)(tr B
- (3(+1) tr E,—2 trAa—%trA4—%{k(p+1)+p+2} tr A,

o St CF G+ tr Btk 4 3 (G,

gs=i(tr A)(2tr A,+3triA,) —~1—<p+ 1)(tr Ey)
. {tr A;+tr oA, +(p+ 1) trE} —= tr A4+ 3 tr A;
1 9

— S trOAck - tr 0 Ay 196 tr B+_{2k(p+1)+(2p+3)} tr A,

31 pu(tr C' = (4p-+5) tr By— 33 (tr C.)

g4=§(tr A (tr Ay+2 tr0A) +—-(p+1) (tr E)
. (B(p+1) tr B, +12 tr 54,410 tr A;) +7]4-_ tr A

+%(tr EAZ)’—% tr 52A,+-g- tr B+—;—k(p+ 1) tr 4,
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1 1 o
7 (p+1)tr EZ_E (p+1) tr 6K,
+—;—p {4k} (p+1)*+ (2k—1) (2p’+5p+5)—p(6p*+13p+9)} ,

g2=—%(tr A)@tr A+5 trﬁAz)—%(p-I-l)(tl‘El)

. (2tr A,+3 tr§A2)+% tr A;—% tr Aﬁ—%(tr A,
+_;’_ tr 5A,+i—g tr EzAz—liG tr B-%{2k(p+1)—1} tr A,

k —_
+1 33 (T OO+ L@+ D) tr Ent - (041) tr O,

—%(k2+k—2ir)p(p+1)2 ,

Go=—L (tr Ay)(tr Ay +3trd4y)+ L tr 42— 3 tr 4,4+ L (traa,y
18 1 8 8
N | 1, -
—trod,—L trgra,— L 1 1 ppep+3p—1) .
tr 04, o i A, 4trB+24(1 p)p(2p*+3p—1)

From Theorems 8.1 and 4.1, we note that Pitman’s asymptotic re-
lative efficiency of the 2, test with respect to the 4, is equal to 1.
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