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Summary

The problem of identifiability of a multivariate autoregressive
moving average process is considered and a complete solution is ob-
tained by using the Markovian representation of the process. The
maximum likelihood procedure for the fitting of the Markovian repre-
sentation is discussed. A practical procedure for finding an initial guess
of the representation is introduced and its feasibility is demonstrated
with numerical examples.

1. Introduction

The state space representation of a system is a fundamental concept
in modern control theory. When a discrete-time system is time-invariant
and linear the state space representation of the system is given in the
form

?),H_! =.A/U"+Bu,.+1
(1.1
Y= Cv, ,

where n denotes the time and u, is a ¢x1 vector of the input to the
system, y, is an X1 vector of the output and v, is a px1 vector of
the state. A, B and C are respectively pxXp, pXq and X p matrices.
The use of the state space representation for the design of optimal
control under a quadratic cost function is well-known in the engineer-
ing literature. The state space representation of a system has been
discussed in some statistical literature (for example, Whittle [19] and
Akaike [1]), however, it has not yet been fully exploited by statisticians.
This may partly be due to the somewhat abstract definition of the con-
cept of state, as is described by Kalman and others ([10], Chap. 10).
The state is sometimes vaguely understood as a condensed representa-
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tion of information from the present and past, such that the future
behaviour of the system can completely be described by the knowledge
of the present state and the future input. This idea finds a precise
mathematical formulation when the system is stochastic, i.e. when the
input w, and the output y, are stochastic processes. It was shown
(Akaike [6]) that by the analysis of canonical correlations between the
set of the present and future output and the set of the present and
past input a Markovian representation of a stochastic system can be
obtained. The Markovian representation is a stochastic analogue of
(1.1) and is given by

Vpy1=AV,+ B2,y
1.2)
Y= C'vn'{" Wy

where w, is uncorrelated with v,. In (1.2) z,,, is the innovation of the
input u, at time n+1 and is defined by %,.;—%,,1., Where u,,;, is the
projection of u,,; on its past which is defined as the mean square clo-
sure of the space of finite linear combinations of the components of
Uny Un_1,*++. When u,=y,, w, vanishes from (1.2) and a Markovian
representation of a stationary stochastic process y, is given in the form

Vn1= A’I),, + an+l
(1.3)
Y=Cv, .

This representation gives y, as the output of a stochastic system which
is time invariant and linear and driven by a white noise input z,. w,
is called the state of the process.

The purpose of the present paper is to discuss the relation of this
Markovian representation of a stationary stochastic process y, with the
familiar autoregressive moving average (AR-MA) representation

(1.4) YntBYns+ -+ +Bylpy=2.+ A2 1+ - +AL2, . .

First a proof of the equivalence of the Markovian and AR-MA re-
presentations, obtained by showing the existence of direct transforma-
tions from one to the other, is given. Hannan [9] discussed the problem
of identifiability or the uniqueness of the AR-MA representation that
is especially difficult when the process is multivariate. The simplest
type of identifiability is the one which is called the block-identifiability
in the present paper. The determination procedure of the AR-MA co-
efficient matrices A; and B, from the covariance matrices of y,, under
the block-identifiability condition, leads to a natural stochastic inter-
pretation of Rissanen’s [15] block triangularization procedure of block
Hankel matrices. This result illustrates the inherent relationship be-
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tween the problem of identification, or the determination of the Markov-
ian or AR-MA representation, of the process y, and the Hankel type
matrices.

By a further analysis of the Markovian representation it becomes
clear that the identifiability problem of the AR-MA representation can
be solved completely without any restriction such as block-identifiability.
This result demonstrates the merit of the Markovian representation for
the purpose of analysis of stochastic systems. Generally there is not a
unique structure, or a set of special forms of the matrices A, B and
C in the Markovian representation (1.3), with a minimum number of
undetermined parameters and that can represent every y, with the
same minimal possible dimension of v, in the representation (1.3). Thus
the identification, or the determination of the Markovian or AR-MA
representation, must proceed in two steps, the first step is the selec-
tion of a special structure and the second is the determination of the
parameters in the structure. Once an exhaustive set of special struc-
tures is specified the statistical identification or the determination of
the structure and the parameters based on the observations of a Gaus-
sian process can be realized through the maximum likelihood procedure
with the aid of an information theoretic criterion (Akaike [2], [3]).

The statistical identification is realized by using the Markovian re-
presentation and the results may be used directly for the purpose of
analysis and implementation of control of a multivariate stochastic sys-
tem without recourse to the AR-MA representation. In particular in
the last section of the paper it is shown that under a very mild as-
sumption consistent estimates of the structure and the parameters
within the matrix A of a special Markovian representation can be
obtained by a simple procedure. This is a fundamental contribution to
the subject of statistical identification of multivariate stochastic systems.
The procedure is based on the canonical correlation analysis between
the present and future and the present and past observations of the
process and provides an initial guess of the structure and the param-
eters to be used for the maximum likelihood procedure. This is a
significant example of the use of the canonical correlation concept in
relation to the time series analysis. Numerical examples are given to
show the feasibility of the procedure. Towards the end of the paper
it is suggested that a special Markovian representation may be useful
to give an answer to the problem of reduction of the number of meas-
urements of a complex stochastic system. This problem was raised by
Priestley and others [13].

Throughout the present paper the closure in the sense of mean
square of the linear space of finite linear combinations of the compo-
nents of the random vectors z,, «,,--- will be denoted by R(z,, 2;,---)
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and called the space spanned by the components of, or, simply, the
space spanned by, x;, %,,---. The i-step ahead predictor at time = of
a stochastic process y, is defined as the projection of ¥,,; on R(¥,, ¥._.,
-++) and denoted by ... If S=R(x, 2,,---) holds for a linear space
S, the set of the components of x,, x,,--- is called a system of gener-
ators of S. In the present paper the qualities of random variables are
understood in the sense of mean square.

2. Autoregressive-moving average processes and Markovian repre-
sentations

The autoregressive moving average process (AR-MA process) y, is
defined by
2.1) YntBYnst - +BuYo-y=2+AZp i+ - +A4,2, 1,

where B; and A; are the matrices of coefficients, y, and z, are rx1
vectors and z, is a white noise with Ez,=0, zero vector, and E (z.22)
=G and for 1#0 E (z,2,_;)=0, zero matrix, and Ey,2,,,=0 for i=1,

M
2,---. It is assumed that the characteristic equations |i¥I+ > 2*-iB,
i=1

=0 and 2’*I+§‘_, AL7JA,1=0 have zeros outside the unit circle. This
=1

assumption assures that y, can be expressed in a form

@.2) =3 Wz

with Wy=1, identity matrix, and z, is the innovation of y, at time n,
i.e. 2,=Yo—Ynin1 and Y,y is the one-step ahead predictor of y, at time
n—1. To get a Markovian representation of y, it is only necessary to

analyze the structure of the predictors y,.., ¥nitnr--:. Let Z,, denote
the projection of  on R(Y., ¥,_y,--+), then y,,,. satisfies the relation
(2.3) YnttintBYnii-tn+ * * * +ByYnricuin

=Zn+tln+Alzn+t-lln+ e +AM-lzn+i-LIn y
where ¥,,1n=%Yan for h=0, —1,..., and 2,,,,=0 for h=0,1,.-.. For
1=z L+1 the right-hand side of (2.3) vanishes. Thus y,,,, (:=0,1,-- °)
can be expressed as linear transforms of y,,, Ynttinr** s Ynek—11n,» Where

K=max (M, L+1), and the components of these vectors form a system
of generators of the linear space spanned by the components of Yniiln
(¢=0,1,---). Especially it holds that

(2'4) yn+K|n= —Blyn+x—lln—Bzyn+K—2ln° . '—'Bxynln ’
where by definition B,=0 for m=M+1, M+2,---, K. From (2.2) one
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can get

(2.5) Yntittintt=Ynsittin T WiZnsr «

From (2.4) and (2.5) it can be seen that the vector v,=(¥in, Yostinr** >
Ynix-12) DProvides a Markovian representation

0 I o --- 0 W,
0 0 I ... 0 W,
Van=| : IR % I
0 0 o ... 1T We_s
—Bz _BK-I —Bx—z ¢ _Bl Wx-l

(2.6)
Yo=[I 0 O0- . -0]w,.

This result shows that an AR-MA process always has a Markovian re-
presentation.

It should be noted that W,’s are the impulse response matrices of
the time-invariant linear system defined by (2.1) with the input 2, and
the output y,. The jth column W,(-j) of W, is obtained by the rela-
tion

Wm('j)+B1Wm-1('j)+ e +BMW —H('j)
= n('j)+A1Dn-1('j)+ ---+A,D -L('j) ’
where W,(-7)=0, zero vector, for m<0 and D,(-j) denotes the jth
column of a matrix D, which is by definition equal to I, identity matrix,
for n=0 and 0, zero matrix, for ##0. Thus numerically it is a simple
matter to derive the Markovian representation (2.6) from the AR-MA

representation (2.1).
Now suppose a process ¥, has a Markovian representation
Vpp1=AV,+Bzpyy
2.7
Yn=Cv, ,

where it is assumed that v, is a pXx1 vector of the state and z, is the
innovation of y,. If the characteristic polynomial of A is given by

|Al—Al =27+ él a,2*™ then by the Cayley-Hamilton theorem A?+
ﬁ a,A?""=0. From (2.7), v,,;=Aw,+A"'Bz,,,+---+Bz,,, and it fol-
inc:vlvs that y, has an AR-MA representation
(2.8) YnipF OYnip-1+ - +0Yn =21 p+Ci2niprt -+ - +Cpi2ps
where

Ci=CA'+a,A*"'+---+al)B.
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In (2.8) the autoregressive coefficients are scalars, or, equivalently, con-
stant diagonal matrices. This result shows that any stationary stochastic
process with the Markovian representation (2.7) also has an AR-MA
representation (2.8).

Thus at least theoretically there is no distinction between the
Markovian and the AR-MA representations of a stationary stochastic
process. The results obtained by the analysis of the Markovian repre-
sentation can be used for the analysis of the AR-MA representation.
This fact is fully utilized in the following discussion of the identifiability
problem of the AR-MA representation. In (2.7), predictors are given
simply by

(2.9) Yurin=CA%,  1=0,1,---.

Thus the components of v, form a system of generators of the space
R(Yuins Ynstin» - - +) Which is spanned by the predictors ¥un, Ynsin,- . This
space R(Yuins Ynsimy - - -) Will hereafter be called the predictor space. When
the dimension of the predictor space of an arbitrary stationary process
¥, is finite there is a finite K which satisfies the relation (2.4) and y,
has a Markovian representation (2.6). Thus the finiteness of the di-
mension of the predictor space is the fundamental characterization of
a process with Markovian or AR-MA representation. And one of the
two Markovian representations of a process y,, the states of which are
defined by the elements of the predictor space, can be obtained from
the other by a linear transformation of the state of the latter. It is
now obvious that the dimension, as a vector, of the state of a Mar-
kovian representation which is defined by using a basis of the predictor
space as its state is minimal. The dimension of this basis, or the
dimension of the predictor space, is a characteristic of the stochastic
system which generates the process from its innovations and will be
called the dimension of the system. Also the process is called a pro-
cess with p-dimensional dynamiecs.

3. Block-identifiability of autoregressive moving average processes

Although the AR-MA representation of a stationary stochastic pro-
cess has been used as one of the basic models of time series analysis
there is a serious conceptual difficulty inherent in this model. This is
the non-uniqueness of the representation. When (2.1) holds there are
infinitely many other representations of the same process, for example
those which are obtained from (2.1) by the transformations which
replace n of (2.1) by some n—k (k>1), premultiply it with an rxr
matrix D, and add to the original (2.1). When v, is a univariate pro-
cess, the representation can be made unique by requiring the orders



MARKOVIAN REPRESENTATION OF STOCHASTIC PROCESSES 369

L and M of (2.1) to be minimal. When y, is a multivariate process
this requirement of minimal order is not necessarily sufficient to make
the representation unique. Under the assumption of non-singularity of
the covariance matrix G=(z,2;,) Hannan [9] gave a necessary and suffici-
ent condition for an AR-MA process ¥, to have a unique representation
of the form (2.1).

It is trivially true that the uniqueness of a representation is a pre-
requisite for the development of consistent estimation procedures. But
this fact should not be considered as meaning the impracticability of
developing a general estimation procedure of AR-MA models without
identifiability conditions. If the purpose of fitting an AR-MA model is
only to get an estimate of the covariance structure of the process under
observation any one of the possible equivalent representations can serve
for the purpose, if only it can be specified properly. The practicability
of this specification procedure is the main subject of the present paper.

Although a general estimation procedure without any assumption
of identifiability of the model is developed in the later sections it will
be useful for the understanding of the subject to discuss the relation
between the AR-MA representation (2.1) and the Markovian representa-
tion (2.6) under the assumption of a simplest type of identifiability.
Under the assumption of non-singularity of G=E (z,2}), W, is uniquely
determined by (2.2) and satisfies the relation

3.1) A=W, +BW,_+- - +B W, »,

where W,=0 for m<0. Thus the representation (2.1) is uniquely deter-
mined from (2.6) if the variance matrix of v, is non-singular. This is
a simple sufficient condition for the identifiability of the AR-MA repre-
sentation. Consider a general situation where a stationary Markovian
process v, is defined by

(3.2) VUn41= A'v,."" Bz,H.l ,

where z, is a zero mean ¢Xx1 white noise with E (z,2,)=G and E (z,2,-.)
=0 (¢#0) and v, is sx1 and is an element of the space spanned by
2, Zn 1yt ++. It is assumed that G is non-singular. The dimension of
R(v,), the space spanned by the components of v,, is determined by
the following matrix which is often called the controllability matrix in
control engineering literature:

(3.3) C.=[B, AB, A’B,. .-, A*'B] .

When the rank of C, is less than s there is a non-zero sx1 vector ¢
such that ¢’C,=0. This means E (¢'v,2,_;)=0 for ¢=0,1,.---,8—1. As
was discussed below (2.7) there is a set of coefficients a, (m=1, 2,---,8)
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which satisfy the relation A*+ i_‘, a,A*™=0. By using this relation,

BE (v,2._;) (1=0) can always be expressed as a linear combination of
E (v,2)), E (va2,-1), -+ +5 E (v,25_,41). Since E (¢'v,2,-)=0 holds for ¢=0,1,
..+, 8—1, this means that E (¢'v,2,_,)=0 for all non-negative values of 1.
As v, is an element of the space spanned by 2., Z._.,:--, this means
g'v,=0. Thus the distribution of v, is degenerate. When the rank C,
is equal to s there is no non-zero g for which E (¢'v,2,_,)=0 (¢=0, 1,---)
and the distribution of v, is non-degenerate. Thus the present identi-
fiability condition can readily be checked by analyzing the rank of the
matrix C, of (8.3) with A and B defined by (3.2) and (2.6), where W,’s
are obtained by (3.1) from A,/s and B,’s. When an AR-MA process
satisfies the present identifiability condition the dimension of the stochas-
tic system or the dimension of the predictor space is, from (2.6), equal
to Kr=max (Mr, (L+1)r), where r is the dimension of y,. When y,
is multivariate (r>1) the dimension of the stochastic system defined by
9, need not always be an integral multiple of . Thus it is clear that
the class of the AR-MA processes which satisfy the present condition
is a rather limited one and will not be wide enough as a basis to develop
a fully efficient statistical identification procedure of AR-MA processes
on it.

Hereafter the identifiability described in the preceding paragraph
will symbolically be called the block-identifiability and the process which
satisfies the condition of block-identifiability will be called block-identi-
fiable.

4. Determination of AR-MA coefficients from covariance sequence
under the block-identifiability assumption

For an r-dimensional AR-MA process (2.1) the AR coefficient mat-
rices B,, B;,:- -, By satisfy the Yule-Walker equation

4.1) C(L+13)+BC(L+i—1)+---+ByC(L+i—M)=0
1=1,2,---, M

where C(j)=E v,¥,_;. (4.1) can be expressed in a matrix form

4.2) [-C(L+1), —C(L+2),---, —C(L+M)]
=[Bl’ B,,---, BK]
arL) CL+1) - - - CL+M-1)

C(L.—l) C(:L) SR C(L+M —2)

C(L—M+1) CL—M+2) - - - c(L)
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The last Mr X Mr matrix of (4.2) is a block Toeplitz matrix and a recur-
sive numerical procedure for the solution of (4.2) was discussed by
Whittle [18] and Akaike [4]. When the process satisfies the block-
identifiability condition the numerical procedure produces a unique solu-
tion to (4.2). When y, is known to be block-identifiable but the values
of L and M are unknown the solution must be tried for various com-
binations of L and M. The block Toeplitz matrix type formulation of
the Yule-Walker equation can be seen to be unsuitable for this case.
Instead the block Hankel matrix type formulation, which is to be dis-
cussed shortly, is much more natural and numerically efficient.
The block-identifiability condition is equivalent to the assumption
of linear independence of the components of the predictors %,i., ¥nsiins
“*, Ynrx-11n» Where K=max (M, L+1). Since E (Ynisin¥i-;)=E ¥nsi¥n-;)
(t,7=0,1,---) the analysis of dependence of the components of the
predictors %un, Ynsiins- -+ i reduced to the analysis of dependence of the
elementary rows of the block Hankel matrix of the covariance between

(yn! Yng1y® ') and (y,., Yn-1s°" ') defined by

co) ca c@ - - -
cQ @ @ - - -

(43) C(.Z) C(.3) C(_4) SRR

Under the block-identifiability condition the analysis can be made by a
blockwise procedure. This is realized by successively finding a sequence
of linear transforms %\:=¥..c+Bi(t)Ynssst - +Bi(0)Yn Of Y, Ynsss- -+
such that ¥, is orthogonal to ¥,, ¥n_1,***, Yn_is1- The first transfor-
mation is obtained by replacing ¥, .11 bY ¥2ini=¥nsis1+ Bi()¥Yny: (2=0,
1,-..) with B(1) defined by the relation E (y2.%,)=0, or B(1)=-C()-
C(0)*. The covariance matrix E {(y;, ¥, %22, - )Y (W5, Y15 Yooy -+ +)}
has its (2, 1)th block element equal to a zero matrix and the matrix
below the first block-row is a block Hankel matrix. In the second step
it is desired to define ¥, in such a way that y®, is orthogonal to ¥,
and y,_;. To realize this, first ¥{2,,; is transformed into z{2,,.=y".,.+
Byy,.: (1=0,1,--.) with B, satisfying the relation E (2{2.9,)=0. 2{}...
is further transformed into ¥®,.;=2i+Buyi.: With B, satisfying
E (¥3.y,-)=0. By the first of these two transformations the (3, 1)th
block element of the covariance matrix is turned into a zero matrix
and by the second the (38, 2)th block element is also turned into a zero
matrix. By the Hankel property the (4 1)th block element E (y¥®:y)) of
E {(yn, v, ¥4, Y25+ - Y (Wn, Yaoss Yoas+ - #)} is a zero matrix. The kth
step of transformation is defined by 2¢:2;=v¥%0 i+ Buy:200: and ¥,
=250+ Buydal,.: with By, and B, defined by the relations E (283%;-
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Yi-rs2)=0 and E (y¥e+¥n-e1)=0, respectively. Now E (y2u;-,)=0 for
j=0,1,---,k—1. When k is equal to K (=max (M, L+1)) then E (y2,-
¥,_,)=0 for j=0,1,---, and the representation

(4.4) Yk =Yn+x+BWYnix-1+ - +Bg¥n

gives the desired set of AR coefficient matrices B,, B;,- -+, Bx. Incident-
ally, at the kth step of the above stated procedure the (k+1)Xx(k+1)
block matrix E {(y., ¥4, -, Y20 Whs Ynsyr - -5 Yasrr)} takes the form of
upper triangular block matrix. If the initial covariance matrix (4.3) is
replaced by E {(¥, ¥,i1,- - ) (4}, w,_y,--+)}, Where u, is a stochastic pro-
cess stationarily correlated with y,, the above procedure gives a stochas-
tic interpretation of a block triangularization procedure of block Hankel
matrices developed by Rissanen [15].

Once the AR coefficient matrices B, B;,---, Bx are obtained »%%
defined by (4.4) satisfies the representation

Yk =2kt AiZurxat o+ Ax %011 -

Thus the problem of determination of the MA coefficient matrices A,
A,,--+, Ax_, of the AR-MA process y, reduces to the problem of the
determination of the MA coefficient matrices of a simple MA process
y¥&%. A numerical solution to this problem is given also by Rissanen
[15] using a blockwise recursive procedure.

5. Special Markovian representations and their use for identification

It is tempting to think that once the dimension p of the system
is given the minimum number of necessary parameters to define the
Markovian representation of a stationary stochastic process y, is deter-
mined. In fact this is not true for the multivariate case. To see this
a special Markovian representation is considered here. The representa-
tion is obtained by defining its state v, as the vector of the first p
linearly independent components of the pr-dimensional vector (¥.., ¥isiins
cory Yoip-1). Now define Y, (k) (k=1,2,---) by the relation

Yn(jr+i) =yﬂ+1(i)|n ’

where y.(k) denotes the kth component of y,. Denote by H the set of
the integers ki, ks,-- -, k, such that v,=(Y,(k), Y.(k),- - -, Y.(k,)). The
set H has a special characteristic:

(5.1) k+r¢ H, when k¢ H.
From the definition of Y,(k) it holds that
Yn+1(k)ln=Yn(k +’r) .
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Thus the transition matrix A which satisfies the relation v,,,,=Av, is
determined by the relations

(5'23') You(k:) In= Yn(kj) for k,+r= k/
(5.2b) = 3  A,Y.k) otherwise ,
Jrkj<ki+r

where the last summation extends over the j’s such that k,<k,+r.
The observation matrix C which satisfies the relation y,=Cwv, is deter-
mined by the relations (=1, 2,---, )

(5.3a) Y.(2) =Y, (k;) for i=k,
(5.3b) =, %‘, iC“ Y.(k;) otherwise,
tkji<

where the last summation extends over j’s such that k,<%. Denote
the vector of the innovations {Y,.,(k;)—Y,.(k)m; 5=1,2,--+,¢} by 2,41,
where ¢ is the maximum of j such that k;<r. The Markovian repre-
sentation is given by v,,,=Av,+ Bz,,, and y,=Cv,, where A and C are
determined by (5.2) and (5.3) and B is the matrix of regression coef-
ficients of v,,,; on 2,,;,. The matrix B can be obtained from the ele-
ments of the impulse response matrices of the system to the input z,.
From the definitions of v, and z, it is clear that the present Markovian
representation is uniquely determined from the covariance structure of
Y,. Thus the set of the r-dimensional stationary processes ¥, with p-
dimensional dynamies is decomposed into mutually exclusive subsets,
each of which is characterized by a set H of the p integers ki, k,,- - -,
k, (Xpr) with the characteristic (5.1) and admits a unique Markovian
representation of its elements with the transition and the observation
matrices, A and C, of the forms respectively described by (5.2) and
(5.3). Now for each subset specified by H consider an 7 X (p+1) matrix
S of which (7, 7)th element S(¢, j) is 1 when for each element y, of the
subset ¥,,;_1(2), is retained in v,, i.e. when i+(j—1)r € H, and 0 other-
wise. The p+1st column of S is always a zero vector. The matrix S
takes a special form where each row has first several, or no, elements
equal to 1 and others equal to 0. The total number of 1’s within S is
equal to p. Shift the columns of S one step to the right and fill in 1’s in
the empty fisrt column to define another rX(p+1) matrix S,. Define
T=S+S,. The 1’s in the first column of T correspond to the i’s of
(5.83b) and the 1’s in other columns correspond to k,’s of (5.2b). Start-
ing at the (1, 1)th element of T, calculate the number of 2’s column-
wise until the 4th 1 (:=1,2,---, 7). The sum of these numbers is equal
to the number of parameters within A;; and C;; of (5.2) and (5.3). The
number of parameters within B is pxt, where ¢ is the dimension of z,.
From the definition of the subset it is obvious that no further reduec-



374 HIROTUGU AKAIKE

tion of the number of parameters is possible. Now it is easy to see
by some examples that for a given p there may be different patterns
of the distribution of 1’s within S which require different number of
parameters within 4 and C.

The special representation discussed above can be applied to produce
an ultimate answer to the identifiability problem of the AR-MA repre-
sentation of a stationary process with a finite dimensional dynamics,
under the assumption of non-singularity of the variance matrix of its
innovations. For this case C takes the form C=[I 0]. Denote by p;
the number of 1’s in the ith row of the above defined matrix S. By
rewriting (5.2b) the following representation is obtained :

Py
(5'4) yn+p,(i)|n=1nz=o Cm(i ‘ )yn+p‘—m|n ’

where C,(i+) is a 1xr vector determined by (5.2b) and Cy(3, j), the
(1, 7)th element of Cy(z-), is always equal to zero for j=i. Define ¢=
max (P, Pz,**+, D,). From (5.4) one can get a relation

q
Yniqn= 20 Cmyn+q—m|n ’
m=

which gives an AR-MA type representation

(5-5) (I_Co)yn+q_clyn+q-l_ c0e =0,
=qu,.+q+Dlz,.+q-1+ e +Dq—1zn+1 ’

where C,(4, j), the (i, 7)th element of C,, is put equal to the (1, j)th
element of C,(i-) defined by (5.4) or equal to zero, if undefined by (5.4).
From the definition of C,, I—C, is non-singular and an AR-MA repre-
sentation of y, is given by

(5'6) yn+B1yn—l+ s +qu»—q=zn+A1zn_1+ e +Aq_1z,._q+1 ,

where B,=—(I—C,))7'C, and A,=(I—C,)'D,. Thus it has become clear
that without any assumptions such as the block-identifiability, a sta-
tionary process with a finite dimensional dynamics and a non-singular
innovation variance matrix always has a uniquely identifiable AR-MA
representation (5.6). This result has been obtained with the aid of the
special Markovian representation introduced in this section and very
clearly shows the advantage of the Markovian representation over the
AR-MA representation for the purpose of multivariate stochastic system
analysis.

Since the Markovian representation of a stationary stochastic process
¥, is a state space representation of a time-invariant linear system which
generates y, from the input z,, the innovation of y,, any special Mar-
kovian representation can be defined by using a special state space re-



MARKOVIAN REPRESENTATION OF STOCHASTIC PROCESSES 375

presentation of the corresponding system. The subject of the special
state space representations of time-invariant discrete-time linear systems
has been discussed extensively and several alternatives of the special
Markovian representation introduced in this section can easily be intro-
duced (Akaike [7]). Especially by replacing the definition of Y,(k) by

Yn((i_l)p+j+1)=yn+j(1')ln i=11 21' e, TS j=07 1! tt p""l ’

and searching for the first p linearly independent components of Y, ,=
(Y1), Y.(2),- -+, Yo(rp)) one can get another basis v, of the predictor
space. By this choice of the basis, the definition of 2, in the Markovian
representation can be replaced by the vector of innovations of those
components of y, which are retained in v, to make the matrix B unique.
The assumption of non-singularity of the innovation matrix is now un-
necessary and the unique Markovian representation thus obtained gives
a corresponding unique AR-MA representation.

Once a special representation is specified, at least conceptually there
is no difficulty in developing a statistical identification procedure based
on the maximum likelihood method to be described in the next section.
The only difficulty which prevents the practical application of the pro-
cedure is caused by the existence of the vast number of possible choices
of the basis of the predictor space. It is almost prohibitive to perform
the maximum likelihood computation for every possible choice of the
basis. Thus the feasibility of the procedure is almost entirely depenent
on how to get good initial guesses of the dimension of the system and
the structure of the desired basis. A solution to this problem is given
in the last section.

It should be mentioned here that in an unpublished paper by
Rissanen [14] the special representation discussed at the beginning of
this section was used implicitly to develop a consistent estimation pro-
cedure of the parameters of a multivariate autoregressive process.

6. Maximum likelihood procedure and information theoretic criterion

When a stationary Gaussian process y, has a Markovian repre-
sentation

(6.1a) Vpp1=Av,+ Bz,
(6.1b) : ¥,=Cv, ,

the representation can conveniently be used to define an approximation
to the likelihood function. Under the assumption of non-singularity of
the innovation variance matrix, E (z,2.), ¥. can be expressed in the form

(6.2) Y,=CAv,_+z, .
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When a record of observations (y,; n=1, 2,---, N) is given, by assum-
ing v»,=0 a set of realization of z, (n=1,2,---, N) can be obtained by
(6.2) and (6.1a). The logarithm of the approximate likelihood function
is given by using the realization of z, in the form

(6.3) —-2£{'r log 2z +1log | G|+tr (G'Cy)} ,

N
where C,,:% 2-1 z.2, and G is the assumed covariance matrix of the

innovations. This result corresponds to the asymptotic evaluation of
the Gaussian likelihood given by Whittle ([16], (5.1)). If the Fourier
transform Y(f) of (y,; n=1,2,-.-, N) is defined by

Y(f )—W 2 exp (—2xfn)y,

and V(f) and Z(f) by

V() =~,;N~ 31 exp (—i2efn)o,

Z(f)=—= ~/_ 2 exp (—1i2rxfn)z, ,

then by neglecting the effect of end conditions it holds that
Z(f)=IC{I—exp (—i2xf)A} "'B]"'Y(f) .

By using the relation
172
a=\"_anz+is,
-1/2

where * denotes the conjugate transpose, one can get an explicit repre-
sentation of (6.3) in terms of the matrices A, B, C and G and the
Fourier transform of 7,. Thus if only a non-redundant parametrization
of A, B, C is available the maximum likelihood procedure can be realized
numerically by following the line of approach developed for the AR-MA
representation (Akaike [5]). The special Markovian representation intro-
duced in the preceding section can directly be used for this purpose. The
importance of this non-redundant parametrization of a Markovian repre-
sentation in statistical identification of a stochastic system can be un-
derstood more clearly by persuing its analogy to the factor analysis
model. If v, in (6.1) is replaced by u,=Twv,, with T non-singular, an-
other Markovian representation of y, is given by u,,,=TAT 'u,+ TBz,,,
and ¥,=CT'u,. Thus it is obvious that there is no meaning in trying
to find a unique Markovian representation without any further restric-
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tions. The situation is quite similar to the case of the indeterminacy
of the factor analysis model (see, for example, Lawley and Maxwell
[12]). The dimension of the system plays a role similar to that of the
number of factors in factor analysis. As was already seen in the pre-
ceding section, the dimension is not sufficient to determine the minimum
number of parameters necessary to define the Markovian representation
and the parametrization is much more complicated than that of the
factor analysis. As will be made clear in the following discussion of
the use of an information theoretic criterion for the decision of the
models, the ultimate use of these models, the Markovian or the AR-MA
representation of a stationary stochastic process and the factor analysis
model, is to provide a reliable estimate of the related covariance strue-
ture by controlling the number of parameters within the model when
there is not sufficient prior information to limit to a unique model. The
decision on the dimension and the structure of the basis or on the num-
ber of factors is obviously the crucial point in applying these models
to real data. ' :

By using (6.3) or directly from the result given by Whittle [16], the
logarithm of the approximate likelihood function of the observations
(Y.; n=1,2,---, N) can be given by

N 1/2

69 —Nlrogze+log|Gl+|] tr@NHYHNPNNS],

where P(f)=[C{I—exp (—i2rf)A}'B]G[C{I—exp (—2xf)A}'BJ* is the
spectral density matrix of the assumed model. By taking the expec-
tation of (6.4) Y(f)Y*(f) is replaced by Px(f)=E{Y(f)Y*(f)} which
converges to the true spectral density matrix P.(f) as N tends to in-
finity. The negative of the expectation of a log-likelihood is, ignoring
an additive constant, identical to the mean amount of information for
discrimination between the assumed model and the true distribution per
observation from true distribution as defined by Kullback and Leibler
([11], (2.4)). Thus if the negative of the expectation of the likelihood
(6.4) is divided by N this gives the average of the mean information
for diserimination. This quantity will be called the average information
of the assumed model from the true model, or simply the average in-
formation, obtained from (v, %:,---,¥~). When N is made infinite the

average information obtained from (¥, %;,--, ¥~) tends to a quantity
given by

1/2
(6.5) Lrog2etiog|GI+{ triPNPNdS]

From the definition it would be reasonable to call this quantity the
average information for discrimination of the assumed model from the
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true model. The maximum likelihood estimates of the parameters are
obtained by maximizing (6.4), which is equivalent to minimizing (6.5)
with P.(f) replaced by Y(f)Y*(f). Thus the maximum likelihood esti-
mation procedure is equivalent to first constructing a stationary Gaussian
process with the spectral density matrix Y(f)Y*(f), or the covariance

matrix defined by C(j)=%%:y,,+,y,’, (7=0,1,2,.--, N-1), C(—5)=C(3)

and C(j)=0 for |j|=N, and then minimizing the average information
for discrimination of the model being fitted from this constructed Gaus-
sian process model. Since it is well known that Y(f)Y*(f) can not even
be a consistent estimate of P.(f) the above interpretation of the max-
imum likelihood estimates gives a clear indication of the difficulty in-
herent in the model fitting by the maximum likelihood procedure. When
the assumed model is too flexible with too many number of parameters,
then the estimated covariance structure will come very close to the one
given by Y(f)Y*(f). In that case the estimate would be unreliable.
When the assumed model is too inflexible with too small number of
parameters the estimated covariance structure may not be able to suf-
ficiently approximate the true structure. In the case of the Markovian
model fitting the flexibility is controlled by the dimension of the system
and the decision on the dimension becomes crucial for the success of
the fitting procedure.
It has been found that a statistic defined by

(6.6) (—2) log, (maximum likelihood)
+2(number of adjusted parameters)

is useful for the purpose of the above stated decision on the model
flexibility (Akaike [2], [3]). In the present situation this statistic is
meant to be an estimate of 2N times the average information for dis-
crimination of the assumed model from the true model. The first term
of (6.6) stands for the penalty of the badness of fit and the second term
for the penalty of increased unreliability. (6.6) tells us that if the
badness of fit is identical for two models the one with less number of
parameters should be preferred. The definition of the above penalty
is based on the chi-square approximation of the limiting distribution
of the difference of 2log, (maximum likelihood) from its expectation
when the model is exact. For the justification of this chi-square ap-
proximation in the time series situation, see Whittle [17]. For the
Markovian representations the number of adjusted parameters should
be defined as the minimum number of parameters required to define the
model and if the special representation introduced in the preceding sec-
tion is used the model is specified by the dimension of the system and
the set of indices H which specify the choice of a basis of the predic-
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tor space. For univariate case only the dimension of the system is
sufficient to specify a model. From the standpoint of statistical model
fitting or identification by using (6.6) the Markovian representation of
a stationary stochastic process is merely one choice of the model which
will give a good approximation to an arbitrary covariance structure with
rather small number of parameters.

7. Determination of dimension and basis of predictor space

Under the assumption of non-singularity of the innovation variance
matrix, the search for a basis of the predictor space of y,, which gives
a special Markovian representation discussed in Section 5, can be real-
ized by the search of the first p linearly independent elementary rows
of the block Hankel matrix (4.3). If p is not known but its upper bound
q is known then the search can be completed by the analysis of depend-
ence of the gr elementary rows within the first ¢ block rows. From
the Markovian representation (2.7) the covariance matrices C(i)=E y,..y.
(¢=0,1,---) can be expressed in the form

(1.1) C(i)=CA'PC’,

where P=Ev,v, and A is a pxp matrix. As was discussed below (2.7),
there is a set of constants a, (m=1,2,---,p) such that A?+a,A7"'4
.++4a,/=0. From (7.1) it also holds that

(1.2) C(i+p)=—ﬁ;‘,l a,Cli+p—m)  i=0,1,---.

This shows that in the block Hankel matrix (4.3) any block column can
be expressed as a linear combination of the first p block columns. Thus,
when only ¢ is known, the analysis of dependence of the elementary
rows within the first ¢ block rows of (4.3) can be realized by the analy-
sis of dependence within the elementary rows of the grXgqr matrix

co) ¢y - - - Cg-1
(7.3) c=| €W €@

Clq—1) Clg) - - - C2q—2)
C, can be expressed in the form C,=Ey,y’, where Y=, Yos1r s
Yorgr), and y_=h, Yo-1s***, Yo-gsr1), and the matrix of the regression

coefficients of y, on y_ is given as C,D;!, where D,=E (y_y_) and it is
assumed that D, is non-singular. The dimension p of the system, or
the rank of C,, is equal to the dimension of the linear space spanned
by the components of the projection of , on the linear space spanned
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by the components of y_ and thus is equal to the number of non-zero
canonical correlation coefficients between y, and y_.. When the process

Y, is ergodic, C’(j) defined by
~ . 1 ¥-4 _ .,
C(J)=W ngl Ynss— 9 Y—7)

where y= (%) Eli_‘,ly,,, is a consistent estimate of C(j) for 7=0,1,...,

29—2, and the sample canonical correlation coefficients obtained by re-

placing C(j) by C(j) in the definition of the canonical correlation coef-
ficients give consistent estimates of the theoretical canonical correlation
coefficients, which might be useful for the decision on the dimension of
the system.

The practical utility of the above stated estimates of the canonical
correlation coefficients was checked with an artificially generated process.
The original process y, is defined by

Yn— 0.9’!],,,_1 +O-4yu—2= 2t 0°8zn—l ’

where y, is a scalar and 2, is a Gaussian White noise with Ez,=0 and
Ez2=1. For this case the dimension p of the system is equal to 2 and
the Markovian representation (2.6) with K=2 gives a minimal repre-

sentation
0 1 + 1
= Un n
U=l 0.4 0.9 1.7 [P

¥.=[1 0]v,.

Assuming y,=y_;=2,=0 two sets of records {y,; n=1,2,---, 550} were
obtained. The first fifty points of each record were discarded to sup-
press the effect of the initial transients and the remaining two sets of
records each with the data length N=500 were used for the analysis.
These data are designated as data #1 and 2. The results of the canon-
ical correlation analysis are given in Table 1. The values of 7%, the
squared sample canonical correlation coefficient, strongly suggest the
choice p=2, the correct order in this example. The coefficients which
determine the canonical variables showed consistent behaviour within
the two sets of data for the canonical variables corresponding to the
first two largest canonical correlation coefficients but were quite incon-
sistent for the rest of the variables. Analogous results were obtained
for other two sets of data, data #3 and 4, with N=100 and are also
illustrated in Table 1. In the ordinary canonical correlation analysis
with independent multivariate observations the variable %, will asymp-
totically be distributed as a chi-square variable with the corresponding
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Table 1

. Data §1 Data §2
i

73 iy d.f. (4) | L.C.(9) r: X d.f. () | 1.C. (4)
0 A o) o e ©
1 1.000 | 612.78 16 580.78 | 1.000 | 647.89 16 615.89
2 0.701 9.79 9 —8.10% 0.717 | 17.27 9 -0.73
3 0.011 4.19 4 —3.76 | 0.020 7.09 4 —0.91
4 0.008 0.05 1 —1.95| 0.013 0.76 1 —1.23*
5 0.000 0 0 0 0.002 0 0 0
. Data £3 Data $4
1

7} p ¢ d.f. (4) | I.C. (5) r: 23y d.f.(3) | 1.C. (%)
0 o oo © o
1 1.000 | 125.59 16 93.59 | 1.000 | 87.09 16 55.09
2 0.688 | 10.28 9 —7.72% 0.538 | 10.78 9 —7.22%
3 0.069 3.22 4 —4.78 | 0.090 1.50 4 —6.50
4 0.022 0.99 1 —1.01| 0.014 0.14 1 —1.86
5 0.010 0 0 0 0.001 0 0 0

r=square of the ith largest sample canonical correlation coef-
ficient between (¥n, Yntis*++» Yn+d)' and (¥n, Yn—1,+*+, Yn-e)’
5
x%“=-N1°g°,_l;lﬂ (1—7%)  N=b500 for data $1 and 2
100 for data §3 and 4
d.f. ({)=Difference of the number of independent parameters between
the full rank model and the rank ¢ model
1.C. ())=x3,,—2(d.f. (2))
* denotes the minimum of I.C. (¢)

number of degrees of freedom indicated by d.f.(7) when the theoretical
values of 7! (j>1) are equal to zero (Anderson [8], p. 327). The values
of %, and its d.f. (i) for the maximum possible value of ¢ are set equal
to zero. Also when =1, y%_,, and I.C. (¢—1) are put equal to infinity.
It is not clear to what degree the asymptotic chi-square distribution
can approximate the distribution of x%, in the present time series situa-
tion, but the statistic I1.C. (1)=yx%,—2(d.f. (¢)) will be useful as a variant
of the information theoretic criterion discussed in Section 6. In this
statistic the first term y%, stands for the increase of badness of fit of
the model by the introduction of the assumption 7}=0 (j>1%) and the
second term —2(d.f. (¢)) stands for the decrease of unreliability by the
restriction of the model. If the chi-square approximation of the distri-
bution of y%, is not valid the performance of the decision procedure may
depend on the structure of the process under observation. The best
choice of the dimension p of the system is given as the value of ¢ for
which I.C. (¢) is the minimum. In Table 1 the values of I.C. () show
that the best choice of the dimension is given by p=2, the true value
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of the dimension, for data #1, 3 and 4. For the data $2 p=4 is chosen
as optimal but the difference between I.C. (i)’s (i=2, 3, 4) are almost
meaningless compared with the expected sampling variabilities of the
related statistics under the assumption of the validity of the chi-square
approximations.

If the sample canonical correlation coefficients are obtained by treat-
ing the data (Yue, Ynes1s s Yonsneer) DA (W, Yoarr * » Yos—ers), With s
equal to a positive integer and n=1, 2,--., N, as if they were N inde-
pendent observations, then if ¢ is sufficiently large the asymptotic dis-
tribution of the corresponding y%, will be approximated by a chi-square
distribution with the number of degrees of freedom equal to (sr—ir)-
(tr—1r), where r is the dimension of the vector y,. This is due to the
fact that the residual of y,,,, after subtracting the projection on the
space spanned by the components of (¥, ¥h—1,"+*, Yu_.+:) Will approxi-
mately be independent for different values of n. For this case the
statistic I.C. (2)=x%—2(d.f. (¢)) will behave as the difference between
the information theoretic criterion corresponding to a restricted model
for which only the 7—1 largest canonical correlations between WYhss Yosirs
“* s Ynsns-1) ADA (Yhe) Yhs—1y - - +» Yhe—s41)' are not assumed to be equal to
zero and that corresponding to the unrestricted model. In spite of its
structural simplicity of this modified definition of the sample canonical
correlation coefficients their sampling variabilities will generally be larger
compared with those of the sample canonical correlation coefficients ob-

tained by simply replacing C(j) by the sample covariance matrix ()
in the definition of the canonical correlation coefficients.

The decision on the value of p is sufficient for the fitting of a
univariate (r=1) AR-MA or Markovian model. For the multivariate
(r>1) case, the above stated criterion I.C. (i) can also be used to decide
on the first p linearly independent elementary rows of (7.3), where the
decision is also made on the value of p itself. First calculate the sample
canonical correlation coefficients between u=(y,(1), ¥.(2),--, Y. (r+1))
and y_, where y,(k) denotes the kth component of Yir Ye=Us, Y1,
o Ynre-)s Y-=Wh, Yi-1,* ) Yhgsr) and it is assumed that the dimen-
sion p of the system is less than q. If the criterion attains its mini-
mum at i=r+1, i.e. L.C.(r)>I.C. (r+1) (=0), then retain y,(r+1) in
%, otherwise drop y,(r+1) from u. When y,(r+1) is dropped from u
discard y.(jr+1) (=2,8,---,9—1) from y, and pick up the canonical
variable a/,;u which corresponds to the minimum canonical correlation
coefficient where a,,, is an (r+1)-dimensional vector (a,,:(1), a,,,(2), - -,
@,41(r+1)). An estimate of A4, of (5.2b) with k;=1 is given by —(a,.1(7)
“(@,41(r+1))7". Now include y.(r+2) into u to define the new u and
repeat the analysis to decide on the rejection of y,(r+2) from . When
Y:(r+2) is rejected, y,(jr+2) (j=2,8,---,q—1) are discarded from Y,
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and an estimate of A;; of (5.2b) with k,=2 is obtained analogously as
in the case with y,(r+1). Repeat the canonical correlation analysis and
decision with the remaining components of y, until the last one. The
w at this final stage defines a choice on the minimal basis and the cor-
responding estimates of A,,’s of (5.2b) provide an estimate of the transi-
tion matrix A. Many other variants of the selection procedures are
conceivable.

The feasibility of the above stated type procedure on the decision
of the basis was checked with an artificially generated two-dimensional
process y, which is defined by

ao ] 700 0} [0 0 Jo oo
BT 15T o0 12| 0 —0.448 [P

.. [08 0
=2 0 0 Zn-1

where z, is a Gaussian white noise with zero mean and unit variance
matrix. Assuming the zero initial condition, i.e. y,=y_,=¥_,=2=0,
two realizations of z, (n=1, 2,- - -, 550) were used to generate two realiza-
tions of y, (n=1,2,--.,550) and the first fifty points were discarded
from both realizations. The following numerical results are based on
these two sets of data, $5 and $6 each with N=500. The dimension
p of the system defined by (7.4) is 5 and the first 5 independent com-
ponents of (Yins Ynsiins ** ) aT€ Yu(Lins Ya@ins Yne1t(Dins Yne1(Dins Ynis2(@)in
and the process is not block-identifiable. By following the discussion
of Section 5 and using 'vn’:(yn(l)ln! yn(z)lnl yn+1(1)lnr yn+l(2)ln’ yn+2(2)ln), as
the state of the representation one can get a minimal Markovian repre-
sentation of the process in the following form:

0 0 1 0 0 1 0
0 0 0 1 0 0 1
V= —0.4 0 0.9 0 0 |v.+]1.7 O Znit
0 0 0 0 1 0 1.5
L 0 0.448 0 —-1.2 1.5 0 1.05
1 0 0 0 O
%=lo 100 o]”"'

When autoregressive models were fitted to the data using a criterion
which is equivalent to the present information criterion (Akaike [1]),
the orders chosen for the simple bivariate autoregressive representa-
tions were 6 and 5, respectively, for data # 5 and data # 6. Based on this
observation ¢=5 was used as a tentative choice of ¢ in the definition
of y_=WWh, ¥i—1,**+, Yi_qs1)’- Canonical correlation analysis between u,,=
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(¥,(1), ¥.2),- - -, y,(m)) and y_ were performed, where y,(¢) is the <th
component of y,=(¥Y4, Yir1s***) Yosrq—1)- The results are illustrated in
Table 2. From the behaviour of the information criterion, which is
analogously defined as in Table 1, ¥,.(5);. OT ¥ny3(1)in, is judged to be
linearly dependent on the preceding components of u,, for the both
sets of data at m=5. At m=6, y,(6), is judged to be linearly in-
dependent of the preceding components of u,,. At m=7 and 8 the
selected number of linearly independent components remains at 5 for
the both sets of data. This shows that y.(7), and ¥.(8),, are judged
to be linearly dependent on the preceding components of u,, and the

Table 2
Data §5 Data §6
m i
iy d.f. (¢) 1.C. (3) iy d.f. (¢) 1.C. (i)

3 2 405.57 8 389.57 375.03 8 359.03
3 0 0 o * 0 0 0 *

4 2 824.73 16 792.73 722.09 16 690.09
3 '395.32 7 381.32 315.49 7 301.49
4 0 0 0 ¥ 0 0 0 *

5 2 951.76 24 903.76 855.29 24 807.29
3 419.12 14 391.12 341.06 14 313.06
4 2.84 6 —9.16% 8.75 6 —3.25*
5 0 0 0 0 0 0

6 2 1059.98 32 995.98 958.95 32 894.95
3 517.25 21 475.25 427.50 21 385.50
4 29.30 12 5.30 36.84 12 12.84
5 1.65 5 —8.35% 8.47 5 —1.53%
6 0 0 0 0 0 0

7 2 1113.74 40 1033.74 | 1042.71 40 962.71
3 526.16 28 470.16 449.31 28 393.31
4 35.61 18 —0.39 45.04 18 9.04
5 7.57 10 —12.43% 15.62 10 —4.38%
6 0.72 4 -7.28 6.83 4 —-1.17
7 0 0 0 0 0 0

8 2 1115.40 48 1019.40 | 1044.81 48 948.81
3 527.45 35 457.45 451.79 35 381.79
4 37.35 24 —10.66 47.68 24 —0.32
5 9.26 15 —20.74% 18.19 15 —11.81*
6 2.06 8 —13.94 8.93 8 —7.07
7 0.52 3 —5.48 2.08 3 —-3.92
8 0 0 0 0 0 0

* denotes the minimum of I.C. (7)
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search for the basis is terminated. The selected basis is (¥.(1)1n, ¥+(2),
Y:(3)in» ¥+(4)1n, ¥4(6),,) for the both sets of data, which is identical to the
theoretical result. The present identity between the experimental and
theoretical result is obtained only by chance, but the behaviour of the
statistics in Table 2 gives a clear feeling of the utility of this type of
procedure for general practical applications. In this experiment, for the
simplicity of the computer program, the discarding of the components
judged to be dependent was not implemented. The definition of ¥}, was
analogous to that of Table 1 but with N replaced by N—0.5(2m+2q+1).
This difference of the definition of x}, has little effect on the present
application. '

It is almost certain that if the (¢41)st largest canonical correlation
coefficient r,,, is equal to zero then Ny, (0<a<1) will converge to
zero in probability as N tends to infinity. If this convergence is as-
sumed and I.C. () is replaced by i.c.(s) = N"'x,—2N*"Y(d.f. (7)) the
present decision procedure provides consistent estimates of the desired
basis and the corresponding matrix A. This can easily be seen from
the fact that N~'y;, converges in probability to a positive constant and
dominates the behaviour of i.c. () when r,,, is not zero while —2N°!
-d.f. (¢) dominates when 7,,, is zero. This result may be considered to
be a fundamental one in the subject of statistical identification of multi-
variate stochastic systems with finite dimensional dynamics. In practical
applications where the dimension of the system is infinite the replace-
ment of I.C. (¢) by i.c. (7) will stress the tendency to pick up a rather
low dimensional model.

Once the estimate of the basis is determined, an estimate of the
corresponding matrix B can be obtained from any estimate of W, (m=
1,2,--:) of (2.2). An estimate of W, is obtained by fitting an auto-
regressive model and computing the response of the system to an im-
pulsive input. This will be useful to produce an initial estimate of B
to start the maximum likelihood computation.

It should be remembered here that by a modification of the search
procedure for a basis of the predictor space, which was described in
Section 5, the assumption of non-singularity of the innovation variance
matrix can be eliminated. With this modification the procedure de-
scribed in this section will give a minimal set of components of y, which
are judged to be useful for the description of the stochastic system and
retained for the further analysis. The application of this type of ap-
proach to the problem raised by Priestley and others [13] concerning
the reduction of the number of measurements in the control of a com-
plex system will be a subject of further study. Also the procedures
described in this section are only for the initial determination of the
dimension or the basis of the predictor space. The final decision will
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be made by comparing the values of the information criterion defined
by the maximized likelihood for several possible choices of the dimen-
sion or the basis. Theoretical analysis of the asymptotic distribution
of %, is also a subject of further study.

The procedure described in this paper provides only a starting point
for the development of practical procedures of fitting AR-MA models.
Much remains to be done for the development of a computationally and
statistically efficient fitting procedure.
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