A NOTE ON HOMOGENEOUS PROCESSES WITH INDEPENDENT INCREMENTS

Y. H. WANG

(Received Jan. 5, 1972; revised Nov. 19, 1973)

1. Introduction

Let X(t), $t \ge 0$, be a continuous (in probability) and homogeneous stochastic process with independent increments. Fix $t_1 > 0$. Then, given $X(t_1) = y$, the process X(t), for $0 \le t \le t_1$, is called a tied-down process with end point equals y. Suppose X(t) is a Poisson process, then the conditional distribution of X(t) given $X(t_1) = y$, for all $0 \le t \le t_1$, is binomial with parameter $(y, t/t_1)$, (see Karlin [1], p. 185) and therefore the conditional expectation and variance of X(t) given $X(t_1) = y$ are linear functions of y. Suppose X(t) is a Wiener process, then the conditional distribution of X(t) given $X(t_1) = y$, (see Karlin [1], p. 275, Theorem 2.1) for all $0 \le t \le t_1$, is normal with parameter $((t/t_1)y, \sigma^2t(1-t/t_1))$, and hence the conditional expectation of X(t) given $X(t_1) = y$ is a linear function of y and the conditional variance does not depend upon y.

In this note, we shall characterize a class of stochastic processes based on the property that the conditional mean and variance of X(t), given $X(t_1)=y$, for some $0 < t < t_1$, are linear functions of y. It will be proved that if $E(X(t)|X(t_1)=y)=\alpha_0+\alpha_1y$, then

- 1) $\operatorname{Var}(X(t)|X(t_1)=y)=\operatorname{constant}$ a.e. if and only if $X(t)=W(t)+\mu t$, where W(t) is a Wiener process and μ is a real constant,
- 2) Var $(X(t)|X(t_1)=y)=\beta_0+\beta_1y$ $(\beta_1\neq 0)$ if and only if $X(t)=cY(t)-\nu t$, where Y(t) is a Poisson process and ν and c are real constants. To avoid trivial cases, we shall assume that X(t) is not a degenerate process. Also all stochastic processes X(t), $t\geq 0$, considered in this note are assumed to be continuous, homogeneous, second-order and with independent increments. For a recent survey of the results on characterizations of stochastic processes see Lukacs [2].

2. The result

We need the following two lemmas.

LEMMA 1. If $E(X(t)|X(t_1)=y)=\alpha_0+\alpha_1y$, then $\alpha_0=0$ and $\alpha_1=t/t_1$,

for all $0 \le t \le t_1 < \infty$.

PROOF. Since X(t) is a continuous, homogeneous, second-order process with independent increments, it follows that $\mu(t) = E(X(t)) = \mu t$, $\sigma^2(t) = Var(X(t)) = \sigma^2 t$, for all $t \ge 0$, and $\rho(t_1, t_2) = Corr$. Coeff. $(X(t_1), X(t_2)) = \min(t_1, t_2)/\sqrt{t_1} \sqrt{t_2}$, for all $t_1 > 0$ and $t_2 > 0$, where $\mu = E(X(1))$ and $\sigma^2 = Var(X(1))$. Therefore

$$\alpha_1 = \rho(t, t_1)\sigma(t)/\sigma(t_1) = t/t_1$$

and

$$\alpha_0 = \mu(t) - \alpha_1 \mu(t_1) = 0$$
.

LEMMA 2. Let $g(s, t) = E(e^{isX(t)})$ be the characteristic function of X(t) and g(s) = g(s, 1). Then

$$E(X(t_0)e^{isX(t_1)}) = -it_0g^{t_1-1}(s)g'(s)$$

and

$$\mathbb{E}\left(X^{2}(t_{0})e^{isX(t_{1})}\right) = -t_{0}(t_{0}-1)g^{t_{1}-2}(s)(g'(s))^{2} - t_{0}g^{t_{1}-1}(s)g''(s) ,$$

for all $0 < t_0 < t_1$ and real s.

PROOF. Because X(t) is a continuous, homogeneous, second-order process with independent increments, g(s, t) = g'(s) and the second partial derivative of g(s, t) w.r.t. s exists for all t and s. It then follows that

$$\to (X(t)e^{isX(t)}) = -itg^{t-1}(s)g'(s)$$

and

$$E(X^{2}(t)e^{isX(t)}) = -t(t-1)g^{t-2}(s)(g'(s))^{2} - tg^{t-1}(s)g''(s) ,$$

for all real s and t>0. Then Lemma 2 follows from the fact that

$$\mathrm{E}\left(X^{k}(t_{0})e^{isX(t_{1})}\right) = \mathrm{E}\left(X^{k}(t_{0})e^{isX(t_{0})}\right)g(s,\,t_{1}-t_{0})$$

for all k, $0 \le t_0 \le t_1$ and real s.

We now state and prove the main result of this note.

Theorem. Let $0 < t_0 < t_1$. Then the necessary and sufficient condition that

(1)
$$E(X(t_0)|X(t_1)=y) = \alpha_0 + \alpha_1 y$$

and

(2)
$$\operatorname{Var}(X(t_0)|X(t_1)=y)=\beta_0+\beta_1y$$
 a.e.,

where α_0 , α_1 , β_0 and β_1 are constants w.r.t. y, is that

- 1) $X(t)=W(t)+\mu t$, if $\beta_1=0$, where W(t) is a Wiener process and μ is a real constant,
- 2) $X(t)=cY(t)-\nu t$, if $\beta_1\neq 0$, where Y(t) is a Poisson process and ν and c are real constants.

PROOF. The sufficient condition can be verified by a straightforward calculation.

To prove the necessary condition. Suppose the conditions (1) and (2) hold. Then by Lemma 1, the conditions (1) and (2) imply

(3)
$$E(X^{2}(t_{0})e^{isX(t_{1})}) - (t_{0}/t_{1})^{2} E(X^{2}(t_{1})e^{isX(t_{1})})$$

$$= \beta_{0} E(e^{isX(t_{1})}) + \beta_{1} E(X(t_{1})e^{isX(t_{1})})$$

for all s. By Lemma 2, equation (3) is equivalent to

$$(4) t_0(1-t_0/t_1)\{g^{t_1-2}(s)(g'(s))^2-g^{t_1-1}(s)g''(s)\} = \beta_0g(s)-i\beta_1t_1g^{t_1-1}(s)g'(s),$$

for all real s. Because the characteristic functions of a homogeneous process with independent increments are infinitely divisible, and infinitely divisible characteristic functions never vanish, $g(s) \neq 0$ for all s. And we rewrite equation (4) in the form

(5)
$$\frac{d}{ds}(g'(s)/g(s)) = -B_0 + iB_1(g'(s)/g(s)),$$

where $B_0 = \beta_0/(t_0(1-t_0/t_1))$ and $B_1 = \beta_1 t_1/(t_0(1-t_0/t_1))$. Because the second derivative of g(s) exists and does not vanish for the s in a neighbourhood N of the origin and g'(s)/g(s) is independent of t_0 and t_1 , t_0 and t_0 are independent of t_0 and t_0 . In addition, it is easy to check that if $t_0 = 0$, then $t_0 > 0$. The solution of equation (4) is, if $t_0 = 0$,

$$g(s) = \exp\left\{i\mu s - \frac{1}{2}\sigma^2 s^2\right\}$$
 ,

where μ is a real constant and $\sigma^2 = B_0 > 0$, and if $\beta_1 \neq 0$,

$$g(s)\!=\!\exp\left\{-i\nu s\!+\!\lambda(e^{ics}\!-\!1)\right\}$$
 ,

where λ is a positive real constant independent of t and s, and $\nu = B_0/B_1$, $c = B_1$. Therefore, the characteristic function of X(t) is, if $\beta_1 = 0$,

$$g(s,t) = \exp\left\{i\mu ts - \frac{1}{2}\sigma^2 ts^2\right\},\,$$

and, if $\beta_1 \neq 0$,

$$g(s, t) = \exp\{-i\nu ts + \lambda t(e^{ics} - 1)\}$$
.

This completes our proof of the theorem.

The following two corollaries of the theorem are characterizations of the Wiener and the Poisson processes.

COROLLARY 1. If E(X(t))=0 for some t>0, then the necessary and sufficient condition that X(t) is a Wiener process is that $E(X(t_0)|X(t_1)=y)$ is a linear function of y and $Var(X(t_0)|X(t_1)=y)$ is constant a.e. for some $0< t_0 < t_1$.

COROLLARY 2. The necessary and sufficient condition that X(t) is a Poisson process is that $E(X(t_0)|X(t_1)=y)$ is a linear function of y and $Var(X(t_0)|X(t_1)=y)=(t_0/t_1)(1-t_0/t_1)y$ a.e. for some $0 < t_0 < t_1$.

It follows from Corollaries 1 and 2 that for some $t_1 > t_0 > 0$; 1) the conditional distribution of $X(t_0)$ given $X(t_1)$ is binomial with parameter $(X(t_1), t_0/t_1)$ characterizes the Poisson process and 2) the conditional distribution of $X(t_0)$ given $X(t_1)$ is normal with parameter $((t_0/t_1)X(t_1), \sigma^2t_0(1-t_0/t_1))$ characterizes the Wiener process.

This work was partially sponsored by NRC of Canada, Grant No. A8792.

SIR GEORGE WILLIAMS UNIVERSITY, MONTREAL, CANADA

REFERENCES

- Karlin, S. (1969). A First Course in Stochastic Processes, Academic Press, Inc., New York.
- [2] Lukacs, E. (1970). Characterization theorems for certain stochastic processes, Rev. Int. Statist. Inst., 38, 333-343.