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1. Introduction

Let X(t), t=0, be a continuous (in probability) and homogeneous
stochastic process with independent increments. Fix ¢,>0. Then, given
X(t;)=y, the process X(t), for 0=t=<t,, is called a tied-down process
with end point equals y. Suppose X(t) is a Poisson process, then the
conditional distribution of X(t) given X(t,)=y, for all 0<t<t,, is bino-
mial with parameter (y, t/t;), (see Karlin [1], p. 185) and therefore the
conditional expectation and variance of X(t) given X(t)=y are linear
functions of y. Suppose X(t) is a Wiener process, then the conditional
distribution of X(t) given X(¢,)=y, (see Karlin [1], p. 275, Theorem 2.1)
for all 0<t<t,, is normal with parameter ((¢/t,)y, 6®(1—t/t,)), and hence
the conditional expectation of X(t) given X(¢,)=y is a linear function
of y and the conditional variance does not depend upon y.

In this note, we shall characterize a class of stochastic processes

based on the property that the conditional mean and variance of X(¢),
given X(t,)=y, for some 0<t<t,, are linear functions of y. It will be
proved that if E (X(t)| X(t)=%)=ay+a,y, then
1) Var(X(?)| X(t)=y)=constant a.e. if and only if X(t)=W(t)+ut,
where W(t) is a Wiener process and x is a real constant,
2) Var(X@®)|X(t)=9)=B+By (B:#0) if and only if X(t)=cY(t)—»t,
where Y(t) is a Poisson process and v and ¢ are real constants. To
avoid trivial cases, we shall assume that X(¢) is not a degenerate process.
Also all stochastic processes X(t), t=0, considered in this note are as-
sumed to be continuous, homogeneous, second-order and with independ-
ent increments. For a recent survey of the results on characterizations
of stochastic processes see Lukaes [2].

2. The result
We need the following two lemmas.
LEMMA 1. If E (X(t)lX(t1)=y)=ao+aly, then a0=0 and a1=t/t1,
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Proor. Since X(¢) is a continuous, homogeneous, second-order pro-
cess with independent increments, it follows that w(t)=E (X(¢))=gut,
o*(t)=Var (X(t))=qt, for all t=0, and p(t, t;)=Corr. Coeft. (X(t,), X(¢,)
=min (¢, £,)/vV t, V1, for all {,>0 and t,>0, where x=E (X(1)) and ¢*=
Var (X(1)). Therefore

a=p(t, t)a(t)/a(t) =1/, ,
and
ay=p(t)—aypu(t)=0 .

LEMMA 2. Let g(s,t)=E (¢"*®) be the characteristic function of
X(t) and g(s)=g(s,1). Then

E (X(t)e"* )= —ityg"™(s)g'(s)
and
E (X*(t,)e" )= —ti(ts—1)g"7*(s) (9'(s))’ —tig" " (8)g"(s) ,
for all 0<t,<t; and real s.

PROOF. Because X(t) is a continuous, homogeneous, second-order
process with independent increments, g(s, t)=g'(s) and the second partial
derivative of g(s, t) w.r.t. s exists for all ¢t and s. It then follows that

E (X (t)e"* )= —1itg‘(s)g'(s)
and
E (X*()e"* )= —t(t—1)g'(s)(g'(8))' —tg''(s)g"'(s) ,
for all real s and ¢>0. Then Lemma 2 follows from the fact that
E (X*(t)e** ) =E (X*(t,)e"**“)g(s, t,—1t,)
for all k, 0<t,<t, and real s.

We now state and prove the main result of this note.

THEOREM. Let 0<t,<t,. Then the necessary and sufficient condi-
tion that

(1) EX@E) | XE)=y)=atay
and
(2) Var (X(t) | X(t)=y)=p+By a.e.,.

where oy, a;, By and B, are constants w.r.t. y, is that
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1) X@O)=W(@t)+pt, if B,=0, where W(t) is a Wiener process and ©isa
real comstant,

2) X(@)=cY(t)—vt, if B,#0, where Y(t) is a Poisson process and v and
¢ are real constants.

ProOF. The sufficient condition can be verified by a straight-
forward calculation. ’

To prove the necessary condition. Suppose the conditions (1) and
(2) hold. Then by Lemma 1, the conditions (1) and (2) imply

(3) E (X(t)e"*2) = (to/t,)* E (X*(t,)e" )
= E (€*¥*)+ 8, E (X(t,)e"*?)

for all s. By Lemma 2, equation (3) is equivalent to
(4)  t(1—t/t){g"7*(s)(g'(8))* — 9" (8)g"'(s)} = Bug(s) — iBitig""(s)g'(s) ,

for all real s. Because the characteristic functions of a homogeneous
process with independent increments are infinitely divisible, and infi-
nitely divisible characteristic functions never vanish, g(s)+0 for all s.
And we rewrite equation (4) in the form

(5) %(g’(S)/g(S))= —Bi+1By{(g'(s)/9(s)) ,

where By=8/(t(1—t/t,)) and B,=pt/(t(1—1,/t;)). Because the second
derivative of g(s) exists and does not vanish for the s in a neighbour-
hood N of the origin and g'(s)/g(s) is independent of ¢, and ¢, B, and
B, are independent of ¢, and ¢,. In addition, it is easy to check that
if 8,=0, then B,>0. The solution of equation (4) is, if Bi=0,

g(s)=exp {igs—%azsz} ,
where p is a real constant and ¢°=B,>0, and if 3,0,

g(s)=exp {—ivs+ (e —1)},

where 2 is a positive real constant independent of ¢ and s, and v=B,/
B,, ¢c=B,. Therefore, the characteristic function of X(t) is, if Bi=0,

g(s, t)=exp iiluts—-%—aztﬁ} ,
and, if B,+0,

9(s, t)=exp { —uvts+at(e*—1)} .

This completes our proof of the theorem.
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The following two corollaries of the theorem are characterizations
of the Wiener and the Poisson processes.

COROLLARY 1. If E(X(t))=0 for some t>0, then the necessary and
sufficient condition that X (t) is a Wiener process is that E (X(t,)]| X(t)=1v)
18 a linear function of y and Var (X(t,)|X(t)=vy) is constant a.e. for
some 0<t,<t,.

COROLLARY 2. The necessary and sufficient condition that X(t) is
a Poisson process is that E (X(t)| X (t,)=vy) is a linear function of y and
Var (X(t) | X(¢,)=y)=(/t) (1 —t/t)y a.e. for some 0<t,<t,.

It follows from Corollaries 1 and 2 that for some ¢,>¢,>0; 1) the
conditional distribution of X(¢,) given X(t,) is binomial with parameter
(X(t:), to/t)) characterizes the Poisson process and 2) the conditional dis-
tribution of X(t,) given X(¢,) is normal with parameter ((¢/t)X(t),
t(1—1ty/t;)) characterizes the Wiener process.
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