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Summary

To estimate the finite population mean, Y, a two-phase sample may
be selected. A simple random sample of size n’ is chosen, and a con-
comitant variable, X, is measured for all units. Then, a simple random
subsample of size » (0<n<n') is chosen, and Y is measured. Seven

ratio-type estimators of Y are given, and their biases and mean square
errors determined to O((n')~?). Then, the estimators are compared (a)
without any assumptions about the relation between Y and X, and (b)
assuming that Y and X are linearly related.

1. Introduction

Given a sample of size n from a finite population of N units, it is
often possible to estimate the finite population mean with greater pre-
cision by utilizing known information about a concomitant variable, X,
related to the variable under study, Y. When simple random sampling
is used, a common approach is to employ a ratio estimator. Denote by
(Y;, X;) the value of the variable (Y, X) for the jth unit in the pop-
ulation (5=1,2,---, N), and by (v, «;) the corresponding value of the
variable for the ith draw in the sample (1=1, 2,..-, ). Then, assum-

ing simple random sampling, the ordinary ratio estimator of I_’=§ Y,/N
j=1
is given by Y=X>v, / iE x, where X is the (assumed known) popula-
i=1 =1
tion mean of the X variable.
When the per unit cost of measuring the concomitant variable, X,
is non-negligible, it may not be feasible to utilize estimators such as

Y. However, if the per unit cost of measuring X is considerably smaller
than the per unit cost of measuring Y, one may use a two-phase sam-
pling procedure. Here, a simple random sample of n’ units is selected
and the value of X determined for all units in this “first-phase” sample.
Then, a simple random subsample of size n is selected from the %’ units,

339



340 K. T. DEGRAFT-JOHNSON AND J. SEDRANSK

and the value of Y is determined for these = units*. An estimator
analogous to IA’ is given by li/'R=i,,, A / ﬁ‘, x; where E,,,=n2 x;/n’ denotes
i=1 i=1 i=1

the sample mean of X from the first-phase sample.

With extensive use of two-phase sampling, ratio-type estimators
analogous to those developed for use with single-phase sampling are of
interest. Seven of these estimators are presented and discussed in
Section 2 together with a brief deseription of the methods used to de-
rive the moments of the estimators. Then, in Section 3, the biases and
mean square errors of these estimators are compared (1) without any
assumptions about (Y, X), and (2) assuming a linear relationship be-
tween Y and X, but without any distribution assumptions about X.
(Note that these comparisons are summarized in Section 3.4.) The ex-
pected values and mean square errors of the ratio-type estimators are
given in Section 4. Finally, the results of a numerical analysis of the
efficacy of the approximate formulas for the biases and mean square
errors of the estimators (Section 4) are summarized in Section 5.

2. The ratio estimators and some preliminary results

To aid in choosing the estimators to be compared, there are avail-
able both theoretical and numerical studies in which various ratio-type
estimators are compared assuming single-phase sampling. Both Frau-
endorfer [3] and Rao [5] summarize these studies; and, in addition, both
carry out numerical investigations of the properties of various estimators
using real finite populations. While some specific conclusions about the
relative merits of the estimators may be drawn from the theoretical
investigations, the numerical studies suggest that a ranking of the esti-
mators may depend substantially on the actual finite population being
sampled. Thus, it was decided to choose for comparison (two-phase
sampling counterparts of) estimators which are “representative” of
some of the kinds of (single-phase sampling) ratio-type estimators which
have been suggested in the literature.

Assuming (unless otherwise specified) the two-phase sample design

given in the second paragraph of Section 1, the first estimator is Y,
defined in Section 1:

(2‘ 1) 1A’R = g_/niu'la_:n

n n n’
where ¥,=>1y;/n, ,=3 x/n and Z,=> z,/n'.
i=1 i=1 i=1

* For example, to estimate the total cocoa yield in a given locality in Ghana, one
might use a sample of n’ farms to estimate the total area under cocoa cultivation and a
subsample of # farms to determine the actual yields.
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The next two estimators are two-phase sampling counterparts of
two estimators (“Beale” and “Tin”) described and compared by Tin [6].
The constants in Y, and Y, given below have been chosen so that the
biases of these estimators are, as in single-phase sampling, of O(n~?%).

22)  Vi=Yl+ (' —n)s,/nn'zg.} 1 [1+ (0 —n)sinn'E} ]~
and

(2.3) Yo =YL+ —n) [(8.,/3,5,) — (83/E)]/nn')

where (n—1)s,,=3)(z,—%)(W.—%.), (n—1)s:=3)(z,—F,)2. It may be
i=1 i=1

noted that f’B and IA/T are somewhat similar in form, and they have
similar properties (Section 3). This is also true for their counterparts
in single-phase sampling.

To apply the procedure (first suggested by Quenouille [4]) for modi-
fying an estimator having a bias of O(n™') to produce an estimator
having a bias of O(n7?), the following sample design is assumed: The
preliminary (simple random) sample of size n’ is divided at random into
two groups of equal size (i.e., m{=n}{=n’/2), and a (simple random) sub-
sample of 7/2 units is selected from each half of the preliminary sample.
Letting (%.;, #.;) denote the sample means of X for the two halves of

the preliminary sample, and (R,, Rz) the sample ratios (R:g?/:Tc) calcu-
lated from the two second-phase samples,
2.4) You=2Y,— (R + Ritg)/2

is an estimator of Y which has a bias of O(n™?.

For each of the (remaining) three estimators, the sample design
described in the second paragraph of Section 1 is assumed with the
added specification that the (second-phase) simple random sample of size
n be divided (at random) into halves. Denoting, as above, the two

sample ratios (each based on m/2 units) by (R, Ry)
(2.5) Y or={[20./3.]~ [(R,+ R[]} B

is a two-phase sampling counterpart of the “ Quenouille ” estimator (see
Cochran [1], p. 180). Since the bias of Y, is of O((n)™!) (Section 4),
a modification of Y, is also to be considered:

(2.6) Y o= {21 — 1) @0 )] — [(0 — 1) (Ry+ Bo) 201} e

where the bias of IA?QS is of O(n~?) (Section 4).
The last estimator is a two-phase sampling counterpart of “Mickey’s”
single-phase (see Rao [5], p. 214) unbiased estimator:



342 K. T. DEGRAFT-JOHNSON AND J. SEDRANSK

@1 V= (B4 R, [2) + (20 — )} (Ga— (Bt B)7012) .

To derive the (approximate) expected values and variances of the
alternative estimators, we shall employ series expansions of quantities
such as (14+0%,)"' where 6z,=(Z,—X)/X. While such series expansions
have been extensively used in similar investigations (see, for example,
Tin [6]), their use does not, of course, guarantee adequate approxima-
tions for the desired expected values and variances. However, the
results of a numerical investigation of the efficacy of such approxi-
mations suggest that at least the approximations for the mean square
errors are quite satisfactory (see Section 5). ‘

To llustrate the derivations used for each of the estimators, con-

sider ¥, and define o=@~ Y)Y ™, 0%,=&,— X)X and 6%, =(Tn—
X)X-!. Then,

2.8) Yo=Y (1+07,)(1+5%,) (1+5%,)" ,

and the right-hand side of (2.8) can be expanded to permit each of
E(Y:) and V(Y;) to be evaluated to terms of O(n')"%). To facilitate

the evaluation of E(f’R) and V(IA/R), note that the two-phase sample
design (Section 1) is identical to one defined by an initial selection of
n units by simple random sampling (from the population of N units)
followed by a simple random sample of »'—n units from the N—n units
not selected initially. Then,

(2-9) E (5En' l Lise ooy Tns Yuyt v *y y,,):n(N—n’)SE:,,/n’(N—'n)
and
(2'10) E[(ain’)zlxl!""xn;yly"'v yn]

=[mN—n)oz,/n/(N—n)+(N—n')(n'—n)
- [V XP(N—mn)(N—n—1)]"*
- [(N=1)S;—(n—1)s:—nNX*(6Z,)(N—n)]

where, in (2.9) and (2.10), the expectation is conditional on the values
of X and Y in the second-phase sample. To determine E(Y,) and

V(IA/R), it is helpful to use (2.9) and (2.10) because all of the statistics
then pertain to the sample of size » (see (2.8), (2.9) and (2.10)).

Formula (2.10) can be simplified considerably if it is assumed that
N is sufficiently large that the terms (n’/N) and (n/N) can be neglected.
Then,

(2'11) E(ain']xl!"'v Loy Y15ty yn)znain/n,

and
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(2.12) E [(5a—7n’)2|xls oy Ty Yryr oy yn] i("""S:Tcn/n’)z'I_('n’_In)(’g‘)/(”’,)z

where
Czo=ﬁl (X,—X)NX* .

To simplify the derivations and to facilitate the comparisons it will
be assumed throughout that N is sufficiently large that (»’/N) and (n/N)
can be neglected. Of course, if the per unit cost of observing X is
almost negligible, (n'/N) may be too large to be neglected. However,
if this occurs, each two-phase sampling procedure should be quite sim-
ilar to its single-phase sampling counterpart and, thus, this case is of
little interest because we wish to compare ratio-type estimators in two-
phase sampling.

Finally, note that (1) the subsampling fraction (n/n’) is not neg-
lected; (2) for all of the estimators to be well-defined, it is assumed
that X>0; and (3) to simplify the comparisons (Section 3) it is assumed
that Y >0.

3. Comparisons

3.1. Imtroduction

In this Section we compare the alternative estimators using both
bias and mean square error as criteria. To ensure meaningful and,
hopefully, accurate comparisons even for fairly small sample sizes, both
the expected value and mean square error for each estimator have been
determined up to (and including) terms of O((n')~%). Thus the effect of

the bias of IAfR (which is of O(n™')) on its mean square error will be
considered whereas the bias will have no effect on the mean square
error (determined to terms of O((n’)~?)) for most of the alternative ratio-
type estimators. This is important because the purpose of most of the
alternative estimation methods is to provide an estimator which is either

unbiased or has a smaller (order) bias than IL’R.

Some general comparisons of the estimators are given in Sections
3.2 and 3.3; and they are summarized in Section 3.4. These comparisons
give a general picture of the relative merits of the estimators. How-
ever, the complexity of some of the formulas (for both the mean square
errors and biases) precludes the possibility of ranking all of the esti-
mators (under specified simple conditions). Thus, an investigator who
repeatedly conducts surveys on the “same” (or a similar) population
may wish to choose an estimator for a current survey by evaluating
the bias and mean square error for each estimator (using estimates,
from prior surveys, of the necessary parameters). To meet this need



344 K. T. DEGRAFT-JOHNSON AND J. SEDRANSK

we give, in Section 4, the bias and mean square error (to terms of
O((n')7?)) for each estimator.

Finally, when comparing the alternative estimators, the differential
costs of calculating the estimates from a large-scale survey should be
considered. However, since no information about comparative costs
appears to be available (for either single- or two-phase sampling), such
cost comparisons are not feasible at present.

Throughout Section 3 it is assumed that p, the population correla-
tion coefficient, is positive. If p<0, one would ordinarily use a “ product-
type” rather than a “ratio-type” estimator. Further, define

3.1) Coo= k\ﬁ (X,— XY~ Y)INX*T",
(8.2) Cx=+Cy =coefficient of variation of X,
3.3) R=Y/X.

Note that p>0 implies that C,>0 (because it has been assumed that
X>0 and Y>0).

3.2. General comparisons

Using the expressions given in Section 4 for the biases of the esti-
mators, it may be shown that

(@) E(Y)=Y.
(b)) The biases of lAf,,, IA’T, f’el and IA/Q,, are of O(n% whereas the bias
of f’R is of O(n7'), and that of IAFQZ is of O((n)™).
(¢) If Cy=Cy (as in a bivariate normal population), to terms* of
O((n,)-Z)’ A A A A A
(1) IB(Y?B)|é|B(1—f1')Ié|B(YQS)IélB(YQI)I—S-IB(?QZ)|
(ii) |B(Yq)|Z|B(Yz)| if #=8Cy (which is likely to hold). Here,
B(Y) denotes the bias of Y.
(d) To terms of O((n')™), IB(?Qz)lng(lAfR)l if and only if, (n/n')<(1/2).
To facilitate comparing the mean square errors of the estimators
(see Section 4), it is usually possible to write (for two estimators Iﬁ’t, I-Af,):

(34)  MSE (¥)—MSE (¥))=T*{(n'—n)/nn'} {{Kin "]+ [K(n') "]}

where K, and K, are simple quadratic functions of the C,,. Then, using
relationships such as (1—p")CyCp=CyCr,—C?, the results summarized
below can be obtained.

(a) To terms of O((n')™), ILWR, IA’B, IL’T, ffm, IA’Qz, Iiqu and IA’,, have the

* “Terms of O(-)” means “up to and including terms of O(-)” (when such terms
exist).



COMPARISON OF RATIO ESTIMATORS IN TWO-PHASE SAMPLING 345

same mean square error.
(b)) To terms of o(n™),
(i) MSE(YT) MSE(Y,,)<MSE(Y91) MSE(YQZ) MSE(Y03)<
MSE (Y,,)
(ii) If Cy=Cy%=0C,, MSE(YA—',,)gMSE(IA’R).
Note that when n’ is sufficiently large that the terms of O((nn')™") and
of O((n')™?) can be neglected, the comparisons in (b,) are definitive.
(c;) To terms of O((n')™?),
(i) MSE (Y,.) MSE (YB)SMSE (YQ,,)SMSE (Y,,,)
(ii) If (»/n')<(2/3), MSE(YT)<MSE(YQ,)
(d;) Comparisons involving Y If Cy=C,,=Cy, to terms of O((n')?),
(1) If 1) p>(Cy/Cr), or 2) p<(Cx/Cy) and [nj(n+n)]<
[1—(oCy/Cx)]/4, MSE (Y)>MSE (Y.).
(ii) If 1) p>(Cs/Cy), or 2) p<(Cx/Cy) and [n/n']<[1—(oCy/Cy)],
MSE (YR)>MSE (an) and MSE (YR)>MSE (YQI)
(iii) If 1) 0>(Cx/Cy), or 2) p<(Cx/Cy) and [n/n']<5[1—(oCy/Cy)}/8,
MSE (¥,)>MSE (Yez)
(e;) Comparlsons involving YQz If Cy=C;=Cy, to terms of O((n')2),
‘ (i) MSE (Y)<MSE (Y, if 1) p>(Cs/Cy), or 2) p<(Cx/Cy) and
[7/n']1<[1—(pCy/Cx)]/4.
(ii) MSE(YQz)<MSE(qu) if 1) (Cx/Cy)<p<(5Cx/Cy), or 2) p<
(CX/CY)A and [n/n’]§2[1 (0Cy/Cy)]/5.
(ili) MSE (Y¢2)>MSE (Y;) if p<(Cx/Cy) and (n/n')<(1/3).

3.3. General comparisons: linear model
To further compare the alternative estimators it is postulated that

(3.5) Yi=pX.+e

where E(e;|2,)=0, V(s|2)=0"X? (920) and (e, ¢;) are assumed to be
independent. Then, it is easily shown that each of the ratio-type esti-

mators is an unbiased estimator of Y. Further, to terms of O((n')™®:
(a) For any value of g=0, we have

MSE (¥;)=MSE (Y,) <MSE (¥,)=MSE (¥,,) <MSE (V) .
(by) For g=0, we have

MSE (¥;)=MSE (¥,)<MSE (¥ ¢) <MSE (¥%)
=MSE (V) SMSE (¥,) S MSE (V%)

where MSE (¥;)<MSE (Y,;) if (n/n’)<(1/2). (Note that the other
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relationships in (b;) do not depend on the condition (n/n')<(1/2).)
(c;) For g=1, we have

MSE (¥,)=MSE (¥,)=MSE (Y,)<MSE (V)
—MSE (¥) <MSE (¥ ) < MSE (¥, .

3.4. Summary of comparisons

The use of a ratio estimator is typically associated with a rela-
tionship between Y and X which is, roughly, of the form (3.5). Thus,
the comparisons in Section 3.3 may serve as a recommendation for
using either the “ Beale” or “Tin” estimator in preference to the others.
Such a recommendation is strengthened by the comparisons of the mean
square errors given in Section 8.2: (b)) and (c;). In particular, the
comparisons in (b,) may be indicative since, in some applications, the
terms of O((nn')™") and O((n')~%) will be negligible. Finally, apart from
the unbiased estimator, f’,,, the biases of IA’B and IA’T are smaller (under
the conditions stated in Section 3.2 (c;)) than those of the alternatives.
The prospective user should, however, note that most of the comparisons

(Section 3.2) involving IA/’R and IA/QZ depend on the assumption that C,=
Cm'—_Cso-

4. Expected values and mean square errors

To facilitate comparisons of the ratio-type estimators for specific
finite populations, the expectations and mean square errors of the seven
estimators are given (up to and including terms of O((n’)7?)) below. A
practitioner who conducts repeated surveys of the same (or a similar)
population may wish to choose an estimator for a current survey by
evaluating the bias and mean square error of each ratio-type estimator
using estimates of the C,, obtained from a previously conducted survey
(or, from a pilot sample survey).

@) EF)=F[14( 3 =1 )(CumC) 5 (Ca—C) 30 Ca—Ci)

+i,{(cao—cn>—3020(020—011)}] ,
nn

(4.2) E(ﬁ)=?[1+-;—2{2(czo—czo—2020(020—011)}

1
nn'

+ .__lﬁ {(Cy— Cyy) — 2C3(Cyo—Ciy)} ] ’
(n')

+ {8(Cai— Co) + 4Coo(Cy— C1)}




4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)
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E(f@):?[1+%{2(cw—cz,)—3020(020—0,1)}
+L,{3(Cn—cw)+ecm(cm—cn)}
o ,)Z i (Ca=C) = 3Cu(Cu—Cid} |,
E(¥o)=¥ |12 {(Cu— i)+ 3Cu(Ca—Ci)

-2 ((Cu=Cu)+3Cu(Cu—Cu} |,

B(Ye) =7 |14 (Cu—Ca)+- {~2Cu—Cu)+6CulCu—Cl} |

E( IA’Q3) =Y [1 +% {—2(Cy1— Cyp) + 6Co(Cyy — Co)}
L (B(Cu—Cu) + 9Cu(Ca—Ci)

o ,)2 I (Cu=Ca) + 3Cu(Cu—C} |

E(Yw)=Y. |

MSE (¥)= ¥*|-L (o 20u+Cu)+2 (20— Cu +- 5 (40, —2C,
+6C} +3CyCp—2Cy— 18Cy,Cy, +9C3)

- 6021 + 26020011 + 2012 - 80121 - 3C2OCO2

150+ 1 ,)2 (20u+2C}—2Cu—8CuCu+6C3) |
MSE (Y,)=MSE (¥,)
=¥*| X (Cu—2Cu+Cu+4 (20u—Cu)
n n
-I-i2 {2(Coo—Cu1)*+ (CoCre— 1)} + *i,- {—(Cu—Cyy
n nn

~(CCa= O+ ,)2{ ~(Ca—C ],

MSE ( ?Ql) =Y l:% (Cy—2C,1+C)+ —;bl‘,— (2C1—Cy)
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+%(20?;+2Czocog—8020011+4C§))
+_1_,(1zczocu—4Cﬁ—2czocoz—sc&)
,)2 L _eci- 4czocl,+20;o)] :
(4.11) MSE(¥,)=7" [—?1{(Coz+Czo—2Cu)+%(2C11—Czu)
| L 4Ch+ 20t 201 —8CC)
+7}n7(zc,z+zcw—4cn-3020002—4clz,+1401,02.,
TCh)+—5 o ,)2( —2C3+2Cy+2C%+6ChH— 8011020)]
(412)  MSE (Vo) =7*| L (CutCu—2610+7(2Cu—Ca)
+% (AC3 4 2C3,Cop+2C2 —8C1,Cio)
+L,(1ocmcu—5c;°—203,—3020002)
- (CA=20,Cut G
(4.13) MSE(Y,)=7" [%(Coz+cm—zcu)+%(20u—czo)
+%(GC,’1+2C20002—16020Cu+80§o)

+L,(220mcu—sca—3020002—1102%)

- (2CH—6CuCu 803+ CaC)|

5. Numerical study of the approximations

To investigate how closely the expressions given in Section 4 for
the biases and mean square errors approximate the true values, a small
Monte Carlo study was conducted. Two thousand two-phase samples
each with (n'=30, n=10) were selected from a finite population of N=3,
164 units according to the sample design described in Sectlon 1 (i.e.,

simple random sampling at each phase). For each sample, YR, YB and
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IAG were evaluated. Then, from the two thousand replications, unbiased

estimates of E(IA’) and Var(f’) were calculated for each of the three
ratio-type estimators. These “ Monte Carlo” estimates were then com-
pared with the corresponding asymptotic expressions given in Section 4.
In addition to (n'=30, n=10), the sample sizes (n'=80, n=20) and (n'=
300, n=100) were used. The finite population consisted of N=3, 164
trees*, but four different X variables were used in conjunction with
Y=gross volume: X,=diameter, breast-high; X,=height; X,=X?; X,=
X?X;. Thus, four populations of (Y, X) values and three sets of sample
sizes were considered. Both the relationship between Y and X, and that
between Y and X, can be characterized, roughly, as “quadratic”. The
relation between Y and X; and that between Y and X, are both “strongly”
linear (p=0.982 and p=0.997, respectively). For further details about
the variables and finite populations see deGraft-Johnson [2].

Denote by MSE (A) and B(A) the asymptotic expressions for the

Table 1. Comparison of the asymptotic expressions for the bias
and mean square error with the (Monte Carlo)
estimated values of these parameters

(10, 30) (20, 80) , (100, 300)

MSE (A4) MSE (4) MSE (4)
msean| B B(A) |ygean| B, B(A) |yskap| BM), B(4)

Yz 1.025 | —0.317, —0.261| 1.037 | —0.158, —0.148 | 1.042 | 0.008, —0.0263
Yy 1.026 | —0.090, —0.030 | 1.038 | —0.019, —0.009 | 1.041 | 0.034, —0.0003
Y, 1.024 | —0.085, —0.025 | 1.037 | —0.017, —0.007 | 1.041 | 0.034, —0.0003

Yz 1.075 | —0.162, —0.192 | 0.958 | —0.026, —0.107 | 0.969 | 0.005, —0.0188
Y, 1.069 0.015, —0.013 | 0.953 0.077, —0.004 | 0.968 | 0.024, —0.0001
Y, 1.068 0.020, —0.009 | 0.953 0.078, —0.002 | 0.968 | 0.024, —0.0001

Yz 1.079 | —0.247, —0.244 | 0.967 | —0.105, —0.132 | 1.032 | 0.004, —0.0227
Y, 1.072 | —0.078, —0.066 | 0.960 0.007, —0.019 | 1.033 | 0.026, —0.0007
Y, 1.069 | —0.063, —0.048 | 0.959 0.012, —0.013 | 1.033 | 0.026, —0.0005

Yz 1.119 | —0.024, —0.007 | 1.018 0.014, —0.005 | 1.003 | 0.001, —0.0010
Yy 1.114 | —0.029, —0.014 | 1.020 0.015, —0.004 | 1.002 | 0.002, —0.0001
Yr 1.113 | —0.030, —0.012 | 1.019 0.015, —0.004 | 1.002 | 0.002, —0.0001

* Note that in forest inventory surveys, sampling fractions of less than 0.01 are typical.
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mean square error and bias of any ratio-type estimator. Similarly,
MSE (M) and B(M) are the “Monte Carlo” estimates of the mean
square error and bias. For each population and set of sample sizes,

the values of [MSE (4)/MSE (M)] and [B(M), B(A)] are tabled for f’g,

f’,, and IAG. In Table 1, the maximum and median values of [|[MSE (4)—
MSE (M)|/MSE (M)] are 0.119 and 0.038, respectively. Thus, at least
for these populations, the asymptotic expressions for the mean square
errors appear to provide good approximations.

Noting that Y=8.9633, the biases appear to be very small (in ab-
solute value) for each of these four populations. Thus, it is difficult
to judge the adequacy of the asymptotic expressions for the biases.
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