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Summary

Consider a p-variate normal population N,(z, Y), with g known and
Y unknown. Without loss of generality, we take g=0. Suppose that
we have an incomplete multiresponse sample, i.e., we have samples
available from this population and/or its various marginals. Suppose
one is interested in estimating 2, given that all the correlations are
known.

Consider the Fisher information matrix H, corresponding to the
estimation of the variances ¢,. Consider the marginal involving the
responses 4, 4, -+, %z, and suppose that from this marginal a sample of
(1, 1s,+*+, 1) 18 drawn. It is then seen that H is a linear function of
the m’s. Suppose that the cost of taking an observation on the jth
response is ¢,, and that a total amount of money ¢’ is available for
the collection of samples. The problem considered in this paper is the
following. How to choose the n’s subject to the cost restriction, such
that the determinant of H is maximized. A complete solution is ob-
tained for the case p=2. When p=3, some partial results are obtained,
in particular, it is shown that when all the costs are equal, and the
correlations are equal, then the best design is obtained by using a
complete sample.

1. Introduction

In most experiments or investigations, usually more than one re-
sponse or characteristic is measured on an experimental unit or indi-
vidual. The interest very often lies in estimating certain parameters
(usually of the location or scale type) on each response. It is well known
that, in general, as the number of units on which a response is observed
is increased, the efficiency of the estimate also increases. However, in
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general, one is faced with financial limitations. In other words, there
is a certain cost ¢, of measuring the jth response on a single unit, and
there is a cost ¢, of having a unit available for the experiment. Fur-
thermore, a certain total amount of money (say, 1) is allotted for the
experiment. In this situation, not only the number of observations that
can be taken on any response is bounded, the number of observations
on other responses decreases as the number of observations on a par-
ticular response is increased. This indicates that an overall measure
of the efficiency of the whole multiresponse experiment is desirable.
Also, the number of observations to be taken on the different responses
should be determined so as to maximize the overall efficiency of the
whole experiment. This is an important aspect of the subject of multi-
response designs.

Certain problems in this field have been studied before. For ex-
ample, suppose the interest lies in the estimation of the differences
between the true effects of a set of v treatments on each of a set of
p responses. Thus there will be v—1 linearly independent comparisons
for each response, giving rise to p(v—1) estimators. Let K denote the
p(v—1) X p(v—1) variance matrix of these estimators. In Srivastava and
McDonald [6], the problem of obtaining the optimal multiresponse design
(with respect to the minimization of tr K) is considered. This paper is
concerned with the case of randomized block designs. A similar paper
involving cyclic PBIB designs was considered in Srivastava and McDonald
[8]. The first problem under the determinant criterion was considered
in Srivastava and McDonald [6].

A multiresponse design problem, posed in a somewhat different
fashion has been considered by Hocking and Smith [1].

In this paper, we consider a multiresponse design problem when
such parameters are to be estimated. The optimization under the given
cost restriction, is done with respect to maximizing the determinant of
the fixed information matrix corresponding to these parameters.

2. Preliminaries

Consider the problem of designing an experiment for estimating
the unknown dispersion matrix ¥=((s.,)), (¢, s=1,2,- -+, p) of a p-variate
normal distribution whose mean vector is assumed to be known and
equal to zero. (This choice of the known value of the mean causes no
loss of generality). The collection of data, for this purpose, could be
in the form of a general incomplete multiresponse sample. This sample
is divided into subsamples, s; (j=1,2,---, u=27—1) such that on every
experimental unit in S;, exactly the subset R; (where R;={l;;,l;,---,
l;,,}) of responses is measured. Thus w is the number of all non-empty
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subsets of {1,2,-.-, p}, and n, is the number of units in S,. The sub-
sets R; are assumed to be ordered in any arbitrary but fixed manner.
We also assume that the elements of R, are such that 1<, <l,,<---
<l;»,<p. The principal submatrix of I corresponding to R; is denoted
by 2;. For any response r, we define U, as the union of sets S; the
union being taken over all j such that r € R;,. Thus, U, is the set of
all units on which response » (possibly along with other responses) is
measured. We shall also assume a cost restriction of the form men-
tioned in the introduction, and without loss of generality, label the
responses such that ¢, <¢,<---<¢,.

Our objective is to obtain an optimal set of values of the », under
these cost limitations. By “optimal” we mean the sample should be
such as to maximize the “amount of information” obtained from the
data within our financial limitations.

In this paper, we choose our measure of information to be the
determinant of Fisher’s information matrix H. For convenience of
reference, we may state here the definition of H. Suppose in any given
situation, one is interested in estimating a set of parameters 6,,---, 6.,
and suppose L denotes the likelihood of the sample. Then H=((h,;)) is
(mxm), and h,;=E {—d*log L/36,06,}, where E denotes “expectation”.
Note that the dispersion matrix V of the estimators is asymptotically
proportional to the inverse of Fisher’s information matrix when these
estimators are maximum likelihood estimators, or belong to the class
of asymptotically efficient estimators. Also, a plausible property of the
determinant criterion is the fact that the det H and det V are, respec-
tively, directly and inversely proportional to the volume of the ellipsoid
of concentration. See, for example, Roy, Gnanadesiken and Srivastava
[5].

A design D, in this study, is a determination of the vector n=
(ny, ng,- -+, m,), specifying, for each subset of responses, the experimental
units on which this subset of responses is to be measured. The =,’s
must satisfy the cost restriction,

@.1) 1= @y ,

where {;=g+¢y, + ¢y, + -+, . Under each design D, the criterion
of optimization is represented by [det H(D)]=Q(D), say, where H(D)
is the matrix H corresponding to the design D. Thus we are faced
with an optimization problem in which @ is the objective function and
(2.1) is the constraint. It should be pointed out that the =,’s should
also be positive and take on integer values only. However, for prac-
tical considerations, the latter requirement shall be overlooked. The
cost associated with a design D shall be denoted by ¢(D).
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DEFINITION 2.1. A design D is said to be at least as good as a
design D', if QD)=Q(D') and ¢(D)<¢H(D’). Moreover, if any of the two
inequalities becomes strict, then D is said to be better and D’ is said
to be inadmissible.

DEFINITION 2.2. A (sub) class C of designs is said to be essentially
complete in the class C’, if CCC’' and for any D’ e (', there exists a
D e€C, such that D is as good as D'.

3. The case Y=0A4, A known

Here, we shall assume that the positive number # is the only un-
known, and A is a positive definite matrix. An easy computation then
gives

in D
(3.1) H=E <_ 32 lOgL >= Jj=1 i .
06* 26*

Thus we must find n’s so as to maximize in,p, subject to (2.1).
j=1

This is equivalent to maximizing 3*n/, subject to 3*({,/p;,)n;=1, where
2* denotes summation over j¢J, where J={j|p,#0}. Let j* be a
value of j such that ({;/p,) attains a minimum (over restriction of j
in J) when j=j*. Then clearly, a solution of the problem is: Take
n;=0, if j#j*, and take n,.=(1/;»). This clearly leads to

THEOREM 3.1. Let Cf=(p+d+---+¢,); r=1,---,p. Let nf be

the size of the sample from the marginal distribution of responses 1,2,

-+, 7. Let r* be such that (r*/{k)=max {r/C}}. Then the optimal de-
1=r=<p

sign is obtained by taking a sample of size (1/(kL) from the marginal of
responses 1,2,..-,r*. Clearly, the optimal design is an HM design.
Also, it is easily checked that this HM design reduces to an SM design
if and only if ¢,=Ci/(p—1).

4. The case of uncorrelated responses

In the case of uncorrelated responses, the Fisher’s information
matrix H reduces to a diagonal matrix with k,=(2N,)/s!, (t=1,2,---, D),
Where N,= 2” n;. Our problem is to maximize the objective function

]E
Q= T[ N, SubJect to the cost restriction (2.1), which is now equivalent
to gboNo+§‘_, ¢.N,=1. The following result can then be proved in a way

parallel to Theorem 4.2 in Srivastava and McDonald [7].
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THEOREM 4.1. Let my,---, m, denote respectively the values of N,
- ++, N, which maximizes Q subject to the above cost restriction.

(a) Let k be the first integer such that
(4.1) (k—2)pp =T, (k—1)p>Cry,
where (F=¢y++---+¢,;, and k can take the values 2,83,---,p. Then
the optimal design is an HM design with
(4.2) m=---=m_=(k-1)/(plE,), and m;=1/pg;,

(7=k,--+, D).

(b) If (4.1) does mot hold for any value of k (2<k<p), then we
have the SM model with mi=m,=---=m,.

5. The case p=2, and known correlation

For the case of a bivariate population, let #», and n, be the sizes
of the univariate samples from the marginals of the first and second
responses, respectively. The size of the bivariate sample will be de-
noted by m,. Also, p will denote the correlation coefficient p,. The
Fisher’s information matrix H is given by

’%(2”'1"‘—‘——2_‘027%) 1 ('ns ¢ )

5.1) e a’ 1—p 0,0, 1-/°
D ) et
g0, \  1—p o3 1—p

We proceed now to find the optimum design under the determinant
criterion. We want to choose %, n, and m; so as to maximize |H| or,
equivalently,

(5.2) Q=nmy+a(m,+n)n,+bn? ,
suject to

(5.3) d=nd,+n,d,+n; ,
where

(4 a=@C-pN21-p), b=1Q1—p), d=1/(g+d+¢),
d1=(¢o+¢'x)/(¢’o+¢1+¢z) ’ dz=(¢’o+¢z)/(¢o+¢’l+‘/’2) .

The inequalities d,<d,, 0=d,<1, 0=d,<1, d,+d,=1, a=(b+1)/2, and
b>a>1, can be easily checked.

THEOREM 5.1. The sub class C* of HM designs 1is essentially com-
plete in the class C of GIM designs.
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ProoF. The assumption ¢, =<¢, implies that a design D(n,, n,, n;)
in which n,=mn, is at least as good as the design D'(n,, n;, n;). Con-
sequently, designs like D’ shall be ignored. Thus let DeC. Construct
D*(m,, my, my) as follows. Take m,=mn,—n,, m;=0, and m;=mn,+n;.
The design D* is of the HM type and an equivalent way of construct-
ing it is to measure the first response on %,+n; experimental units,
then measure the second response on a subset of these units of size
n,+mn;. We have

QD*)=mm,+a(m;+ m)ms+bmi=a(n;—n,) (ny+ns) +b(ny,+n,)* .

It follows that Q(D*)—Q(D)=(a—1mm,+(b—a)ni+2(b—a)nm;=0. We
also find that ¢(D)—¢p(D*)=¢m,>0. This completes the proof.

Thus, we will restrict attention to HM designs only, by taking
n,=0, and n,, 17;,=0. Our problem is reduced to that of maximizing
Q=anm,+bn}, subject to d=dn,4+mn;, n,, n;=0. It is obvious here that
the choice 7,=0, is never optimal. Now, n;=d—n,d,, and hence Q=
(dm,—d)[(bd,—a)n,—bd]. By considering the roots of this quadratic in
m,, one can easily prove

THEOREM b5.2. A mecessary and sufficient condition for the SM model
to be optimal is that (Pu/de+ ) =2+ 0)/(2—pY). Otherwise the HM design
with n,=d(2bd,—a)/2d,(bd,—a) and n;=da/2(a—bd,), is the optimal one.

6. The case p=3

Consider a general incomplete sample from a 3-variate normal pop-
ulation. Let us assume that the variances are unknown, while the
(3x3) correlation matrix ((o,,)) (7, s=1, 2, 3) is known and the mean is
equal to the zero vector. For simplicity we shall use the notation:
pix=p:» Where (i,7,k)eF, and F is the set of (the six) permutations
of (1,2,3). Thus this notation means py=pu=pi, pn=pu=p, pPu=pu=
p:- We find, after some calculations, that the elements h;; of Fisher’s
information matrix, in this case, are (for (3, 7, k) € F') given by

(6.1) hu=0o'2n+a;n;;+ @, +bnyg] , hij=(0:0,) " (Cemizs+ d,,m,-) )

where

2—pi 1—p} L1003 — P} —p;
a;,= b1=1 — ci=—l ] d =tz
i 1_‘0% ’ + 4 4 i 1_‘02 ’

3
4= [ ((pi.’l)) l =1—- igl PH‘ 2P1P2P3 ’

and where n, (i=1, 2, 3), n,; t#7; i, 7=1, 2, 3) and n,y; are, respectively,
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the sample sizes from the corresponding univariate marginals, bivariate
marginals and the parent distribution. Define, for (i, j, k) € F,

3
6.2) m;=ahy;, Hk=0'ilfjhij y =t ¢y, f:% &r fi=f—¢'i .

Assume that the total money available for taking samples is 1. Our
objective is to find a determination of n'=(n,, ny, 1y, Ny, Ny, Nas, Nigs)
which maximizes |H| or, equivalently, the quantity Q, where

(6.3) Q=0l0103| H | = mymyms+ 2 propts— M 83 — Mgt — Mgt}
subject to the cost restriction

(6.4) 1=gm+gm:+gsns+ fits+ fis+ fiu+ s .

A direct attack on this problem, by way of expanding @ as a cubic in
the 7 elements of n, seems to be unwieldy. The subsequent sections
will offer alternative methods of approach.

7. The perturbation method

We start by assuming that the design D(n) is optimal, i.e., for any
other design D*(n*) we have Q(D*")<Q(D), and ¢(D)=¢(D*)=1. This
means that Q has a global maximum at the point n determined by D.
Let us displace the point n to the point n+43. Suppose this results in
a displacement of (m,, my, mg, py, 1, 1) by the increments (e, &, &, 6:,
0y, 0;), respectively. The value of Q undergoes the change:

(71.1)  Qn+8)—Q(n)=I*[1/2e(m m;— 1) +0.(ptp1— mp2.)] + Py
=P+F, say

where X* shall always denote summation over all triplets (i, j, k) € F,
and where P, is a polynomial of ¢’s and #’s of the third degree and

(7.2) 6 =20;+a,0;;+a,0,+b015 0, =di51k 405 .

The sign of Q(n+3)—Q(n) is the same as that of P,, provided that o
and consequently the ¢’s and the 6’s are such that P, is negligible com-
pared to P,. By the use of (7.2), the polynomial P, can be expressed
directly in terms of 8 as:

(7.3) P=(1/2)% *[(¢i)5i+5u(ak¢f+ak¢j)27kdk)] ~+ 0123 g (b¢¢z+2‘l'¢ci) ’

where ¢,=m;m,—pi, t;=pp,—m,. Because of the cost condition (6.4),
the components of 3 satisfy

(7.4) 9101+ G203+ 9303+ f1012+ fo01s+ [0+ f010s=0 .
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It is interesting to note that the ¢’s and the z’s are the six different
cofactors of the (3x3) matrix ((g;;)), where g;;=a.0,h,.

THEOREM 7.1. A design D(n) is not optimal if there exists a 8 such
that D(n+3) is a design, P, is positive and |P,|<|P,|.

Proor. The proof is evident from the preceding development.
This result will be applied to some important special cases.

The SM model

For the SM model we have all the n’s equal to zero, except n,,=
1/f=m, say. Consequently, for (i, j, k) € F, we also have ¢,=m*(bb.—
c%)’ Ti— (cjck - b;ci)m’. Thus

(7.5)  Pi=m*2*[a;6,+(1/2) (ara; +a,a;+d,i)d:;+ (1/2) (bia;+€,8:)12s)

where | ‘
a;=b;b,—c}, Bi=2(c,c,—bicy) .

Let a* denote the coefficient of d,5 in (7.5), i.e.,

(7.6) a* =bya + bty + byas+- €481+ Co s+ €3 -

Substituting in (7.5), the value of 4§, using the cost condition (7.4), we
get

(1.7)  Pi=(m}2)3*[(2d;— a*gi[f )3+ (@t + st + diB— a*£ilf)3] -

Invoking theorem (6.1) and observing that the ¢’s in (7.7) must be non-
negative numbers (n+d is a design) which can be taken sufficiently
small so that | P)|<|P,|, we obtain

COROLLARY 7.1. A mecessary condition for the SM model to be opti-
mal 1s that,

a*>(f) (ir?ka)fF (2a:/gy, (@i;+ a0, +d.8)/f3) -

The GIM model

Consider the GIM design D wit n>0, and let 5 denote the coeffici-
ent of d, in (7.3), i.e.

(7.8) 7]=bl¢x+b2¢2+b3¢3+21’101+27262+2‘53¢3 .
Substituting for d,,; from (7.4) in (7.3), we get
(7.9 P 1:2*[(2¢t—ﬂgi/f )0:+ (@epi+aud; +2td— 9l )01 (1/2) .

According to theorem (7.1), a necessary condition for a design D to be
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optimal, is that P, be negative. Moreover, since the &’s can be both
negative and positive (the n’s>0), their coefficients must vanish. For
example, suppose that the coefficient of d;, say, is not zero, then we
can select all other ¢’s to be zero, and choose J; to have the same sign
as that of its coefficient, thus giving rise to a positive value for P,,
which implies that Q of (6.3) does not have a maximum at the point
n determined by D. We have established

COROLLARY 7.2. A mecessary condition for the (GIM) design D(n,>
0, 1,>0,:++, m5,>0) to be optimal is that all the following hold simulta-
neously

(7.10) (a) ng:=2f9¢,, (b) nfi=(a.;+a.p.+20d)f .

The conditions (7.10), in addition to the cost restriction (6.4) form
a set of seven equations in seven unknowns. Thus we could (theoretic-
ally) solve for the values of the wm’s. If a design specifies that some
subset of the n’s of size x, say, must be zero, then in (7.10) we would
have (6—x) equations and z inequalities. Again here, with the cost
restriction, we would have to solve (7—x) equations for (7—x) unknowns.
For any design D, this procedure determines the optimal values of the
positive n’s in terms of the costs ¢, and the correlation coefficients p;.
Any two designs, then, can be compared according to the values of Q
arising from adopting each of them.

The HM model

A choice of the vector n such that, say, n,>0, n,>0, and 7,,;>0,
while the rest of »’s are equal to zero, gives rise to an HM design.
From (6.2) we have m;=2n,+am;;+bMys, My=20,+aN;+bnyys, M=
DsMiss, p=CiMyss, Mat+CiMis, ps=dsNy+CsMyp. From (7.4) we also get the
corresponding values of ¢; and z; as

OF = agbyM Mg+ (bbs—cIndys
OF =by(2n,+ Ay )Migs+ (bibs— Ny

P%F =2am (a3 —dn, + [as(by +by) — 25031115710+ 201,705
+ (b — iy

¥ =[(cadls — asC)M1s— 26,1 [N 135+ (C263— 1D )N Y
¥ = (10— ayCy) MMz (C105— Cbo)nlys
¥ =(C1C3— Cby)Nles— bydsMipMys

The quantity » defined in (7.8), after some simplification, takes on the
value
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7=2(ybsbs +a3b;b; — 2bscsds 12,0505 — A4Cl — AsC)N 1M 13
+ 4(bbs — )N g+ 2asbyn i+ by(ai— di)ni,
+3(b1bobs +-2¢,¢:05— bici — byci — byci)nlss

Arguing as before, one arrives at

COROLLARY 7.3. A mecessary condition for the optimality of an HM
design with ny, Ny, Mg >0, 18 the simultaneous realization of the following

(a) 99:=2f¢y, (b) nfi=(aspi+asp+2kids) f,

() 79:=2f¢, (d) 7gs=2f¢s,

(e) iz (@ep+asps+2kds) f,

(f) nfiz(apet+ags+2kid,)f.
Again we remark here that (a) and (b) above with the cost restriction
1=gm,+ fity+ fr form a set of three equations from which we find the
values of my, ny and my,. These values should satisfy the imequalities
(c), @), (e) and (%).

8. Designs with constant Q

Given a design D, we can find a design D* that gives the same
value for the objective function Q as D does, i.e. QD*)=@(D), while
the cost for D* is less than that for D. One simple way of achieving
this is to define D* such that the values of the m’s and the u’s (see
(6.2)) do not change. This is equivalent to saying that the element of
3 satisfy the following conditions, for (¢, 7, k) € F.

8.1) 20; 40,0+ 0,0+ b,015=0 , did+C:01=0 ,
2131+ 2*(9:0,+ fi0,6) <O .

Obviously, if such 3 exists and the design D(n+d) has cost 1, then
D(n) is inadmissible.

From (8.1) we can solve, in terms of 8y, for the rest of the un-
knowns and obtain

(8.2) 8= (2d,d,)"(a,c;d+aced;—bid;d )01
=4 _1[1 + .03 - (Pin/ Pk) - (Pipx/ PJ)]5123

0;;=— (C4/di)o1:= [(o10:05— )| a- Pl%)/ (40)1025 -

Substituting the above values in the inequality (8.1) and multiplying
both sides by 2d,d.d;<0, we obtain

(8.3) {Z*gdiawcd;+a,c;d,—bid;de) (1/2)— ficd;dp]+2fdidsds} 612> 0 .

Using (6.1), the last inequality is seen to be equivalent to
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(8.4) [—(p10:0/4) (1/pi+1/03+1/p3)
+(1/24) (B4 pi 403+ 03) —1/2]8135¢0, >0 .

By observing that the case p,0,0;<0, gives rise to a positive value for
the term in brackets in (8.5), and makes (4, d;, 6;) of the same sign
as dyy, and d;,, 83, 05 of a sign opposite to that of 5., and using a small
negative value of d,,;, we are led to

THEOREM 8.1. A design D(n) in which m,, n,, n; and my; are posi-
tive, is inadmissible if p,p,0,<0. Im the following we shall assume that
o=p=ps=p, say. For this case, we get

(8.5) a=a=(@2-p), B=p=1+(1—p"/4,
c=c=('—p)/4, di=d=(-p)1-p), (=123).

THEOREM 8.2. If ¢ =¢, and py=p,=p;, then we must have either
N =Ny, OF MNyy=MNgy, or both.

PROOF. Suppose the theorem is not true, and let D(n) be a design
in which n,<n, and n;<m,. Construct the design D*(n*) where n*=
(M2, Ny, My, Mgy, Myg,y Nggy Nygy). It follows the ¢(D)—P(D*)=(¢— ¢y) (ny—ny)
=0, which means that D* costs less than, or as much as D. Now we
shall compare Q(D) with Q(D*). Let n,—n,=0=0 and n,;—n,;=60=0.
We find that m*=m,+20, m¥f=m,—20, pf=p, p¥=p, and p¥=p. It
can easily be verified that

Q(D*)—Q(D)=266" {a]21;+ a(113+Ts) + b7y35)]
—d[d(n3+N5) +2cm15]} .

Thus Q(D¥*)—Q(D) is =0 if and only if 2an;+a(7;+ ) +abny,>
d Ny +"Ny)+2deny;. From (8.6) we see that a=1+|d| and b=1+]c¢|,
which implies that the preceding inequality always holds, which in turn
implies that Q(D*)=Q(D). This completes the proof.

9. The case of equal costs and correlation coefficients

In this section we study the case ‘Where for all 4, we have ¢,=¢
and p,=p. We first state a result for later use.

LEMMA 9.1. Consider a space S of dimension p(p+1)/2, whose points
are non-negative definite symmetric matrices of size (pXp). Let Be S
and let f(B)=|B|"?. Then f is a concave function on S.

PrROOF. See, for example, Minc and Marcus ([3], p. 115).

Given B¢ S, and a permutation a of the elements {1, 2,---, p}, let
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a(B) be a matrix obtained by permuting rows and columns of B (the
same permutation for rows as for columns). We have |a(B)|=|B|. Let
B*=1/p! ; a(B).

LEMMA 9.2. We have | B*|=|B|.

ProOF. By Lemma 9.1; and the definition of concave function we
get

| B |/7= ‘L b a(B)IUPgL > [a(B)Il/Psz!IBl”" ,
pl dlla Pl ala p!

or
|B*|z|B| .

Now, for any design D(n,, ny, g, Ny, Nz, T, Nyz), construct D*(yy,
Vi, V1, Vg, Y, Yy, Mzs), Where vy =(n,+ 1,4+ 1,)/3, vy=(ny,+ny;+ny)/3. Because
of equal costs we have ¢(D*)=3(g+ &)+ 3(do+ 2w+ (o4 3P) s = (fo+
&) (109 +15) + (o +20) (Mg + Mg+ Nas) + (do+ )iy = (D). And  because
of equal correlation coefficients we can easily find that m¥=m¥=m*=
(my+my+my)[3, and pf=pf=p¥=(m+m+m)/3. Given any design D,
let M be the (83x3) matrix ((m,,)), with my=m,, my=p;, my= 2, and
myu=y. It is obvious that Q(D)=|M|. It can also be easily checked

that M*=1/3! 3 a(M). From Lemma 9.1, it follows that |M*|=|M],
or QD*)=Q(D). We have established

THEOREM 9.1. Consider the case of equal costs and correlations.
Given any design D(ny, Ny, Ny, Ny, Ny, Nz, Nyzs), the design D*(vy, vy, vy, vy,
vz, vy, Nizs) 18 at least as good as D, where v,=(n+n,+n4)/3, and v,=(n,
+ 13+ m)/3.

Remark. The extension of this result to general p is immediate.

THEOREM 9.2. In the case of equal correlations, a design in which
Ny, My, Ny, Ny >0, 18 tnadmissible.

PrROOF. We shall follow the approach of keeping @ fixed and re-
ducing the cost described in Section 8. From (8.4) we find that the
coefficient of ¢, is (1—p)/(1+2p). The fact 4>0 implies that p>—1/2,
which in turn implies that the coefficient of ¢, is always positive. Thus
we can take 9;;3<0. Formulas (8.5) also become

0y =0,=0;=(1/142p)d,y3 , 01:=013=0u=—(1+p/14+2p)d,3 .

This shows that 4,, §, and &, are of the same sign as 03, While 8, d;5
and d,; have a sign opposite to that of 6. The proof is completed by
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continuing as in Theorem 8.1.

COROLLARY 9.1. In the case of equal costs and equal correlations, a
design in which both v, and v; are positive is inadmissible, where u=m
=Ny=MNg3, and N3 =v3.

PrROOF. Use Theorems 9.1 and 9.2.

LEMMA 9.3. In the case ¢;=¢, p;=p (1=1, 2, 3), the condition v,=0
implies that the optimal design must have v,=0, and the SM model is
optimal.

PrOOF. Let ny;=y;. Our object is to maximize Q=m"+2p* —3m?
=(m—p)*(m+2p), subject to 1=3(¢o+2P)s+ (do+ 3 s =2, m+xp, say
where m=2av,+bv; and p=dv,+cv;. Solving for (v, v) we find

=l I I

x,=[(8¢c —d)¢y+(6¢c—38d)¢)/(2ac—bd) ,
% =[(2a—3b)gs+6(a—b)¢]/(2ac—bd) .
Now, we have
3e—d=—p'2+n)/(1—¢)(1+20) ,
2c—d=—p"/(14+20)(1—¢?)
20—3b=2[(1+p)'—p")/(1—p) (142p) ,
a—b=—p'(1—p")(1+2p) ,
2a6—bd=—20/(1— ) (1+2p) -

Hence

Hence

0=(1/2)2+p)+B3/2),  m=[((1+p)/p)*—pldr+3 .

Now pg=(1—xm)/x,, and hence Q(m)= (1/x.)*[(a,+x)m —1]*[(w,—
2x)m+2]. This is a cubic polynomial in m, with coefficient of m? hav-
ing the same sign as (w;—21x,)(x;, 2, being non-negative). But z,—2z,
=[(1—0")(1+20)/6'1¢y=0. The equation Q(m)=0, has a double root m,
given by m,=[1(z,+2,)]=0 (x,, #,=0). Also, it has a single root m*=
[2/(22, — )] <0.

In the plane (v, »;), the cost constraint restricts the set in which
we want to maximize @, to the line segment between the two points,
[1/(B¢+6¢), 0] and [0, 1/(¢y+8¢)]. This line segment is transformed to
a line segment whose projection on the m-axis is the interval (m', m'")
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where m'=a/(3/24,+3¢), m' =b/(¢s+3¢).

Now a<b, which implies that m’<m’”. At this stage, we would
like to show that m’ is larger than the value of the double root m,.
Now me=1/[(1/2)(2+ p)$o+((1+p)/0)¢s—pds+a/2¢]. Since a>1, our ob-
jective will be accomplished if we show that (1/2)(2+p)+((1+p)/0)—p
—3/220, or (1+p)/o'—(1+p)/2=(1+p)(2+20—0")/(20")=[A+p)(1+2p+1
—po9/(2oH]=0. This however, is always true. Thus @, plotted as a
function of m, is tangent to the m axis at m,, and is a monotone in-
creasing function of m for m=m,. We conclude that @ achieves its
restricted maximum at the point m”=b/(¢,+3¢), for which p"=c/(¢+
3¢). The inverse image of the point (m”, ') in the (v, »5) plane is the
" point [0, 1/(¢+3¢)]. Thus the SM design is the optimal one as the
lemma states.

LEMMA 9.4. In the case of equal costs and correlations, a design in
which v;=0, cannot be optimal.

PrOOF. Assume that D(v, vy, v, v, vs, 13, v5) i an optimal design in
which y,=0. We will proceed to determine the exact values of v, and
y,. We shall also adhere to the same scheme and notation as in the
proof of Lemma 9.8. In the present case, we want to maximize Q=
(m—p)(m+2p), subject to 1=3(dy+ @, +3(Pe+ 20w =2m~+x,p, Where
m=2v,+2av,, p=dyv,. We find that x,=(3/2)(¢,+¢)=0, and that z,=
3(1—a)d/d+8(2—a)p/d=38¢/p*+3¢=0. The coefficient of the cubic term
in Q(m) has the same sign as 2,—2x, which is equal to (3/p")¢—3¢,=0.
The equation Q(m)=0 has a double root m,=[1/(x;+x,)]=0, and a single
root m*=[2/(2%,—,)]<0. The line segment in the (v, »;) plane dictated
by the cost restriction is transformed into a line segment whose pro-
jection on the m-axis in the (m, g) plane is the interval (m’, m"), where
m' =[2/(34y+34)] and m"=[2a/(3¢y+6¢)]. The fact a—2=[@—p")/(1—p"]
—2=p"(1—p% =0, implies that m’<m”. The double root m,=[1/(x,+ x.)]
=1/[3¢(1/24+1/0%)+(9/2)p1 <1/[¢s(8/2) + (3/2)¢]1=m'. All this leads to the
conclusion that Q(m) achieves its restricted maximum at m" =[2a/(3¢,+
6¢)], whose inverse image in the (v, v;) plane is the point »,=0 and
v;=1/(8¢+6¢). Thus the design D which was assumed to be optimal
and had =0, must also have »=0 and »,=1/(8¢,+6¢)>0. But in
Lemma 9.3 we saw that if v,=0 then the optimal design must have
y,=0. This leads to a contradiction and the proof is complete.

THEOREM 9.3. In the case of equal costs and equal correlations, the
SM design is optimal.

Proor. This follows by using successively Theorem 9.1, Corollary
9.1, and Lemmas 9.9 and 9.3.

COLORADO STATE UNIVERSITY



[1]
[2]

[31]
[4]
[5]
[6]

[71]

[8]

[91]

INCOMPLETE MULTIVARIATE DESIGNS 313

REFERENCES

Hocking, R. R. and Smith, W. B. (1971). Optimal incomplete multinormal samples,
To appear in Technometrics.

Kleinbaum, D. G. (1970). Estimation and hypothesis testing for generalized multi-
variate linear models, Unpublished thesis, University of North Carolina, Chapel Hill,
N.C.

Marcus, M. and Minc, H. (1964). A Survey of Matrix Theory and Matrix Inequalities,
Allyn and Bacon, Boston.

Rao, C. R. (1965). Linear Statistical Inference and Its Applications, Wiley and Sons,
New York.

Roy, S. N., Gnanadesikan, R. and Srivastava, J. N. (1971). Analysis and Design of
Certain Quantitative Multiresponse Experiments, Pergamon Press, New York.
Srivastava, J. N. and McDonald, L. L. (1969). On the costwise optimality of hier-
archical multiresponse randomized block designs under the trace criterion, Ann. Inst.
Statist. Math., 21, 507-514.

Srivastava, J. N. and McDonald, L. L. (1971). On the cost wise optimality of certain
hierarchical and standard multiresponse models under the determinant criterion, J.
Multivariate Analysis, 1.

Srivastava, J. N. and McDonald, L. L. (1970). On the hierarchical two-response (cy-
clic PBIB) designs, costwise optimal under the trace criterion, Ann. Inst. Statist. Math.,
22, 507-518.

Trawinsky, I. M. (1961). Incomplete variable designs, Unpublished thesis, Virginia
Polytechnic Institute, Blacksburg, Virginia.



