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1. Introduction and summary

In connection with the negative multinomial distribution, Sibuya,
Yoshimura, and Shimizu [5] discuss a slight modification of the Eggen-
berger Polya Urn Scheme and obtain a multivariate distribution which
tends to the negative multinomial under certain limiting conditions.
In this paper we treat this distribution to be called “ multivariate
modified Polya (MMP) distribution ” and discuss some of its interesting
structural properties, which we hope are at least of pedagogical inter-
est. If the random vector (rv) (x;, @, -+, 2,) has s-variate modified
Polya distribution, then it is shown that the marginal distribution of
the subveetor (x, #; ---, x,), and the conditional distribution of (x,.,,
Tyis vy &) given (X, &,, - -, «,) do not belong to the family of MMP
distributions unlike in the case of multivariate Polya and inverse Polya
families (see [2], [3]), these are shown to be products of Gaussian
hypergeometric function (see [1]) and a r-variate modified Polya dis-
tribution. We also introduce “ multivariate inverse Polya (MMIP) dis-
tribution,” and give similar properties for MMIP distribution.

2. Genesis of the MMP and MMIP distributions
(a) Suppose an urn contains N, N,, ---, N, <§] N=M > balls of s-
i=1

different colors as well as N, white balls. We draw a ball and if it
is colored, it is replaced with additional ¢, ¢, ---, ¢, balls of s-colors

and if it is white, it is replaced with additional d=§s‘_I ¢; white balls.
This is repeated » times. If x;, denotes the number of {)zlls of ith color,
and z, the number of white balls such that i x2;=n, then the rv x=(x,,
%3 +++, 2,) has been shown (see [5]) to ha\;: a probability distribution
whose probability function (pf) is given by
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=

. [n NGo® M@ < N, >z;
(2.1) mmp (x: d’ n, N)_<x>< N(n,d) > 1 —M—

where 2,=0,1,2,---,n for 1=1,2, ---, s so that :czé z,, N=N,+M;
i=1

a®?=a(a+d)(a+2d)- - -(a+(k—1)d) and (n) denotes the multinomial
x .

coefficient.

We note that when s=1 the pf (2.1) reduces to the univariate
Polya distribution (see [4]). This is also evident from the urn scheme.
For, in the case when s=1 there are only “ white” and “black ” balls
in the urn and the scheme of sampling would reduce to Eggenberger-
Polya sampling scheme for univariable case.

(b) In this paragraph, we give a different chance mechanism which
generates the MMP distribution. Put x=(z,, z,, ---, ;) and =3 z,.
If the conditional distribution of x given z is singular multinomial (SM)
distribution (see [4]) with parameters « and @¢=(d, ¢z, -+, ¢;) and the
distribution of x is univariate Polya distribution with parameters =, v
and p,, then the distribution of (x, x) is MMP distribution as in (2.1).

1

I

Remark. It may be noted, as the referee pointed out, that
(1) marginal distribution of the component z of (x, x) follows a uni-
variate Polya distribution and that (2) the sum ;4,4 -+, +x=
2(x;+a,+ - - - +2,) takes even numbers with probability one. For,

2.2) P(x, x)=P (x|z) P (x)
=(atf ) fren-(T2) (G20 )

where ¢o=1—p,. The pf (2.2) can be easily shown to be equivalent to
the pf (2.1), by taking ¢,=»./(1—p,), »,=N,/N and v=d/N.

(¢) Now in the above urn sampling scheme of (a) suppose we
draw Dballs until we observe exactly k white balls following the same
procedure. Let x; denote the number of balls of ith color drawn in
the process of getting k white balls, then it is easy to show that the
pf of the rv x is

. —_ &, [ (x> 3 T\
@3 mmip(;d, b )= (L) (BEOMED ) M)

where 2,=0,1,2, ..+, o for 7=1,2, ---, s; x:i]}wi, M=i‘;Ni and N
=N+ M. - -

We note when s=1 the pf (2.3) reduces to the pf of univariate
inverse Polya distribution (see [4]).

(d) Here we give a different chance mechanism which generates
the MMIP distribution. Again, as in (b), put x=(x, %, -, ;) and
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x=31z,. If the conditional distribution of x given z is SM distribu-
tion and the distribution of # is univariate inverse Polya distribution
with parameters k, v and p, then the distribution of (x, ) is MMIP
as in (2.3). A similar remark as in (b) applies here also. For,

2.4) P (x, z)=P (x|x) P (x)
=(atf ) [ o () (R )C2 ) G

where ¢o=1—p,. The pf (2.4) can be easily seen to be equivalent to
the pf (2.3) after little algebra with ¢,=p,/(1—mn), p.=N,/N and v=d/N.

3. Moments of the distributions

The probability generating functions (pgfs) of MMP and MMIP dis-
tributions are respectively,

3.1) G.(H)=C, . Fi(—n;qp™', —n+1; Z)
and
3.2) G.()=C, ,Fy(k; g, v '+k; Z)
where

C,= (=)™ o = (=R

(—1p)™ (—1/v)®
Z=¢ti+dtat -+ -+ &ty . a®=a(a—1)---(a—b+1)

and ¢, p, and v are as defined earlier. For the definition of .F| see

(11

Remark. It may be noted that the pgfs of MMP and MMIP are
equivalent to the pgfs of univariate Polya (with parameters n, v and
p,), and univariate inverse Polya (with parameters k, v and p), evalu-
ated at Z=g¢d;+dsts+ -+ - +P4ls.

The factorial moment generating functions of MMP and MMIP,
obtained by substituting t,;=14a, (1=1,2,---,8) in (3.1) and (3.2) are
clearly,

(3.3) M(a)=C,,F\(—n;qp"!, —pp~'—n+1; W)
and
(3.4) M(a)=C, Fi(k; g™, v +k; W)

where C, and C, are as given above and W=14¢a;+ ¢, + -+ .,
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Hence the factorial moments p'[r, 75, ---, 7] of MMP and MMIP
are respectively given by,

o] ()

where r=r+r,+---+7r, and (k),=k(k+1)(k+2)---(k+r—1).

4. Structural properties of MMP and MMIP

The MMP and MMIP distributions possess several remarkable and
interesting properties which are not similar to the properties of multi-
variate Polya and inverse Polya distributions. The more important of
these properties refer to any group r<s variables out of the s con-
sidered. These properties, which ecan be proved using the pgf tech-
niques or otherwise, are stated as theorems without proofs in this
section.

4.1. Properties of MMP

If the rv x has MMP as in (2.1), then

THEOREM 1. The sum of the components of x follows univariate
Polya distribution with parameters n, d and M.

THEOREM 2. The conditional distribution of x given Zj x,=m fol-
lows SM distribution with paramete'rs m and (¢, ¢y -+, &) where ¢,=
p:/(1—p,) and p,=N,/N.

THEOREM 3. The rv (Z,, Z,, ---, Z,) also follows MMP with para-
meters n, d and M, where Z,=%;x,, M;=3;N, with X, standing for
the summation taken over i € G, for j=1,2, ..., s such that (J G,=1{1, 2,

i=1
) 8} and anGjl=¢ for qu:jl:lr 29 e, T

THEOREM 4. The conditional distribution of the rv x given the rv

(Z,, Zy, -+, Z,) is the product of r independent SM distributions of the

type SM({p.;}, Z;) where P;=N,/M; for ieG, (j=1,2,---,7) and Z,
and G; are as defined in the above theorem.

THEOREM 5. The marginal distribution of x,=(x, %,, - - -, ©,) where
1<r<s 1is available as

o) e 5

LR — . M+yd —N, __-‘£>
2F1< n+y; 7 4 +n—y 1’¢§+1M
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where y:ZT‘, x; and JF) is Gaussian hypergeometric function (see [1]).
i=1

THEOREM 6. The conditional distribution of x, given x,, where x,
=(m7+l! xr+2) Ct 0y x;) 'I;S gi’ven by

(n——y>< Ne-= 00 )T (i)
X, NEvOM@D B Jimra\ M

where Fi(---) is as in Theorem 5.

4.2. Properties of MMIP
Let the rv x have MMIP as in (2.3), then

THEOREM 7. The sum > x; has the univariate inverse Polya dis-
i=1

tribution with parameters k, d and M.

THEOREM 8. The conditional distribution of x given i r,=m fol-
i=1
lows SM distribution with parameters m and ¢, ¢y, - -+, @,.

THEOREM 9. The distribution of the rv (Z,, Z,, ---, Z,) is also MMIP
with parameters k, d and M, where Z;, M; (§=1,2,---,7) are as de-
fined in Theorem 4.

THEOREM 10. The conditional distribution of x given (Z,, Zy, ---, Z,)
18 the product of r independent SM distributions of the type, SM({P,;},
Zj) Where P,:j_——Ni/Mj fO’r 7:6 Gj-

THEOREM 11. The marginal distribution of x,=(xy, 3 -+, x,) 18
available as
< k+y_1 ><N(kd)M(yd)) 7 <N>
Xyy Tyy =+ *y Ty N(k+11 D 'ﬁ

M+yd N N;
2F1<k+ Y, a d+k+y,r2+1M>

where y=3>"x,.
i=1

THEOREM 12. The conditional distribution of x, given x, is given by

L e T

where k*=k+y, x,=(,.1, -+, %) and F(---) 18 as in Theorem 11.

rals * 0y Ly
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