A BAYES RULE FOR THE SYMMETRIC MULTIPLE
COMPARISONS PROBLEM 11"

RAY A. WALLER AND DAVID B. DUNCAN®

1. Statement of problem

This paper presents the mathematical derivation of a Bayes solu-
tion for the symmetric multiple comparisons problem presented earlier
by Waller and Duncan [4]. Because the earlier paper details the model
and assumptions on which the solution is based, only the functions and
results needed to complete the development are stated here.

Typically the data for a multiple comparisons problem consists of
n independent normally distibuted treatment means (,, %, - - -, %,) which
estimate » true means (g, z, ---, #,) and an independent estimate, say
s’z with f degrees of freedom, of the error variance ¢:. Further, we
suppose that each mean Z; is based on r replications. The problem is
then to choose for each of the h=mn(n—1) ordered pairs of means
either decision df;: g, >p; or decision di;: g not ranked relative to p;.
However, Duncan [2] shows that under the assumptions of symmetry
and an additive loss model, the Bayes rule for the full multiple com-
parisons problem is the simultaneous application of the Bayes rule to
select either dif; or di, for the means (g, p) to all k& pairs of means.
Thus our major concern is to obtain the Bayes rule for selecting one
of the decisions

di: >ty
1.1)
d}, : p, not ranked relative to o,

for the pair of means (g, ;). Following that development we state an
extension of the result as the Bayes rule for the full problem.

To begin the derivation of a Bayes rule to select one of the deci-
sions (1.1) for the pair of means (g, t,), We summarize the probability
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model, the prior distribution, and the loss function. For a more com-
plete presentation of the model the reader should refer to Waller and
Duncan [4].

For reasons of location invariance we consider only solutions that
depend on the means (Z,, ;, « - -, ,) through the (n—1) Helmert trans-
formations

I =Tt —2,
yl ‘\/—E ’ yz A\/? ’ ’

Yooy = T+ %+ -+ %, —(n—1)%, .
i vn(n—1)

Thus the joint probabiiity density of our data is
(1:2) £@0)=[ 17 Pi(we[ o %) |Pastalat, 72)

where Py(x|y, 6°) is the density of a normal random variable with mean
¢ and variance o, Pys’|d%, f) is the chi-square density of the random
variable (fs¥/¢?) with f degrees of freedom, z=(y;, ¥s -+ Yn_1» Stc)r T
=E (v), and 0_——(771’ N2y * s Yoty g).

The prior density is the product of (n—1) independent normal den-
sities for (3, 73, * -+, 7.—1), €ach with mean zero and variance ¢}, and an
independent joint density for ¢! and ¢%=7s>+s% (by definition) deduced
from two independent y* densities. Thus, the full prior density is

o [[n-1 2 _ .2

(13) 10)=K |7 [TT Pi(n|0, =) |Po3Ists, a)Pielstr, fo)do
where P, is defined for (1.2), Py(¢*|s, f) is the fiducial distribution of
o* deduced by assuming s® is distributed so that (fs?)/¢* has a y* densi-
ty with f degrees of freedom, and K is the normalizing constant

K= S:S:z PS(OJTISﬂTl’r qp)Pa(O’ilszp, fp)do'zr do-z .

The loss model is defined as the sum of the losses associated with
the decision selected for each pair of means. Then for reasons of sym-
metry the same loss function is assumed for every pair of means.
The common loss function written for means (g, p,) is
1.4) Lds: 8)= L(d},: 6)=

0, >0, ko, 0>0

in which é=p,—p, and k, and k, are positive constants such that &, >k,.
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2. Simplification of the risk equation

This section has two purposes. The first objective is to define the
Bayes solution (with respect to the foregoing model) for selecting
either decision dj; or decision d), for means (g, #). The second objec-
tive is to simplify the risk equation that is used to define the Bayes
solution. To meet those aims our first step is to prove the following
lemma:

LEMMA 2.1. The Bayes rule for selecting one of the decisions (1.1)
Jor means (u, p1,) s

make decision d; if r(z)>k,
~ make decision d, if r(z)<k,
where k=k k., and

2.1)

2.2) r(z)=§‘fg;,

wn which I* is the integral
(2.3) @)=\ iscioueds, =+, -,

Qt={0: >0}, 2 ={0: 60}, and f(z|60) and A(8) are defined by (1.2)
and (1.3), respectively.

Proor. Using (1.2), (1.3) and (1.4), the Bayes risk is minimized
by making decision d;; when g(2)<0 and by making decision d% when
9(z)=0 where

o(2)=[L(d5: 0)—L(d:: 0)11(z10)A0)0 .

Substituting for L(d},: ) and L(d},: 8) from (1.4), we find g(2)<0, if,
and only if, r(2)>k. That completes the proof of the lemma.

To begin simplifying the critical equation

(2.4) r(2)=k

apply Fubini’s theorem to interchange the order of integration in I*
and I~ from e%, 7y, -, 9a_y, 02 O 73 =+, 9u_y, P, 0%, 02. Then the inte-
grations in (2.4) with respect to 7y, 75, «« -+, 7,_; are performed by evalu-

ating the product of the integrals

oo 2
W(yz)=8_wexp{——l—[i(yi—m)%%]}dm, 1=2,8, .-+, n—1.

2Lla; »
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By completing the square and letting ¢%=7¢2+¢?, we have

27'!”'0'21* ]—(n+2)/2

oi(dr—a?)

EW(yf)=[ exp{—rgw/%’r}.

At this point in the evaluation of the integrals involved in (2.4), the
solution comes to depend on the data through the difference v 2y,
(=%,—7%,), the among treatment variance estimator

n—1
Sre=1 3 y?/(n—l) ,
and the error variance estimator s};. Then by transforming from 7,
%, and 2 to

(2.5) VT g0t

2
S
’ ’ w=<
2 2
(3 T, e

and defining the “ pooled ” estimates of ¢% and o?

§h= 2rSTpt(n—1)875 ,
q
si= SeSip+ fuSin ,
f
where ¢g=q,+(n—1) and f=fp+fz, the solution of the critical equa-
tion (2.4) depends on the data, z, through the two statistics ‘

(2.6)

-
Sq
(2.7)
82
F= sg )

in which s}=2s/r.
After the foregoing indicated integrations and transformations are
performed in both I* and I, the critical equation, (2.4), reduces to

L'(t|F, q, f) _
2.8 LHE, ¢, 7) g
(2-8) L-GIF, ¢, 1)
where

LF. . )= ] |"Iel@— 1) cwonyer-s

*

- Xexp { —;—uz[A<%, ?,t, F)]}du’dr do

in which *x=+4, —, z¥={r]0<r< 0}, 77={r]| —00<7<0}, and
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—_ 1/2 1/2)2
A(w,x,y,2)={y[” 1] —w[ i ] }+f+ﬁ.
x z—1 x

Since I,;* and I, are further reduced by identical steps, we indi-
cate in detail only the reduction steps for I* and state the analogous
results in I,".

Before integrating with respect to u% a change of variable from
7 to

ol el

is made. The integration with respect to u? then gives

(2.10) st F, g, f) ='Sw (Q—1)1/2@—(“3,/2{.,._[_}%17'_}-(f'—l)/z
1

2 } —(f'+D/2

- : 7
X S_bm [yt p(a))]{1+ 5 dy do

where I*(t|F, q, f)<I;*(t|F, q, f) and

f'=r+q,
@.11) oty
ﬁ(®)={f¢+qF} :

Let h(z|f’) denote the density of a t variable with f’ degrees of
freedom, and let H(z|f’) denote the cumulative distribution of the
same t variable. Then the integration with respect to y produces

(2.12) FF g, )=\ @—1"GOM tH®)| £)i0

where If(t|F, q, f)<L*(t|F, q, ), G(®) is similar to an F' density with
q and f degrees of freedom and defined by

b

G(@)=¢-(q+a)/2{f+£}-<f'—1)/z
/)

and M* is defined by

(2.13) M| f’):{ ff ' . }{1+%}h(z|f')+zH(z| .

The same sequence of steps will yield I (t|F, q, /)<L (t|F, q, f)
where the constants of proportionality are the same for I~ and I*.
Thus, the critical equation is reduced to the ratio of two single inte-
grals and expressed by
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LAtF, q, f)
2.14 VS J)
(214) LWIF, 0, f)

in which M-(z|f")=M*(—=z|f").

Differentiation of the left member of equation (2.14) with respect
to t shows that the ratio is a monotonically increasing function of ¢.
Thus, if ¢, is the solution of the critical equation (2.14) for fixed values
of k, F, q, and f, then L*(t|F, q, /)L (t|F, q, f)=k and L}(t|F, q, f)/
I (t|F, q, f)>k if, and only if, t>t.. Therefore, the Bayes rule can be
expressed as

make decision d;; if t>¢,,
(2.15) .
make decision d, if t<t,.,

where ¢ is defined by (2.7) and ¢, is the solution of (2.14) for given
values of k, F, q, and f.

Now that the Bayes rule can be expressed in terms of the solu-
tion to Equation (2.14), the next step is to solve that equation.

3. General recursive solution of the critical equation

This section is used to derive a basic recursive method to generate
integrals that are proportional to the integrals I,” and I~ in the eriti-
cal equation (2.14). A specialization of this recursion formula is used
in Section 4 to solve for ¢ in the equation I*(t|F, q, f)/I7(t|F, q, f)=k
for each fixed set of values F, ¢q, f and k.

The first step in the development is to define a transformation
from @ to ¢ by

_gF
fO+qF

and put (for notational convenience only)

3.1) cos’p=

[1—cos® ¢/cos® ]t

2 in =
. o [f +(1—cos® g/cos? ¢,)t?]2
in which
_ qF ]1/2
COS ¢y= .
b= a

The critical equation is then given by
(3.3) I*(q—1,f—38, —21, f'~2) _,

I(g—1, f—8, —2,1, f'—2)
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where, for x=4 or —

/2
(3.4) I*(m, n, p, w, r)= S cos™ ¢ sin™ ¢ cos? 4 sin” g*(@|r)d¢ ,
$o

— 272 '[(r+2)/2] 1/2
(3.5) g*@|r) "+ Ir 1 D/Z] cos OM*[(r+2)“ tan8|r+2],

in which M* is the function defined by (2.13).
To develop a recursive formula to generate I*(m, n, p, w, r), we

use the familiar recursive formula to evaluate Scos"mdx to obtain

3.6)  g*(6lr)=—"—g*(@6|r—2)— %0
r—1 r—1

for r=2,8,-.-- and for x=+4 or —. The initial values for the recur-
sion given in (3.6) are

9*(0|0)=1+sin@,
3.7

g*(8|1)=cos 01(%1—0) sind.

Using the result (3.6) along with a method patterned after the
standard recursive formula for evaluation Ssin"x cos™x dx, we prove

the following theorem.

THEOREM 3.1 (Basic Recursion Theorem). If I*, for x=+ or —,
18 the integral defined in (3.4), then

3.8) I*m,n,—2,1,7)
=AB*(m—1,n—1, —4, 3, r)+ A, T*(m, n—2, —2, 1, r)

F AT m—2,m, —2, 1, r)—l—%J(m, n, 1),

where S*=8/(f+t), C*=1—S",

_FHaF 4 C 4o D1, m—1
D= qF '’ Av= rS:D’ A=n—1) rD '’ A rD

/2
J(m, n, p, w)=S - cos™ ¢ sin™ ¢ cos? 4 sin¥ 0 d¢ ,
$o
and

/2
B*(m, n, p, w, r)=cos™ ¢ sin® ¢ cos? 4 sin* dg*(0|r)
$=¢g

PrOOF. To establish (3.8) we put
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/2
I*(m, n, p, w, fr)=S u dv
do

where

u=- - (cos ¢)*(sin ¢)"~¥(cos 0)*"¥sin 0)°g*(01r)
(3.9) .

dv=5 ? cos ¢ sin ¢ cos® 6 dg .

From (3.2) we have

2 : 3
(3.10) Z_Z: SC? { coS ¢ lellllgz cos®f } )
We then use (3.10) and the chain rule of differentiation to determine
du and v:S sin §df= —cos 8. Thus, for all choices of m, n, p, w, and
r, the integration by parts formula gives
3.11) (p—2)I*(m, n, p, w, r)

=—-= Brm—1,n-1,p—2 w,7)

+1+w)*(m, n, p+2, w—2, r)—J(m, n, p+r+2, w—2)

+—C—2—g"25—1)[*(m, n—2, p—2, w, 7)

+-Cz(‘$—51)1*(m—2, n, p—2, w, ).

To simplify (3.11), we first use the identity sin*xz=1-—cos’z to
write

(8.12) I*a,b,c,d,e)=I*a,b,c,d—2,e)—I*a,b,c+2,d—2,¢).
We then use (3.2) to deduce

CZ
costf

(3.13) 1—S%Dcos’¢=

Then we use (3.13) to write

I%a, b, ¢, d, )= I*(a, b, c+2,d, e)——S;Iz)I*(a+2, b,c+2,d,e) ’
(3.14)
1-S8:D
C2
S:D

CZ

I*(a, b,c, d, €)= I*(a, b, c+2,d,e)

I*(@a, b+2,¢+2,d,¢).
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Using (3.12) and (3.14) and putting w=3 and p=—2 reduces (3.11) to
(3.8). That completes the proof.

The next objective is to specialize the basic recursive relationship
(3.8) to generate the integrals I*(g—1, f—8, —2, —1, f'—2) for =+
or — and fixed values of ¢, f, and f'=f+q.

4. Specific recursive solutions of the critical equation

This section gives a method to determine the value of ¢, say t,,
which satisfies the critical equation (2.14) for any specified set of
values for (k, F), q, f) in these cases:

Case 1: F<oo, ¢ is an even integer, and f is an even integer.
Case 2: F'<oo, g=o0, and f is an even integer.
Case 8: F'=oo, ¢ is an even integer, and f is an even integer.

Those three cases are discussed in Sections 4.2, 4.3, and 4.4, respectively.

4.1 Refining the basic recursion formula

In our recursive scheme with Equation (3.8), m is an index to be
terminated at ¢—1, n is an index to be terminated at f—3, and r is
an index to be terminated at f'—2. But to satisfy the constraint f
=f+q, we require that r=m+n+2. Thus, we simplify the notation
of the previous section as follows:

J(m, n)=J(m, n, r, 1), for r=m4+n+2,
“4.1) I*(m, n)=I*(m,n, —2,1,7), for r=m+n+2,
Bf=B*(0, n, —4, 3, n+4).

Further, from the definition of B*( ) in Theorem 3.1, it follows
that

i:gniﬂ, for m=0
(4.2) B*(m,n, —4, 3, m+n+4)={ C
0, for m>0,
where
(4.3) gr=g@0\r)|
§=sin"1(S)

and C and S are defined for Theorem 3.1. Also, it follows directly
from (3.6) and (8.7) that
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gr=T0C"
r—1
(4.4) gi=1=S,
gf=C-}—S[tan‘1 (?)i(—g—ﬂ .

Then by arguments similar to those used in proving Theorem 3.1,
it can be shown that

CS—(n—1(D-1J(A, n—2) for m=1,
(n+2)D
(4.5)  J(m,n)=4 (n—1)(D—1)J(m, n—2)+(m—1)J(m—2, n)
(r—1)D
for m>1,

where C, S, and D are as defined for Theorem 3.1.
By using the definitions in (4.1) and the results in (4.2), (4.3), (4.4)
and (4.5) in the recursion (3.8), we can write

(S[CYEut (=) (D=DI*L, n—2) g
(n+2)D
(4.6) I*(m,n)=y (n—1)(D—1)I*(m, n—2)+(m—1)I*(m—2, n)
(r—1)D
for m>1,
for x=4+ or —, r=n+m+2, and where S, C and D are previously

defined.

The recursions (4.6) are not precise enough to avoid difficulties in
round off error on a computer. Therefore, one final refinement is
made in the recursive method to generate the ratio of the integrals
in Equation (3.3). The result is stated in the following theorem :

THEOREM 4.1. Let

SZ=7_%, C=1-8?,
D= f+aF , E= S ,
qF f+qF

4.7
2[(n—1)/2])' g%
[(n—2)/2]! ’

+
n

+ _ 2(m4+n+1)C D™ (m+n—1)/2]! ;.
L m, ) = S m D=y, L ™
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Then
Gy, for n=1 and m=>1,

(4.8) L*(m, n)= G:T-+1+E-Lt(1, n—2), for m=1 and n>1,
L*(m—2, n)+E-L*(m, n—2),

for m>1 and n>1,

where

G: = 2(CHSItan™ 1N+ @D ge_asy,
(4.9) i

Gt=n iz _ Cl(n—3)/2]! , for n>2.

n—2 z(n—2)2]

PrOOF. The results in (4.8) are immediate by using the definition
(4.7) and the recursion (4.6) while (4.9) follows directly from the de-
finition of G¥ and (4.4).

4.2 Solution for Case 1 (F <oo, q even, and f even)

In this section we outline an iterative method that uses recursions
(4.8) and (4.9) to determine the value of t, say t., which satisfies Equa-
tion (3.3) for a specific set of values (k, F, q, f) where FF<oo, q is an
even positive integer, and f is an even positive integer.

We note that finding ¢, which satisfies the critical equation in
forms (2.4), (2.14), and (8.3) for given values of (k, F,q, f) is equiva-
lent to finding ¢,, which satisfies

L'g—1, f3) _
4.10 =k
(4.10) La—L f=3)

for the same values of (k, F, q, f). Thus we use the recursions in (4.8)
for odd values of both m and » with termination points (g—1) and
(f—3), respectively. By simultaneously using Equation (4.9) to gene-
rate the necessary G values and Equation (4.8) to generate L*(g—1,
S —3) we obtain an iterative method to solve (4.10). To illustrate the
method, we suppose

(4.11) k=100, F=4, ¢=6, f=10,

and list the iteration steps.
1. Let t, be a first guess at the solution to (4.10) for the argu-
ments given in (4.11).
2. Use (4.7) to obtain S, C, D, and E from ¢, F, q, and f.
3. Use (4.9) to generate G¥, for r=2,4,6,8 and *=+4, —.
4. Use (4.8) to generate
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(i) L*(m,1), m=1,38,5 for x=+,—.
(i) L*Q1,mn), L*8,n), L*5,n), »=3,57 for x=+, —.

5. Calculate

k(t,)=L*(5, T)/L~(5,7).

6. Compute the derivatives L*'(5,7) of L*(5,7) with respect to t
for * =+, —. Those calculations can be completely in con-
junction with the corresponding calculations of L*(5,7) by dif-
ferentiating the recursions which generate L*(m, n) and G* to
obtain recursions which generate L*'(m,n) and G}'.

7. Compute the derivative k'(t;) of the ratio k(¢,) where

K'(¢)=[L~(5, TYL*'(5, T)—L*(5, T)L~'(5, T)/[L~(5, T)I*.

8. Obtain a second approximation of ¢, using

t=t+(k—k())/K' () .

9. Repeat steps 2 through 8 replacing ¢, by ¢, and obtain a third
approximation ¢; for t,. Iterate to convergence.

The foregoing method was used along with appropriate interpola-
tion formulae to compute a set of critical ¢ value tables for selected
values of (k, F, q, f). The tables in Waller and Duncan [4] contained
an error, but a corrected set of tables are available in Waller and
Duncan [5]. An algorithm (ASA FORTRAN) for calculating the criti-
cal t-values, t,, is available on request.

4.3 Solution for Case 2 (FF<oo, ¢g— oo, f eveh)

Case 2 is identical to Case 1 except that ¢ is no longer finite.
Rather than proceeding directly to the limit of (4.8) as g¢— oo, it is
convenient to prove this theorem :

THEOREM 4.2. If q is an even integer (=2) and if f is an even
nteger (=4), then

(F—4)/2 — >
(412) L*q-1,f-3)= 3 E’i((q 21/2“)0712_2,., =t —,

where E, L*, and G* are defined in (4.7), (4.8) and (4.9).

ProoF. (i) If f=4, then by (4.8) L*(¢—1, 1)=G5 for all values
of ¢ and (4.12) holds.

(ii) If ¢=2, a proof by induction yields (4.12). First, part (i)
shows that L*(1,1)=G¥. Second, from the induction assumption that

f—8)/2
L*1, f-5)= X2 E'Gf_ i n
i=0
and (4.8) it follows that (4.12) holds.

(iii) Finally, that (4.12) holds for ¢>2 and f>4 follows by sub-
stituting the inductive hypotheses
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f=9/2
L¥g-3, f-9)= 3 (O er

LHg—1, fe 5)_(fzs">/in<(q 2)/2+'L>Gf e

into (4.8).
An immediate consequence of Theorem 4.2 is as follows :

THEOREM 4.3. If f is an even integer, then

1) L¥eo, f=8)="5 (L) L6, for a=t, -

PROOF. In view of (4.12), we need only show that

(- )

to establish (4.18). From the definition of E in (4.7) and ( ;)L) we have

(4= () e 22 L)

q—oo

The critical ¢ values for Case 2 can now be found by using (4.13)
in an iterative method similar to that given in Section 4.2 for Case 1.

4.4 Solution for Case 3 (F'— oo, q even, f even)

To obtain the desired integrals for F'=co, ¢ an even integer, and
S an even integer, we use (4.12) to prove this theorem :

THEOREM 4.4. If q is an even integer (=2) and f is an even inm-
teger (=4), then

(4.14) lim L*q—1, f—3)=Gt_,, for =, —.
F—oo

Remark. When F =occ, we obtain the same critical value for all
values of gq.

PrRooF. Since G¥ is not a function of F, it follows from (4.12)
that

F—oo

lim LG =1, F=8)=Gj-et" > Groaa 07 2V2H ) 1im .

F—oo i=
Now by (4.7) E=f/(f+q¢F). Therefore lim E‘=0, for all finite values
of ¢, which establishes (4.14).

Here again an iterative method similar to that outlined for Case
1 can be used to calculate the critical ¢ value for any given pair of
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values for k& and f.

That concludes the solutions for the three cases defined at the
beginning of this section. The somewhat more cumbersome recursive
techniques to obtain solutions to some remaining cases are discussed
in the next two sections.

5. Case 4: The two treatment experiment

The solution for the two-treatment experiment is developed in this
section. In this special case (¢=1), the quantities F' and ¢’ (see (2.7))
are identical. Setting ¢=1 and F =’ simplifies many of the quantities
defined in Theorem 3.1. The following lemmas summarize the results
for ¢=1 and lead to the recursion formula for the integrals I*(0, n)
given in Theorem 5.1.

LEMMA 5.1. If q=1, then

1
8t

(i) E=C,

(i) D=

.. C

.y ) simg=lo.
$= (cos? 9 —C?)"*
cos @ '

Csingds
dé =
(v) d¢ (cos®@—C?*)"* cos @

(iv) cos

Proor. Using F'=t* and ¢g=1 in the definitions of D and E as
given (4.7) establishes (i) and (ii). Parts (iii), (iv), and (v) follow
directly from (3.12) when D is replaced by 1/S%

LEMMA 5.2. If gq=1 and J(0, n) is as defined for (4.1), then

Cn+l SZ T

(5.2) J(0, n)= y

PRrROOF. By definition (see (4.1) and Theorem 3.8)
/!
J(0, n)=S 2 sin™ ¢ cos"** @ sin 6 d¢ .
%0
Using parts (iii) and (v) of (5.1) to replace sin ¢ and d¢ gives
0,

2
5.3 J O, =C,,+1S ¢ oS @sin®f ,
(5.3) 0, n) o (cos?§—C?)"?
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where sin’#,=S?. Evaluation of (5.3) gives (5.2).

LEMMA 5.3. If E, D, I*(m,n) and J(m,n) (see (4.1) and (5.1)),
are as previously defined, then

5.4)  I%0, n)= [1+<

_ (m=3)nC* ;. C*'S'r
w1 LOn=—or oy

ProoF. Using m=2 in (4.6), we obtain

”:2 >Cz]1i(0, n—2)

+ n 1 + +
G.5) 152, n)= <n+ ) BI@ =2+t +3)1)1(0 n).

Definition (3.6) and (4.1) imply that

+ n+4 + _ +
(5.6) I*(2, n)= <n+ )I 0, n) —+ J(0, n)—I%(0, n+2).
Likewise,

G.7) I42, n-2):<z_ﬁ>zi(o, n—2)— <n+_1)J(o, n—2)—I*(0, n).

By substituting (5.6) and (5.7) into (5.5) and by replacing (n+2) by =
we obtain

G.8)  I*0, n)= [(iﬁ—)E+ (n+11) —+ < Zif >]Ii(0, n—2)

MEP(O n—4)— ( )J(o n—2)
n

+ 8= 5o, n_s).
n*—1

The use of (5.2) and parts (i) and (ii) of (5.1) establishes (5.4).

The foregoing lemmas and definitions are used to state and prove
the following theorem which can be used to obtain critical ¢-values for
a two-treatment experiment.

THEOREM 5.1. Let
6.9 L0, n)=2C0+tD 12 .
zS?

If q=1, then

(5.10)  L*(0, n)= (”+1):_(’;—2)Cz L0, n—2)— "C L0, n—4)
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Cu+l
n—1

, for n=4.

ProoF. Multiplying (5.4) by 2C¥n+1)/zS? and replacing I*(0, n—2)
and I*(0,n—4) by [zS?}2C*n—1)]L*(0,n—2) and [zS*/2C*n—3)]L*(0,
n—4), respectively, gives (5.10).

The following quantities are needed to initialize the recursion (5.10)
and can be obtained by integration:

120, 0=21=2C4C 4 2 _[c5+(5t—07) tan (S]],

L*0,1)=(1 +S),
c1y O 2)=—317[3_4cz+05]

2 [os1+28)+@3—40) tan (5],

L*(0, 3)= 2[2+2S’+32§Z]i23(4+02) '

The recursion in (5.10) and the starting values in (5.11) can be used
in an iterative scheme (similar to that presented in Section 4.2) to de-
termine that value of ¢, say ¢, which satisfies the equation

L*(0, f—3) _
(5.12) m_k

for each given pair of values (k, f) such that f=3.
That concludes the development of the solution for the two-treat-
ment experiment.

6. Discussion of other cases

Three remaining cases of interest for F'<co can be identified ac-
cording to the possible values of ¢ and f as follows:

Case 5: ¢ and f are both odd integers=4.
Case 6: ¢ is an even integer=2, and f is an odd integer=3.
Case 7: ¢ is an odd integer=3, and f is an odd integer=3.

To use the recursive techniques in Sections 3 and 4 to solve the
three cases above, recursions that generate the quantities L*(0, ) and
L*(m, 0) are needed to initiate the recursive system given in (4.8).
Those recursions can be derived with the method used to prove Theo-
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rem 3.1 along the results and definitions in Theorem 4.1. The deriva-
tions are similar to those used in Section 5 to derive a recursive
method for generating L*(0,n) when ¢=1. However, the recursions
and their initial values require evaluation of certain elliptic integrals,
which tends to make the development tedious and bulky. Therefore,
a detailed treatment of the recursive method for the cases identified
above will be presented after further research directed to simplifying
the technique is completed. In the meantime access to the develop-
ment in its current state is available on microfilm in the thesis by
Waller [3].

7. The Bayes rule

The foregoing development completes the derivation of the Bayes
rule for the symmetric multiple comparisons problem presented and dis-
cussed by Waller and Duncan [4]. In this section we state that Bayes
rule. First, we state the rule for those cases where ¢>1. Second,
the rule for the case when ¢g=1 is given.

Bayes rule (q>1): Let t.=t(k, F,q, f) be that value of t that
satisfies Equation (2.14) (or equivalently (4.10)) for a specified vector
(k, F,q, f). Let t,;=(%,—2,)/s, where s, is defined for (2.7). Then the
Bayes rule for the symmetric multiple comparisons problem is the
simultaneous application of this rule to all n(n—1)/2 pairs of treat-
ment means: '

If t,;>t., conclude p,>p;.
(6.1) If |t;;|<t., conclude g, is unranked relative to ;.
If t,,<—t., conclude p,<p;.

Bayes rule (g=1): Let t, be that value of ¢ that satisfies Equa-
tion (5.1) for a specified vector (k, f). Let t,=(%,—%,)/s; where s, is
defined for (2.7). The Bayes rule for the symmetric multiple com-
parisons problem for means g and g, is the application of (6.1) with
t.=t, 1=1, and j=2.

That completes the statement of the Bayes rule for the symmetric
multiple comparisons problem.

8. Conclusion

The mathematical derivation of a Bayes rule for the symmetric
multiple comparisons problem has been presented in the foregoing sec-
tions of this paper. An application method for that Bayes rule and
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tables of the ecritical t-values for selected values of k, F, q and f
were presented in Waller and Duncan [4], [5].

There are, however, some open problems remaining that need to
be solved to complete the solution. One open problem is the asymp-
totic solution for the case when f-— oo and ¢ is finite. Another re-
sult of interest is refining the recursive technique to obtain a set of
recursions for Cases 5, 6, and 7, which are as precise and efficient for
computer use as those used in Cases 1, 2, 3, and 4. That result would
eliminate the necessity of using interpolation methods to determine the
critical t-values for Cases 5, 6, and 7. We note that even though the
available tables values for those cases were determined by interpola-
tion the numbers are accurate to two decimal places. Thus, the ap-
proximations involved are of no practical importance.

KANSAS STATE UNIVERSITY
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